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WAVELET REGULARIZATION OF A FOURIER-GALERKIN METHOD
FOR SOLVING THE 2D INCOMPRESSIBLE EULER EQUATIONS ∗, ∗∗

R. Nguyen van yen1, M. Farge1 and K. Schneider2

Résumé. Nous appliquons une méthode Fourier-Galerkin pour résoudre les équations d’Euler 2D
incompressibles, et étudions plusieurs façons de régulariser la solution par filtrage en ondelettes à chaque
pas de temps. Nous considérons des ondelettes orthogonales à valeurs réelles, ainsi que des ondelettes
à valeurs complexes. utilisées pour effectuer soit un filtrage linéaire soit un filtrage non linéaire. Les
résultats sont comparés à ceux obtenus par des méthodes classiques de régularisation visqueuse ou
hypervisqueuse. Ils montrent que la régularisation par ondelettes complexes se comporte aussi bien
en termes de taux de convergence L2 vers la solution de référence. Le taux de compression pour
la turbulence 2D homogène isotrope obtenu avec cette méthode est de l’ordre de 3, de sorte que
l’espace mémoire et le temps de calcul nécessaires seraient inférieurs pour une simulation adaptative
en ondelettes. Nos résultats suggèrent également que la convergence vers la solution de référence a lieu
même sans aucune régularisation, contrairement à ce qui se produit pour l’équation de Burgers 1D.

Abstract. We employ a Fourier-Galerkin method to solve the 2D incompressible Euler equations,
and study several ways to regularize the solution by wavelet filtering at each timestep. Real-valued
orthogonal wavelets and complex-valued wavelets are considered, combined with either linear or non-
linear filtering. The results are compared with those obtained via classical viscous and hyperviscous
regularization methods. Wavelet regularization using complex-valued wavelets performs as well in terms
of L2 convergence rate to the reference solution. The compression rate for homogeneous 2D turbulence
is around 3 for this method, suggesting that memory and CPU time could be reduced in an adaptive
wavelet computation. Our results also suggest L2 convergence to the reference solution without any
regularization, in contrast to what is obtained for the 1D Burgers equation.

Introduction

When they are dominated by nonlinear effects due to inertia, flows in Newtonian incompressible fluids enter
the turbulent regime, in which their motions are very disordered and involve a wide range of scales. Nevertheless,
they tend to possess certain robust phenomenological properties, e.g. the average energy dissipation rate, that
have lead to their study in a specific framework known as the statistical theory of fully developed homegeneous
isotropic turbulence [18]. This theory is not directly derived from the basic equations of fluid mechanics but
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1 Laboratoire de Météorologie Dynamique-IPSL-CNRS, École Normale Supérieure, Paris, France; e-mail : rnguyen@lmd.ens.fr
2 Centre de Mathématiques et d’Informatique, Université d’Aix-Marseille, France

c© EDP Sciences, SMAI 2009

Article published by EDP Sciences and available at http://www.edpsciences.org/proc or http://dx.doi.org/10.1051/proc/2009057

http://www.edpsciences.org
http://www.edpsciences.org/proc
http://dx.doi.org/10.1051/proc/2009057


90 ESAIM: PROCEEDINGS

requires additional statistical hypotheses that are difficult to check experimentally. Moreover, it doesn’t take into
account self-organization of the flow into coherent structures. On the other hand, current numerical methods tend
to reproduce observed properties of turbulent flows. They offer rich opportunities for proposing new theoretical
approaches and confronting them quantitatively.

Despite the chaotic character of turbulent flows, it is commonly accepted that, if the density is constant,
their velocity field u(x, t) is well described by solutions of the Navier-Stokes equations: ∂tuν + (uν · ∇)uν = −∇pν + ν∇2uν , x ∈ Td, t ∈]0,+∞[

∇ · uν = 0
uν(·, 0) = u0

(1)

where ν is the kinematic viscosity of the fluid, t is time, and u0 is an initial flow on the d-dimensional torus
Td = ( R

2πZ )d. Here, the pressure pν is determined by uν through the divergence-free condition and cannot be
chosen independently. The equations have been written in dimensionless units, so that the Reynolds number
can be simply defined by Re = ν−1. Properly describing the behavior of solutions to (1) when Re� 1 remains
a central problem for the understanding fully developed turbulence. A key mathematical difficulty is that
the limit ν → 0, i.e. Re → ∞, is singular as the order of the equation changes. Indeed, many wind tunnel
experiments [4, 42], as well as numerical experiments [25], suggest that the limit u of uν when Re → ∞ does
not satisfy Euler’s equations (2),

∂tu + (u · ∇)u = −∇p (2)
or at least not in the strong sense. This idea was elaborated upon by many authors following the seminal work
of Onsager, about which a nice historical review has been recently published [13].

When trying to approximate numerically turbulent flows, the traditional approach is to solve the Navier-
Stokes equations and make the viscosity as small as is allowed by numerical discretization, which is ultimately
limited by the available computational power (see e.g. [25] for state of the art results obtained using 40963

degrees of freedom). But if the dynamics in the inviscid limit, or at least some of its important features, become
strictly independent of Re, it is much more desirable to solve the Euler equations instead of the Navier-Stokes
equations. A problem of parabolic type (eq. 1) is thereby replaced by a problem of hyperbolic type (eq. 2), as
the higher order derivative disappears. In some cases, finite time singularities may then occur, and uniqueness
of the solution is lost [31]. This happens for example for the Burgers equation, or for the compressible Euler
equation, and is conjectured to happen for the 3D incompressible Euler equations. Admittedly, the 2D Euler
equations, that we are going to consider below, do not give rise to finite time singularities. Their solution remains
smooth for all time, since we are considering only domains without boundaries, and smooth initial data [27,47].
However, the vorticity gradients grow extremely fast in time. This phenomenon, which has been described as
“slow collapse” [48], is almost as bad as finite time singularity as far as numerical simulation is concerned.

Due to the roughness of the exact solutions to these problems, numerical methods for solving hyperbolic
partial differential equations must be accompanied by proper regularization mechanisms. If the solution is not
unique, the responsibility even falls upon the numerical scheme to select the weak solution that it approximates.
Physical considerations must hence be taken into account when designing the scheme so that it yields the proper
solution. Existing methods include upwind characteristic [38] or total variation diminishing [22] schemes, shock
limiters [43], spectral vanishing viscosity [20,44], hyperdissipation [3], and more recently inviscid regularization
[2,23,29]. The latter stands aside from the rest since it was introduced mainly as a tool for mathematical proofs.
One may also refer to [39] for a comparison between several schemes.

In this paper, we apply a regularization method based on wavelet filtering to solve the 2D Euler equations
written in vorticity-velocity formulation:

∂tω + u · ∇ω = 0, t ∈]0,+∞[, x ∈ T2

ω = ∇× u
∇ · u = 0
ω(·, 0) = ω0

(3)
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where ω denotes the vorticity component perpendicular to the plane. We compare the results with those obtained
when the first equation is replaced by

∂tων,α + (uν,α · ∇)ων,α = −να(−∆)αων,α, α ≥ 1 (4)

which corresponds to the 2D hyperdissipative Navier-Stokes equations with dissipativity α if α > 1, or to the
classical 2D Navier-Stokes equations if α = 1, in which case we drop the index α.

Note that the physical relevance of the inviscid limit in 2D is questionable, since virtually all known flows
become three dimensional at high enough Reynolds number. Nevertheless, the 2D case is chosen as a toy model
to allow us access to high Reynolds number flows at an affordable computational cost. Another unphysical aspect
of our study resides in the boundary conditions. Physically realistic flows are in contact with solid walls which
need to be taken into account by introducing no-slip boundary conditions in the modeling. These boundary
conditions cannot be satisfied in general by solutions of the Euler equations. Taking them into account properly
in the inviscid limit hence introduces new difficulties that we reserve for future work. In the meantime, we use
periodic boundary conditions.

The main goal of this paper is to extend to the 2D Euler equations the study that we did in a previous
work [35] concerning regularization of the 1D Burgers equation:{

∂tu+ u∂xu = 0, t ∈]0,+∞[, x ∈ [−1, 1],
u(·, 0) = u0.

(5)

In the first part, we explain our numerical method, which consists in classical discretization schemes and
the original part of our work, namely, the wavelet filters. In the second part, we present some new numerical
results obtained for the 1D Burgers equation, and we then study in detail the regularization method in the case
of the 2D Euler equations. Finally, we draw some conclusions relative to those two sets of results and outline
perspectives for extending the study to 3D flows.

1. Numerical method

1.1. Discretization

In [35], the 1D Burgers equation was discretized by means of a Fourier collocation method, with pseudo-
spectral evaluation of the nonlinear term [7]. In such schemes, the velocity is followed via its Fourier coefficients,
which satisfy a system of nonlinear ordinary differential equations. To efficiently compute the convolution
product that appears due to the quadratic nonlinear term, the solution is reconstructed on an evenly spaced grid,
hence the term “pseudo-spectral”. Conservation of energy was enforced thanks to a skew-symmetric formulation
of the nonlinear term. A fourth order Runge-Kutta time discretization and a small timestep allowed us to observe
numerical dissipation of energy remaining below 10−4 relative to the initial energy, even for zero viscosity.

Here, we use a slightly different approach which applies both to the 1D Burgers and 2D Euler equations.
A Fourier expansion with pseudo-spectral evaluation of the nonlinear term is still utilized, but the product in
physical space is now fully dealiased. In other words, the Fourier modes retained in the expansion of the solution
are such that |k| ≤ kC , where kC is the desired cut-off wavenumber, but the grid has N = 3kC points in each
direction, versus N = 2kC for a non-dealiased, critically sampled product. This dealiasing makes the pseudo-
spectral scheme equivalent to a Fourier-Galerkin scheme up to round-off errors [7], and thus conservative. For
time discretization we stick to Runge-Kutta schemes, of order 4 for the 1D Burgers equation and of order 3
with a low storage formulation [37, page 20] for the 2D Euler equations.

All the required Fourier transforms are computed thanks to the FFTW library [17]. This allows us to exploit
at the same time OpenMP and the Message Passing Interface (MPI) for parallelization. To reach resolutions up
to 8192× 8192, 8 cores were utilized on a shared memory cluster node. For some of the simulations, we used 64
cores and 32 MPI processes on an IBM Regatta Power6 machine at the IDRIS-CNRS french computing center.
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1.2. Regularization

We call “filtering scheme” any operator that can be applied to the discrete numerical solution at the end of
each timestep, before advancing to the next timestep. In this subsection, we attempt to describe the filtering
algorithms for a generic solution f , knowing that they will later be applied either to f = u for the 1D Burgers
case or to f = ω for the 2D Euler case. Since the filters that we are interested in are applied in the wavelet
domain, we start by computing the transform coefficients of the solution with respect to the space variable (see
the Appendix for technical details). Given orthogonal wavelets (ψλ)λ∈Λ and the associated scaling function ϕ
at the largest scale, the solution is thus expanded into (see e.g. [33]):

f = 〈f | ϕ〉ϕ+
∑
λ∈Λ

〈u | ψλ〉ψλ , (6)

where λ is a multi-index giving the scale, position, and, in 2D, direction of each wavelet. Later we denote by
f̃λ the wavelet coefficients 〈u | ψλ〉ψλ of f . The inner product is defined in 1D by 〈a | b〉 =

∫ 1

−1
a(x) · b∗(x)dx,

where ·∗ stands for complex conjugation, and in 2D by 〈a | b〉 =
∫

T2 a(x) · b∗(x)dx.
We consider two wavelet families. The first one, well known to numerical analysts, is the Coiflet orthonormal

family with supports of length 12 [11], proposed in [14] to represent turbulent flows. The second one is the
Qshift-B family associated with the dual-tree complex wavelet transform (DTCWT) [30], that we propose to
dub Kingslet. Although it was primarily designed for image processing, the latter also offers many attractive
features from a computational point of view. Its main characteristics can be summarized as follows:

(1) the wavelets and scaling functions are complex-valued,
(2) the family is not orthogonal, but it is a tight frame, which is a kind of overcomplete basis, having in d

dimensions 2d times more elements than an orthonormal basis at the same resolution,
(3) near translation invariance is built into the transform, despite its dyadic structure,
(4) in two and more spatial dimensions, the wavelets have much better directional selectivity than orthogonal

wavelets.
Since the Kingslets constitute a tight frame, the reconstruction formula (6) is still valid [30], as long as the right
hand side is replaced by its real part, f being real-valued.

Since this is the key point, let us explicit what we mean by translation invariance. Most multiscale approxi-
mation schemes involve the design of some sort of recursive grid or subdivision pattern. Normally these recursive
structures depend on the choice of the origin and therefore are not invariant by translation. This is in particular
the case for orthogonal wavelets, which are arranged as a dyadic tree. In most cases this tree has nothing to do
with the phenomenon or signal one wants to study, but since it is built into the transform it tends to introduce
some artifacts as soon as the coefficients are processed in some way. One solution consists in averaging the
results over all possible shifts of the tree with respect to the signal. It is known as the undecimated wavelet
transform [10]. Kingslets offer a more elegant solution to the same problem, namely, to average only a fixed
number of trees (2d in d dimensions), but under the condition that the wavelets associated to those trees are
approximate Hilbert transform pairs. When this is done, the projectors on each approximation subspace almost
commute with all possible signal shifts.

Once the wavelet coefficients of the solution have been obtained, we consider two kinds of filters: a linear
one, and a nonlinear one. The linear filter consists in discarding only the wavelet coefficients at the finest scale.
For the Kingslets case, this linear filter is equivalent to a simple convolution of the solution with the scaling
function at the finest scale. It is nothing more than a lowpass filter, but with a special transfer function that
happens to be the Fourier transform of a scaling function. This property does not hold for orthogonal wavelets,
because the downsampling operation applied to the scaling function coefficients at the finest scale introduces
aliasing effects [30].

For the nonlinear filter, before discarding the wavelet coefficients at the finest scale, we apply a threshold to
all wavelet coefficients: those whose moduli are below a certain value Θ are set to zero. The threshold Θ depends
on the function itself and is computed by means of an iterative method [1]. The resulting value is characterized
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Type α να Wavelet Filter
Viscous (i) 1 > 0 none none

Hyperviscous (ii) 4 > 0 none none
Real linear (iii) - = 0 Coiflet linear

Complex linear (iv) - = 0 Kingslet linear
Real CVS (v) - = 0 Coiflet nonlinear

Complex CVS (vi) - = 0 Kingslet nonlinear

Table 1. Summary of all employed regularization methods.

by the following implicit relationship:

Θ2 =
5

NI(Θ)

∑
λ∈Λ

|f̃λ|2H(Θ− |f̃λ|) , (7)

where H is the Heaviside step function and NI(Θ) =
∑
λ∈ΛH(Θ− |f̃λ|) is the number of wavelet coefficients

below the threshold. Formula (7) simply means that the threshold equals 5 times the standard deviation of
the coefficients below it. Note that there is no adjustable parameter. The nonlinear filter will be referred to as
CVS filter, where CVS stands for Coherent Vorticity Simulation [16]. After applying either filter, the solution
is reconstructed by inverse wavelet transform, and its Fourier coefficients by fast Fourier transform (FFT), so
that the simulation can proceed with the next timestep.

The viscous or hyperviscous term, when present, is included in the computation without loss of accuracy
thanks to an integrating factor method [46, page 111]. The integrating factor is simply eνk

2t, with k the Fourier
wavenumber modulus.

The six different regularization methods that we are going to compare are:

(i) Viscous: α = 1 and ν1 > 0 is chosen high enough so that all scales of motion are resolved without
applying any filter,

(ii) Hyperviscous: α = 4, and ν4 > 0 is defined by ν4 = ν1k
−6
C ,

(iii) Real linear: ν = 0, and we apply linear wavelet filtering of the finest scale using Coiflets,
(iv) Complex linear: ν = 0, and we apply linear wavelet filtering of the finest scale using Kingslets,
(v) Real CVS: ν = 0, and we apply nonlinear CVS filtering using Coiflets,

(vi) Complex CVS: ν = 0, and we apply nonlinear CVS filtering using Kingslets.

A summary is given in table 1. We shall also compare the regularized solutions to the one obtained without
any regularization mechanism, that is, by cautiouslessly applying our numerical scheme to the inviscid equation.
The solution does not blow up even in this case since the numerical scheme is conservative. However, we are
not claiming that it is the genuine solution of the – non-truncated – 2D Euler equations, and in fact it cannot
be, due to the abrupt cut-off in Fourier space.

1.3. Initial conditions

For the 1D Burgers equation, we choose the initial condition u0(x) = − sin(πx), which induces the formation
at t = 1

π of a single shock located in the middle x = 0 of the interval [−1, 1]. For the viscous simulations (i),
we choose ν1 = 2N−1. A classical estimate says that the shock width is proportional to ν1, hence ν1 has to be
larger than a constant times N−1 for the simulation to be properly resolved. The constant is adjusted by trial
and errors. The value of ν4 for all the hyperviscous simulations is given by ν4 = ν1k

−6
C , where kC = N

3 .
For the 2D Euler equations, we consider two kinds of initial conditions. The first one is a vortex merger, made

of two Gaussian vortices with positive circulation and one weaker Gaussian vortex with negative circulation [28].
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The formula giving the initial vorticity is:

ω(t = 0, x, y) = π

(
e
−π2

(
(x− 3π

4 )2
+(y−π)2

)
+ e
−π2

(
(x− 5π

4 )2
+(y−π)2

)
− 1

2
e
−π2

(
(x− 5π

4 )2
+
(
y−π

(
1+

√
2

4

))2))
(8)

where (x, y) ∈ [0, 2π]2. For the viscous simulations starting from this initial condition, we have used ν1 =
13.1072N−2.

The second initial condition is a correlated Gaussian noise. To generate it, we use the Fourier representation:

ω(t = 0,x) =
∑

k∈N2,|k|≤kC

ω̂[k]eik·x where ω̂[k] =
1

4π2

∫
T2
ω(x)e−ik·xd2x (9)

and, defining k = |k|, we then let

ω̂[t = 0,k] =
1

24π2
×

 keiθk if k ≤ 6
62k−1eiθk if 6 < k ≤ 42
0 otherwise

(10)

where the θk are pseudo-random numbers uniformly and independently distributed in [0, 2π[. The θk are drawn
once using a Mersenne twister pseudo-random number generator [34], and the same values are then used for all
cases studied below. The initial isotropic enstrophy spectrum

Z[k] = 2π2
∑

k≤|k|<k+1

|ω̂[k]|2

is then approximately:

Z[t = 0, k] ' 1
144π

×

 k3 if k ≤ 6
64k−1 if 6 < k ≤ 42
0 otherwise.

(11)

The energy of this initial condition is E(t = 0) = 1
2 〈u0 | u0〉 ' 7.847 · 10−2 and its enstrophy is

Z(t = 0) =
∑∞
k=0 Z[k] = 1

2 〈ω0 | ω0〉 ' 6.289. For the viscous simulations starting from this initial condition, we
have used ν1 = 6.5536N−2.

2. Results

2.1. 1D Burgers

We first briefly recall the results for the 1D Burgers equation [35], which are now confirmed by using a fully
dealiased code, as described above. Compared to [35], we thus have even less numerical dissipation. An upper
bound is estimated by performing simulations with ν = 0 without filtering, where we observe that for N = 4096
the fraction of the initial energy that has been dissipated at t = 5

π is less than 10−8.
Recall that for Burgers equation, it is possible to compute the entropy solution to (5) with a very high

precision, using a Legendre transform method [6]. This procedure is particularly straightforward for the simple
initial condition leading to a single shock that we have used. The obtained entropy solution will be our reference
uref for this section. Note that the entropy solution dissipates energy, contrary to the Galerkin-truncated one,
obtained by solving the inviscid Burgers equation using our conservative numerical scheme.

The solutions obtained with methods (i), (ii), (v) and (vi) for N = 4096 are shown in Fig. 1 (left). We
observe that (i) and (vi) are quite similar, whereas (v) has much more pronounced oscillations. In Fig. 1 (right),
the squared modulus of the Morlet wavelet transform [21] of each solution is also shown using a logarithmic
colorscale, which allows us to visualize the errors in space and scale. The artifacts due to aliasing in the Coiflet
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CVS filtering (v) are clearly visible on this figure. They are much less pronounced in the Kingslet case (vi).
The Gibbs phenomenon can also be noticed on the viscous (i) and hyperviscous (ii) solutions.

Two error measures allow us to quantify the difference between a numerical solution uN and the reference
entropy solution uref . The first error measure is defined as:

εw =
2π
‖uref‖

 ∑
|k|≤64

|ûN [k]− ûref [k]|2
 1

2

(12)

where ‖ · ‖ stands for the L2 norm. This quantity is of practical interest, since it frequently occurs that only
the low wavenumber behavior of the solution needs to be accurately described. From the mathematical point of
view, it can be seen as an indicator of weak convergence. The second error measure is the total L2 error:

ε =
‖uN − uref‖
‖uref‖

(13)

which measures strong convergence to the entropy solution.
Our first result is that in these simulations, weak convergence of the Galerkin-truncated inviscid simulations

to the entropy solution does not occur (Fig. 2, left), in agreement with a remark made by Tadmor in [44]. This
confirms, if need be, that regularization is indispensable to solve Burgers equation with a spectral method.
Post-processing the result of an unregularized simulation does not yield a physically relevant solution. On the
contrary, the solutions given by all other methods appear to converge weakly to the entropy solution with a rate
O(N−1). The error associated to the viscous and Kingslets solutions is about one order of magnitude smaller
than the error associated to the Coiflet solution.

The solutions obtained with every considered regularization methods also converge strongly towards the
entropy solution with a rate O(N−1/2) (Fig. 2, middle). This confirms the results of [35] and extends them
to several new cases, namely real-valued wavelets and linear filtering. As a sidenote, we confirm that the
hyperdissipative 1D Burgers model does not improve in any way the results compared to the viscous model [19].

In Fig. 2 (right), we have plotted the compression rate, defined as follows:

ρ =
N

NC
(14)

where NC = N − NI is the number of wavelet coefficients above the threshold. The subscripts C and I stand
respectively for coherent and incoherent. The higher the compression rate, the better the compression.

The following conclusions may be drawn from the results in this section. To regularize the 1D inviscid
Burgers equation, it is enough to filter out the wavelet coefficients at the finest scale. The results are better for
complex-valued wavelets because of their reduced aliasing effects. The main advantage of CVS wavelet filtering
compared to other regularization methods is that they allow us to compress the information needed to represent
the solution. Here, we observe that the compression rate ρ is about 3 for N = 1024 and improves slowly for
higher resolutions, a fact that we will comment more on in the conclusion.

2.2. 2D Euler

As in the previous subsection, we study the results obtained with methods (i)-(vi), but this time to solve the
2D Euler equations (3). Five increasingly refined resolutions were used in each case: N = 27, . . . , 211. Since we
do not have an efficient way of computing the solution to (3) with high precision, we use the viscous simulation
(i) with N2 = 81922 as a reference. Inviscid simulations at N2 = 20482 show that the fraction of the initial
enstrophy dissipated during the whole simulation is less than 5·10−2, and less than 10−5 for the energy. Note that
the numerical dissipation is due to the error coming from the time discretization of the equations, and should
therefore be smaller in the viscous and filtered simulations, since the corresponding solutions are smoother in
time.
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Figure 1. Left column: numerical solution to the 1D Burgers equation for methods (i), (ii),
(v) and (vi) (top to bottom) with N = 4096. Dotted lines: t = 0, solid lines: t = 2

π , dashed
lines: t = 5

π . The insets show a zoom around x = 0. Right column: squared modulus of the
Morlet coefficients of each solution at t = 5

π . The vertical scale is logarithmic and indicates the
wavelet scale factor, normalized by the distance between two grid points. Note that the color
scale is also logarithmic.



ESAIM: PROCEEDINGS 97

128 256 512 1024 2048 4096 8192 16384
10

−3

10
−2

10
−1

10
0

10
1

10
2

tr
u
n
c
a
te

d
 L

2
 e

rr
o
r

resolution
 

 

128 256 512 1024 2048 4096 8192 16384
10

−2

10
−1

10
0

10
1

10
2

10
3

L
2
 e

rr
o
r

resolution
 

 

Viscous

Complex CVS

Real CVS

Real Linear

Complex Linear

Inviscid

HyperViscous

128 256 512 1024 2048 4096 8192 16384
0

2

4

6

8

10

12

14

16

c
o
m

p
re

s
s
io

n
 r

a
te

resolution
 

 

Figure 2. Comparison between the six regularization methods to solve the 1D Burgers equa-
tion. Left: normalized L2-error for the Fourier modes with |k| ≤ 64. Middle: total normalized
L2-error. Right: Compression rate ρ = N

NC
.

2.2.1. Deterministic initial condition

In this subsection, we consider the vortex merger initial condition (8). The vorticity field at t = 50 for
methods (i), (ii), (v) and (vi) are shown in Fig. 3. The reference vorticity field (top, left) and the result of
the inviscid simulation (bottom, right) are also shown for comparison purposes. The gross dipolar structure
of the vorticity field is well preserved by all methods. The main differences have to do with sharp gradients
that are generated very rapidly during the merging of the two positively signed vortices. Each positive vortex
corresponds to a nonuniform velocity field that causes the other positive vortex to rotate around it and deform,
producing a spiral pattern that is still visible in Fig. 3. These sharp gradients are clearly not very well handled
by method (v), since artifacts have been introduced even in quiet regions of the domain.

The different regularization mechanisms induce a different behavior of the solution in a global sense, as can
be seen on the time evolutions of energy and enstrophy, and on the enstrophy spectra (Fig. 4).

We now examine the difference between all the solutions and the reference solution in a quantitative manner.
In Fig. 5 (left), we plot the truncated L2-error, which is defined by (12) with an additional 2π factor due to
normalization. These curves illustrate that even the low wavenumber dynamics are affected by the regularization
mechanism. Nevertheless, the error seems to converge to zero for all considered regularization methods. The rate
is O(N−2) for the viscous (i) simulations, consistent with known analytical results concerning the inviscid limit
of Navier-Stokes equations [26]. The arguments in [26] apply equally well to the hyperviscous Navier-Stokes
equations, and we accordingly observe the same convergence rate for (ii). The rate is less easy to determine for
the other methods, but it seems to lie between O(N−2) and O(N−1).

Now the total L2-error, defined similarly to (13) above, is represented in Fig. 5 (right). The results are
strikingly close to the previous ones, indicating that most of the L2-error in fact comes from low wavenumbers.
The results concerning the inviscid Galerkin-truncated Euler solution (square marker) are particularly interesting
since they contrast with those observed for the 1D Burgers equation above. It was previously observed in [9]
“that the spectrally truncated [3d] Euler equations have long-lasting transients behaving just like those of the
dissipative [3d] Navier-Stokes equations”. This result is also supported by calculations using the eddy-damped
quasi-normal Markovian closure theory [5]. Our results are unfortunately limited to two space dimensions, but
they are stronger, since they indicate that the solution to the Galerkin-truncated 2D Euler equations converges
to the solution of Euler equations in the L2 norm.

By looking at the numbers presented in this section, one could draw the hasty conclusion that hyperviscous
or even inviscid simulations do the job very well, so why bother with wavelet filtering ? But as we have already
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Figure 3. Vorticity fields at t = 50 for the deterministic initial condition. Top left: reference
Navier-Stokes solution, N = 8192. Top middle: Navier-Stokes solution (i), N = 2048. Top right:
Hyperdissipative Navier-Stokes solution (ii), N = 2048. Bottom left: Coiflet CVS filtered Euler
solution (v), N = 2048. Bottom middle: Kingslets CVS filtered Euler solution (vi), N = 2048.
Bottom right: Galerkin-truncated Euler solution, N = 2048.

seen for Burgers equation, the advantage of wavelets has to do with compression. We now turn to random initial
conditions, in order to demonstrate this for Euler equations.

2.2.2. Random initial condition

By computing the flow evolution starting from the randomly generated initial condition (10), we obtain the
vorticity field at t = 50 for methods (i), (ii), (v) and (vi), shown in Fig. 6. As above, the reference vorticity
field (top, left) and the result of the inviscid simulation (bottom, right) are also given. Only the subdomain
[π, 2π] × [π, 2π] is represented on the figure, in order to make the details more visible. The first observation
that can be put forward is that the positions of all vortices match pretty well between all represented fields.
Of course, this situation is bound not to last for long, since fully developed 2D turbulence is sensitive to initial
conditions: the different simulations should separate sooner or later and end up having nothing left in common.
But this occurs on a longer time scale than the one we have considered here. Note that the initial eddy turnover
time τ := 1√

2Z(t=0)
is approximately 0.282 here.
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Figure 4. Deterministic initial condition: results for the different methods with N = 2048,
and reference viscous solution with N = 8192. Left: time evolution of energy. Middle: time
evolution of enstrophy. Right: enstrophy spectra at t = 50.
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Figure 5. Left: truncated L2 error εw (12) at t = 50.05 with respect to the reference solution.
Right: total L2 error ε (13) at t = 50.05 with respect to the reference solution.

We would like to outline two kinds of differences between the fields yielded by the different methods. First,
their high wavenumber behavior is quite different. This can be checked on the enstrophy spectra (Fig. 8,
right). In this respect, the similarity between the Kingslet-filtered (vi) (bottom, middle) and viscous (top,
middle) vorticity fields is striking. Due to its better Fourier localization of the dissipation term, the hyperviscous
simulation reproduces even better the high wavenumber features of the reference simulation, as is highlighted
by the cuts in Fig. 7.

The second difference can be seen in Fig. 8 (left) and concerns only regularization by CVS filtering using
Coiflets (v), for which energy starts increasing again after t ' 60, contrary to all other methods. This effect
suggests that the flow has been affected by the regularization method in an unphysical way, and was our main
motivation for introducing Kinsglets in this study as a better alternative.

The time evolution of enstrophy is shown in Fig. 8 (middle). Even the reference simulation is still quite dissi-
pative concerning enstrophy. This observation is consistent with a very slow decay of the enstrophy dissipation
rate as a function of Reynolds number [12,32,45], which implies a slow convergence to the Euler solution in the
H1 norm. Note that for the viscous solution, convergence is known to occur at a rate O(ν) = O(N−2) in any
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Figure 6. Vorticity fields at t = 50 for the random initial condition, restricted to the square
[π, 2π]× [π, 2π]. Top, left: reference Navier-Stokes solution with N = 8192. Top, middle: Navier-
Stokes solution (i), N = 2048. Top, right: Hyperdissipative Navier-Stokes solution (ii), N =
2048. Bottom, left: Coiflet CVS filtered Euler solution (v),N = 2048. Bottom, middle: Kingslets
CVS filtered Euler solution (vi), N = 2048. Bottom, right: Galerkin-truncated Euler solution,
N = 2048. The black dashed lines indicates the location of the cuts shown in Fig. 7.

norm Hm [26], since the initial condition considered here consists in a finite number of Fourier modes and is
therefore analytic. We believe that this rate is impossible to observe numerically because the constant in front
of ν grows extremely fast in time. Although it would be interesting to consider also the H1-error, we conclude
that this quantity is out of our reach here. Indeed, because of the slow convergence, the viscous solution at
N = 8192 cannot be used as a reference to compute the H1 norm error between (i)-(vi) and the Euler solution,
nor can any solution computed with current day methods and computational power.

In Fig. 8 (right), the enstrophy spectra of the different solutions are compared with the one of the reference.
They all agree well at low wavenumbers, as can be seen in the inset.

Finally, we study the convergence in the inviscid limit, for fixed time and fixed initial condition (Fig. 9).
As in the case of the deterministic initial condition, the truncated L2-error εw and the total L2-error ε are
represented. The error decay is less pronounced in the considered range of Reynolds number than it was in
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Figure 7. Cuts through the vorticity fields at x = 7π
5 and t = 50, for the different methods

with N = 2048, and for the reference viscous solution whith N = 8192. The legend can be
found in Fig. 8.
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Figure 8. Random initial condition, advanced with different methods for N = 2048, and
reference viscous solution for N = 8192. Left: time evolution of energy. Middle: time evolution
of enstrophy. Right: enstrophy spectra at t = 50. The inset shows the low wavenumber part in
lin-lin coordinates. The legend applies to all three graphs.

the deterministic case above. It seems that the Reynolds number at which the analytically predicted O(N−2)
asymptotic behavior manifests itself has not been reached yet.

We now comment on the compression rate ρ (14), plotted in Fig. 9, right. One can see that the CVS
thresholding allows us to compress by a factor of about 3 using Kingslets, and about 10 using Coiflets. The
computations presented here do not benefit from this compression, since the solution is reconstructed in Fourier
space at each timestep. Nevertheless, the measured compression rate remains a good indicator of what can be
achieved by adaptive wavelet-based solvers [15,41] using the thresholding rule that we have defined earlier.
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Figure 9. Random initial condition. Left: truncated L2-error εw (12) with respect to the
reference solution. Middle: total L2-error ε (13) with respect to the reference solution. Right:
compression rate (14) achieved by nonlinear wavelet thresholding. The legend applies to all
three graphs.

3. Conclusion and Perspectives

We have used a classical Fourier-Galerkin method to solve the 2D Euler equations, and we have proposed
a new wavelet-based approach to regularize the solution, in order to obtain a good numerical approximation
of the Euler solution. We have compared our method with viscous and hyperviscous regularization, and also
with the solution computed without regularization. The ability of all regularization methods to approach the
inviscid dynamics was measured quantitatively by direct comparison with a high resolution viscous simulation.
High resolution numerical simulations were made possible thanks to parallel implementations of the spectral
code and of the wavelet transform.

The main findings concerning the 2D Euler equations can be summarized as follows:

• linear wavelet filtering approaches the inviscid dynamics as well as viscous or hyperviscous dissipative
terms,

• nonlinear wavelet filtering with real-valued wavelets (Coiflets) introduces undesirable artifacts in the
solution,

• nonlinear wavelet filtering with complex-valued wavelets (Kingslets) preserves the dynamics and offers
at the same time a non negligible compression rate of about 3 for fully developed turbulence,

• there are strong indications that the solution to the Galerkin-truncated 2D Euler equations converges,
at least in the weak sense, to the solution to the 2D Euler equations.

We can hence claim that the main goals of our wavelet regularization method have been attained. Indeed, we
have shown that CVS filtering with Kingslets allows us to regularize the 2D Euler equations, and at the same
time compress the solution. This is a strict extension of the results obtained for the 1D Burgers equation. One
possible explanation for the disappointing results observed with Coiflets is the lack of a safety zone in wavelet
space [40]. Since the orthogonal wavelet transform is not translation invariant, it cannot properly capture
structures that are advected in a continuous fashion by the flow. The rather low compression rates observed
when filtering solutions of the 1D Burgers equation should be seen as a limitation of the employed thresholding
method, and not of the wavelets themselves. Indeed, for a function as simple as single shock, wavelets are in
principle able to achieve much larger compression rates. Improving the threshold selection algorithm is a priority
goal of our ongoing research work.

We would now like to draw attention to the striking differences between the results that we found for the 1D
Burgers equation on the one hand and for the 2D incompressible Euler equations on the other hand. Indeed, the
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Galerkin-truncated dynamics of these two equations behave very differently in comparison to their non truncated
counterparts: for the 2D Euler equations we have shown weak convergence of the solution to the Galerkin-
truncated equations towards the inviscid solution, while for the 1D Burgers equation no such convergence
was observed, as Tadmor has shown using an elegant mathematical argument [44]. Therefore, one should be
extremely cautious when using Burgers equation as a toy model for understanding incompressible turbulence.
One may argue that the 2D Euler dynamics is pathological since it does not have finite time singularity (FTS),
and that Burgers is in this respect closer to 3D Euler. But even if the 3D Euler equations have FTS, these
singularities cannot be of the same nature than the shocks occuring in the solutions of Burgers equation.
The incompressibility condition plays a key role by introducing nonlocal effects that are completely absent
in the Burgers model. To illustrate these differences further, consider the results obtained with hyperviscous
regularization. In [19], it was argued that hyperviscosity introduces a quasi-thermalized range in the spectrum.
As a consquence, all that is gained by the better wavenumber localization of the dissipation term is lost because
of an enhanced bottleneck. These results were supported by 1D Burgers direct numerical simulations, and by
the eddy-damped quasi-normal Markovian (EDQNM) closure for 3D turbulence. Our results are in agreement
concerning 1D Burgers, but show that hyperviscous regularization offers very good performance for 2D Euler,
as suggested by previous results [28]. It cannot be decided at present if the discrepancy is due to a shortcoming
of the EDQNM closure, or if the hyperviscous approach breaks down when going from 2D to 3D. Checking this
via direct numerical simulation in the 3D case is an interesting topic for future research.

In future work, we would also like to undertake the same kind of study with an adaptive wavelet-Galerkin
solver instead of a Fourier-Galerkin solver. This will allow us to benefit at the same time from the compression
and from the regularization offered by the CVS wavelet filter, and to measure the speed-up. Encouraging results
concerning compression are already available in the literature on adaptive wavelet methods, see e.g. [41] and
references therein.
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form, and his renewed hospitality in Trinity College, Cambridge, U.K. and in the Engineering Department, Cambridge
University, U.K. We would also like to thank Claude Bardos, Uriel Frisch, Isabelle Gallagher, Thierry Paul and Laure
Saint-Raymond for fruitful mathematical discussions. MF is very grateful to both Trinity College, Cambridge, and the
Wissenschaftkolleg zu Berlin for hospitality.

4. Appendix: Parallel wavelet transform algorithm

To efficiently filter the solution at each timestep of the simulation, the wavelet transform should be performed
in-place and integrated within the simulation loop. Since solving the 2D Navier-Stokes equations is much more
computer intensive than solving the 1D Burgers equation, we have faced the necessity of implementing the
wavelet transform and CVS filtering algorithms in a parallel computation environment, like the spectral solver
itself.

The parallelization of the fast wavelet transform algorithm was first demonstrated in architecture dependent
frameworks [24], but since then much of the effort has been spent in developing efficient algorithms that run
within generic distributed memory parallel environments such as MPI or PVM. Early approaches used to mimick
the parallel FFT algorithm, which involves a global transposition step that requires exchange of data between
all processes, and thus strongly degrades efficiency. The parallelization strategy that we employ here was first
proposed and studied in [36] for both the 1D wavelet transform and the 2D tensor-product wavelet transform.
The key ingredient to obtain good scalability is the domain decomposition approach, since it preserves the
quasi-locality of the wavelet transform. It was extended to 2D multiresolution analyses in [8], who reported
parallelization efficiency of up to 0.9 using a maximum of 32 processes and images of size up to 2048× 2048.

Our objective in this section is to measure the efficiency of this parallelization method for more challenging
problem sizes, and also in three dimensions. For this, we introduce decomposition of the domain along all avail-
able dimensions instead of just one, which allows us to obtain good scalability in three and higher dimensions.
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Figure 10. Schematic view of the ordering of the wavelet coefficients before and after trans-
formation. Red lines: possible domain decomposition for distributed memory parallelization
involving 4 processes. Round edged boxes: communication between processes to compute the
first step (see text).

Note that [8] and other references also discussed key issues related to local memory bandwidth optimization,
which will not be elaborated upon since our main concern is parallelization.

We first establish some notations concerning the wavelet transform. The transform is assumed to be real and
orthogonal. In the complex case, the notations remain the same, with exponents R and I added to distinguish
the real and imaginary trees. Let h[n] and g[n] be respectively the scaling and wavelet quadrature mirror filters.
We assume that they are nonzero only for n = 0, . . . , S−1. The 1D fast wavelet transform algorithm [33] relates
the coefficients at scale j and j − 1 via:

cj−1
p =

S−1∑
n=0

hnc
j
2p+n (15)

dj−1
p =

S−1∑
n=0

gnc
j
2p+n (16)

and the N -dimensional wavelet transform is computed by applying (15-16) with the position p varying succes-
sively along each direction.

Let us momentarily take only one process and describe how the data is arranged in memory. The index which
varies most rapidly is assumed to correspond to the first array dimension (Fortran ordering). For illustrative
purposes we restrict our attention to a 2D array of size 8 × 8. The memory locations of the scaling function
coefficients at the finest scale are shown in Fig. 10 (left). The red lines should be ignored for now. The FWT
algorithms starts by computing a single level of the filter bank on the columns of the matrix, using (15) and
(16). The results of the computation are stored in-place, alternating between scaling coefficient and wavelet
coefficient. Due to the periodic wrapping of the column, the leading S − 2 coefficients at scale J are needed to
compute the trailing S−2 coefficients at scale J−1. These coefficients should therefore not be overwritten right
away, but held in memory until they are not needed anymore. This can be accomplished thanks to a small buffer
of size S−2. No additional memory is required. The results of this very first step are shown in Fig. 10 (middle).
The exponents 2.5 indicate that we stand halfway through the first level of the transform. Once all the columns
have been filtered comes the turn of the lines. They are processed in exactly the same way, except that the
stride in memory is now much larger, which makes this step usually more expensive due to cache issues. After
all array dimensions have been filtered, the input data has been replaced by scaling and wavelet coefficients at
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scale J − 1. The scaling coefficients sit in the memory locations with even-numbered row and column indices.
The remaining memory locations are filled with the wavelet coefficients at scale J − 1, which do not need to be
touched by any further steps of the algorithm. The next level in the filter bank can hence be computed exactly
in the same way as the first, as long as only the even-numbered rows and columns of the original memory space
are considered. Continuing this procedure until only one row and one column remain yields the fully wavelet
transformed data, arranged as shown in Fig. 10 (right).

Now consider that the initial data is split between 4 processes, as indicated by the red lines in Fig. 10 (left).
Processes are numbered in row-major order. We assume that the sizes of the subdomains belonging to each
process are equal and are powers of 2. The wavelet transform is done exactly in the same way as above, except
that some interprocess communication is now necessary every time a filter needs data belonging to another
process. This communication can be partially overlapped with computation in the following way. Imagine that
at a certain stage in the transformation one wants to apply the filter (hn) to the lines of a distributed matrix.
This corresponds to the first step outlined in Fig. 10. From formula (15), it appears that only the S− 2 leading
coefficients of each column need to be transmitted to another process. Before starting the computation, calls
to the nonblocking point to point routines MPI_ISend and MPI_IRecv are made to initiate transmission. For
example, assume momentarily that S = 4. To compute the coefficients in the dotted blue box (Fig. 10) , all
the coefficients in the solid blue box need to be sent from process 2 to process 1. Because of periodicity, all the
coefficients in the solid green box need to be sent from process 1 to process 2. The same kind of communication
occurs between processes 3 and 4 during this step. The coefficients in the magenta boxes can be computed
without waiting for the communications to be completed. For large array sizes, they will correspond to the
majority of coefficients, ensuring a good overlap of computation and communication.

Finally, we should explain how the multiple trees in the DTCWT are handled. For a 2D DTCWT transform,
there are in fact 4 real wavelet transform trees [30]. We want to alternate the coefficients of the 4 trees in the
same memory space. To do that, the input data is first copied into a four times larger memory space. Each
input value is copied twice consecutively, and two locations are left uninitialized between values. The wavelet
transforms at the finest scale of the columns of the two intricated submatrices that have been initialized are
performed in-place using the appropriate filters [30]. The results are then duplicated to fill in the blank locations.
The appropriate filters are then applied to the lines of the four intricated submatrices. The remaining scales are
computed normally. Parallelisation follows straightforwardly using the same method as above.

The consummed CPU time for a forward wavelet transform using the algorithm just described, with Daubechies
filters of length 4, was measured on an IBM Regatta Power6 machine. The results are shown in Fig. 11. One
observes near perfect speedup up to 32 processes. The sudden degradation of efficiency when going from 32 to
64 processes is mostly due to hardware limitations, since each node on the machine contains 32 Power6 cores.
Simulations with a higher number of cores require communication through a different network, which has a
longer latency. We have also performed simulations on a BlueGene/P machine, which show good scaling results
for 3D arrays using up to 1024 processes. These tests were done with arrays of sizes 10243. They will be reported
in detail elsewhere.

A C++ implementation of this algorithm is available under the GNU General Public License at the following
URL: https://sourceforge.net/project/kicksey-winsey.
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