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Full dimensional multi-configuration time-dependent Hartree calculations of the zero point energy
and the tunneling splitting of malonaldehyde using a recently published potential energy surface
[Y. Wang, B. J. Braams, J. M. Bowman, S. Carter, and D. P. Tew, J. Chem. Phys. 128, 224314 (2008)]
are reported. The potential energy surface has been approximated by a modified version of the n-
mode representation and careful convergence check has been performed to ensure accurate results.
The obtained value for the splitting (23.4 cm™') is in acceptable agreement with the experimental
value of 21.583 cm™~'. The computed zero-point-energy is 14 670 cm~' which is lower than previous
results of Wang et al., but likely to be about 4 cm™' too low because of shortcomings of the n-
mode representation of the potential. The energies reported in this abstract contain a correction to
account for neglected vibrational angular momentum terms. © 2011 American Institute of Physics.

[doi:10.1063/1.3600343]

I. INTRODUCTION

Malonaldehyde is a prototype molecule to study intra-
molecular proton transfer processes that play an important
role in many reactions of biological interest. Within malon-
aldehyde the transferred proton is located between two oxy-
gen atoms which are connected by a chain of three carbon
atoms with conjugated double bonds (saturated with hydrogen
atoms). The carbon and oxygen atoms form the horseshoe-
shaped backbone of the molecule with the oxygen atoms at
both ends. The molecule is planar within the equilibrium con-
figuration and exhibits a C, symmetry within the transition
state. This property can be exploited for numerical calcula-
tions as has been done previously.! The proton itself tun-
nels between the positions close to the oxygen atoms so that
there exists a symmetric double well potential along the re-
action path which gives rise to a tunneling splitting with an
experimentally> determined value of 21.583 cm™!.

Previous numerical studies on this system have been per-
formed using a reaction surface description,*® more general
methods," 713 or semi-classical approaches.'*!° A full quan-
tum mechanical treatment involving all 21 internal degrees of
freedom remains a difficult task.

Recently, a full quantum mechanical calculation on mal-
onaldehyde employing MCTDH has been reported'-® using
the potential energy surface of Yagi et al.>’ However, it was
very difficult for the authors to converge the splittings of the
eigenstates. Our calculations confirm this. The correlation of
the various degrees of freedom is very large, especially be-
tween the in-plane and the out-of-plane modes so that con-
vergence is hard to achieve. As stated by the authors in the

®Electronic mail: markus.schroeder @pci.uni-heidelberg.de.
D)Electronic mail: gatti @univ-montp2.fr.
©Electronic mail: Hans-Dieter.Meyer @pci.uni-heidelberg.de.

0021-9606/2011/134(23)/234307/9/$30.00

134, 234307-1

conclusion of Ref. 1: “the present results show that the rigor-
ous treatment of the 21-dimensional malonaldehyde system
pushes the single-layer MCTDH approach used here to its
limits.”

In Ref. 1 as well as in the present contribution, a descrip-
tion in terms of normal coordinates is adopted. Clearly, the
normal coordinates introduce strong artificial couplings, i.e.,
couplings introduced by using suboptimal coordinates. The
Hydrogen transfer triggers a reorganization of the chemical
bonds between the heavy backbone atoms, resulting in con-
siderable shifts of the inter-atomic distances and bond angles
such that the normal coordinates at the minimum geometries
are quite different from the normal coordinates at the transi-
tion state.

Numerical studies show that the PES of Yagi er al.”’
yields inversion splittings which are in reasonable agreement
with the experiment. Following Wang et al.'? it does, how-
ever, not exhibit the correct barrier height which they de-
termined to be approximately 4.1 kcal/mol using high level
ab initio calculations. In the present contribution we present
results obtained with the multiconfiguration time-dependent
Hartree (MCTDH) method and a recently published PES
by Wang et al.'> Their PES exhibits a barrier height of
1438.1 cm™! (=4.11 kcal/mol). Wang and co-workers report
(with an uncertainty of +2-3 cm~!) a ground state energy
of 14 678.3 cm™! and an inversion splitting of 22.6 cm™!
obtained with a diffusion Monte-Carlo (DMC) calculation
using normal mode coordinates after neglecting vibration-
rotation coupling terms. With Cartesian coordinates they ob-
tain a ground state energy of 14 677.9 cm~! and an inversion
splitting of 21.6 cm™!, the latter being in excellent agreement
with the experimental value>? of 21.583 cm™!, but this may
be fortunate as the statistical DMC error is still a few cm ™.

The paper is organized as follows. In Sec. II the MCTDH
algorithm is briefly reviewed while the model system and its

© 2011 American Institute of Physics
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234307-2 Schréder, Gatti, and Meyer

representation is discussed in Sec. III. In Secs. IV and V the
obtained results are presented and discussed, respectively.

Il. THE MULTICONFIGURATION TIME-DEPENDENT
HARTREE METHOD

MCTDH (Refs. 21-25) is a general method to solve the
time-dependent as well as the time-independent Schrodinger
equation. Within the MCTDH approach, the wavefunction
W(Q,t) of the complete system is written as a sum of prod-
ucts of so-called single-particle functions (SPFs) ¢(Q,, ?),
which form a time-dependent and orthonormal basis set to
represent the wavefunction of the system. The SPFs are low-
dimensional functions, typically depending on one to three
physical degrees of freedom (DOF). In cases, where the SPFs
contain more than one DOF one introduces the composite or
“combined” coordinate O, = {q1. ..., qq4, } that comprises
d, physical degrees of freedom to form the particle Q.

The ansatz for the MCTDH wavefunction reads

VgL, .. g ) =W(01, ..., Op, 1),
—Z ZA,] ..... jp(t)l_[wj”(Qk, ,
=ZAJ<DJ7 (1)

J

where f denotes the number of physical DOF, p the num-
ber of particles, and n, is the number of SPF for the «th
(composite) coordinate. Furthermore, A; = A}, ;, denote
the MCTDH expansion coefficients of the total wavefunction
within the given set of SPFs. The SPFs themselves are repre-
sented by linear combinations of time-independent primitive
basis functions:
Nk Na.x

Q=" Y L0 X (G

L=1 ly=1

X(qae)-
2

The primitive basis functions, x, are taken as discrete variable
representation (DVR) functions,’®?7 such that the SPFs are
represented on a grid.

Applying the Dirac-Frenkel variational principle
the ansatz Eq. (1) leads then to equations of motion for the
the expansion coefficients as well as the SPF (i = 1):

28,29 to

a N
l‘&AJ = XL: (Dy|H D) AL, 3
i = (=P 3 (W) A @
k,l=1

with H being the Hamiltonian of the system, P® a projector

on the subspace spanned by the SPF of the «th particle and

o the single-particle density matrix. Furthermore, (H )( ) are

the so-called mean-field operators (cf., e.g., Refs. 22 orl\213)
The evaluation of Eqgs. (3) and (4), therefore, requires the

calculation of multi-dimensional integrals over all DOF, in-

volving the Hamiltonian operator H, at every time-step (cf.

Ref. 23 for a detailed discussion). Similar to the MCTDH
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ansatz, Eq. (1), it is therefore helpful to express high-
dimensional terms within the Hamiltonian as a sum of prod-
ucts of low-dimensional ones. If the Hamiltonian is of product
form

N

p
1= o []h, 5)
r=1 k=1

with lAzﬁ’() operating exclusively on the «th particle and c,
being scalar coefficients, then the matrix elements of the
Hamiltonian can be expressed by a sum of products of mono-
mode integrals. For instance,

s P
(©,|1H|DL) = Z l—[ Pjic
R —)

and similar expressions hold for the mean-field operators
(ﬁ ),(fl) If the number of terms in the Hamiltonian operator, s,
is not too large, the numerical speed-up can be very substan-
tial (see, e.g., Ref. 30 for a brief discussion). An alternative to
this algorithm is, e.g., the CDVR method of U. Manthe.?!

While the KEO often satisfies Eq. (5), potential en-
ergy surfaces (PES) are usually given as a complicated, non-
separable analytic expression. In this case, the PES cannot be
used directly but has to be converted into a product form. If
the combined primitive basis is not too large, i.e., below ~10°
grid points, one may use the potfir algorithm?>2%3>734 to ex-
pand the potential into the desired product form. For larger
grids, this is no longer possible so that a different approach
has to be used. In the present, case a modification of the n-
mode-representation, also known as the cut-HDMR,*>*? has
been used. We call this approach cluster expansion (CE). See
Subsection III C for details.

hlg,), (6)

A. Improved relaxation

The calculation of (low lying) eigenstates of the Hamil-
tonian is achieved by minimizing the expectation value of the
Hamilton operator while keeping the A-(coefficient)-vectors
as well as the SPF orthonormal.**~*> This leads to expressions
for the A-vector:

D (@ |H|PL) AL =E A @)
L

And the SPF:

3

(K) ()
Z i

=1

Z S @®)

Equation (8) can be reformulated as a propagation in negative
imaginary time T = —it, Eq. (9), until relaxation is achieved:

e

9 . « p V(K ()
PP (1_P())k2(p()) (D)e =0 ©)

Convergence of an eigenstate is achieved if both, Egs. (7) and
(9), are fulfilled simultaneously. It is therefore straightforward
to use an iterative algorithm to obtain converged eigenstates.
One first chooses an initial guess state which presumably has
a reasonable overlap with the desired eigenstate. Within the
SPF basis functions of this state, Eq. (7) is solved using a
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Krylov-space method, typically a Davidson diagonalization,
followed by selection of the desired eigenstate, calculation of
the mean-fields and relaxation of the SPF. This diagonaliza-
tion/relaxation procedure*** is then repeated until conver-
gence is achieved.

lll. MODEL DESCRIPTION AND SYSTEM
HAMILTONIAN

Figure 1 depicts the positions of the nuclei of malonalde-
hyde at the “left” minimum (a), at the transition state (b) and
at the “right” minimum (c). Already in this picture it can be
seen that in particular the O-O distance and the shape of the
backbone change substantially depending on the position of
the transferred proton due to the reorganization of the sin-
gle and double bonds. At the transition state the molecule
exhibits Cp, symmetry — which will be made use of in
Subsection III A.

It is in particular the large amplitude motion of the pro-
ton and the reorganization of bond lengths which makes an
accurate description of the molecule rather difficult as a set
of suited coordinates to describe the system has to be found.
In addition, according to our calculations, the bending modes
of all the CH bonds (in-plane and out-of-plane modes) are
also strongly coupled with the reaction coordinate leading to
the proton transfer. This result might appear counter intuitive
since it is reasonable to think that the CH bonds do not play
a major role in the process. Recently, we observed the same
trend in the ring-opening of pyran.*® This coupling is due to
the change of hybridization of the orbitals in the molecule.
At the equilibrium geometry, the carbon atoms are sp® hy-
bridized but during the proton transfer the sp? hybridized or-
bitals disappear and the CH bonds can almost freely wag
(the corresponding frequencies of vibration of the bending
modes become very small). After the proton transfer, the car-
bon atoms sp?-hybridize back. Consequently, the frequencies
of the bending modes of vibration of the CH bonds strongly

(a) (b) (©)

FIG. 1. Structure of malonaldehyde with the proton in the “left” minimum
configuration (a), at the transition state (b), and in the “right” minimum con-
figuration (c). Note, that the single- and double-bonds are interchanged after
the proton transfer.

J. Chem. Phys. 134, 234307 (2011)

TABLE I. Numbering, frequencies, type and physical interpretation of the
normal mode coordinates obtained at the transition state. The in-plane modes
are of A or By symmetry, out-of-plane modes are of A, or B; symmetry.
The modes which are symmetric with respect to the g2; = 0 plane are of A

or By and the ungerade of A, or B, symmetry. All energies are in cm™'.

Mode Frequency Cay Description

1 346.28 Ay CH-O bending

2 393.37 B CH-C-CH bending

3 573.02 B> Ring deformation, C-O bending
4 608.85 Ay Ring deformation, O-O stretching
5 750.20 By C-H bending

6 957.92 A Ring deformation, C-O bending
7 995.20 B C-C-C bending

8 998.18 As C-H bending

9 1073.78 A Ring deformation, C-C stretching
10 1101.40 B C-H bending

11 1321.98 B Transfer-proton out-of-plane

12 1340.42 By C-H bending

13 1405.12 Ay C-H bending

14 1472.48 B, C-H bending

15 1617.71 Aq C-O stretching

16 1620.12 B C-C-C stretching

17 1893.66 Ay Transfer-proton to ring center
18 3126.86 A C-H stretching

19 3141.39 B> C-H stretching

20 3227.45 Ay C-H stretching

21 i x 1253.02 B> Proton transfer

depend on the position of the proton and this is why one ob-
serves this correlation although malonaldehyde remains pla-
nar along the reaction path.

In the following we use the set of coordinates based on
the normal modes obtained at the transition state. The proton
transfer coordinate is automatically identified and due to the
symmetry of the system, both minima are represented with
equal quality. This representation, however, is not optimal at
the two minima where the wavefunction will be mainly lo-
cated. In Subsection IIT A, we briefly discuss how arising arti-
ficial correlations can be reduced by a simple coordinate shift.
We further discuss there how the symmetry of the system can
be exploited to further optimize a rendering of the system.

Throughout the paper we set the masses for Hydrogen to
1.0078, for Carbon to 12, and for Oxygen to 15.9949 atomic
mass units (AMU) with one AMU equal to 1822.88848325
electron masses. Table I shows the normal mode frequencies
w; obtained at the transition state with the aforementioned
masses and symmetry properties of the normal vibrations.

A. Kinetic energy operator

As mentioned above, a description in normal mode coor-
dinates g; introduces large artificial correlations between the
different DOF. To minimize these effects we follow Hammer
et al." and transform the coordinates according to

g =q¢ — Fi(Gn), i=1...20,
(10)

q21 = 4o,

where the F; where obtained such that they resemble the re-
action path of the proton transfer from the transition state to
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the two minima. This is done by minimizing the PES depend-
ing on the transfer coordinate g,; and subsequent fitting of
the obtained coordinate values to polynomials of 8th order
for symmetric and of 7th order for asymmetric F;, respec-
tively. The transformation equation (10) reduces the potential
coupling and allows to use shorter grids. For the out-of-plane
modes, the F; are set to zero because the molecule remains
planar along the reaction path. But as already discussed, the
out-of-plane motion couples strongly to the proton transfer
motion as the out-of-plane frequencies change substantially
along the reaction path. The out-of-plane bendings are rather
poorly described by the rectilinear normal mode coordinates
and curvilinear coordinates, e.g., bond angles would describe
this motion much better. The use of normal node coordinates
hence introduces artificial correlation which makes the con-
vergence of the out-of-plane motion harder than expected.

Using the transformation equation (10), the kinetic en-
ergy operator 7' reads (after separating global rotation and
translation as well as neglecting vibration-rotation-coupling
terms)

BE ) 20 52
T=-2 w;—5 + wsy F/(g21)F}(g21)
20
d 0 0
- F(qu)— + —F/( ))- , (1D
2 ;( 1 dga1  dgm 2 9g;

where F!(g21) = (3/9¢21)Fi(g21) denotes the first derivative
of F; with respect to the transfer coordinate and w; the nor-
mal mode frequencies. Note that we use mass and frequency
scaled — and hence dimensionless — normal mode coordinates
and w,; denotes the absolute value of the imaginary transition
state frequency.

B. Double well potentials

For double well systems with a rather small tunneling rate
it suggests itself to treat the two wells (almost) separately.' To
this end we introduce the projection operators

1 ifx>0,
hix) = :0 otherwise, (12)
h'(x) =1 = h(x),

where x denotes the reaction coordinate and x = 0 the sad-
dle point (i.e., x = g»; for malonaldehyde). Next, we partition
Hamiltonian and wavefunction

H=hHh+hHK + W Hh+ W HW, (13)

W) =h|W) +h V) =|¥) +[¥2). (14)

As (W) |W,) = (V| hh' |¥) = 0 one may treat |V,) and |\W;)
like component wave functions of artificial “electronic” states
so that the matrix form of the Hamiltonian reads

b [ PHRRTH s
= \wrthwaw )]’

Here we have replaced A by T in the off-diagonal elements
because hVh' =h'Vh =0. It is clear that the equations

J. Chem. Phys. 134, 234307 (2011)

A 1W) = E %) and H (%), [92)) = E (%), [92))" are
strictly equivalent. However, the operators hTh, hTH, etc.
are singular. Although the singularities cancel each other ex-
actly, one may be concerned about the stability of a numer-
ical treatment. Fortunately, using a grid representation turns
the projected kinetic operators into ones which are bounded
by c/dz, where ¢ is a constant of order 1 and d denotes the
smallest distance between two grid points. Using a symmetric
grid where x = 0 lies in the middle between two grid points
we found the numerics very stable.

The presented scheme is of advantage because a poten-
tial representation for state 1 (2) needs to be accurate in well
1 (2) only. However, a more significant advantage can be
achieved if the double well is a symmetric double well. Fol-
lowing Hammer et al.! we introduce the symmetry operator R
which is a reflection operator with respect to the plane x = 0:

RY(x,q1,....q7-1) =VY(=x,a1q1,...,a7_197-1), (16)

with o; = £1, depending on whether g; are “gerade” (A; and
By for Cy,) or “ungerade” (A, and B, for C;,) modes with
respect to the reflection. Obviously,

RV = +W¥ and RY, = £V, an
where “+” applies for “gerade” states, e.g., the ground state,
and “~” to “ungerade” states, e.g., the first excited tunneling
state.

Replacing ¥, with £RW; and using the first line of
the Hamiltonian equation (15) only, leads to two uncoupled
Schrodinger equations:

Hy |Vy) = (hHh +hTH'R)
H_|V_) = (hHh — hTh'R)

Vo) = EL [Wy), (18)
(W_)=E_|W¥_).

Note, that hTh'R = hT Rh and [T, R] = 0 holds from which
follows that H, and H_ are Hermitian. There is now a numer-
ical gain as the number of grid points is halved and — more
important for MCTDH - the number of SPF needed for con-
vergence is smaller because only W; but not W needs to be
represented. The two solutions extended to the whole grid are
orthonormal since they belong to different symmetry classes
of the reflection operator (see Eq. (17)). The symmetry (and
hence orthonormality) is strictly enforced by this approach.

C. Potential energy surface and cluster expansion

Once having defined a set of coordinates it still remains
a challenging task to treat the PES within quantum dynam-
ics calculations. A direct use of the full 21-dimensional PES
of malonaldehyde is not possible due to the large size of the
primitive grid. In order to reduce the amount of data that is
needed to render the PES, a so-called cluster expansion (CE) —
or n-mode representation — has been used.36:37-3-41:47 Within
the CE, the full 21-dimensional PES is approximated by n-
particle interaction terms, where the particles are defined by
combined modes as discussed above.

In the present case, we used a CE around one distin-
guished particle, Qs which appears in all expansion terms,
rather than a fixed reference point.!> One may call this a
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TABLE II. Mode combinations for cluster expansion.

J. Chem. Phys. 134, 234307 (2011)

TABLE III. Mode combinations for MCTDH calculations.

Logical coord. Physical coord. Logical coord. (MCTDH) Logical coord. (clusters) Physical coords.
o q1, 92, q18 0 o q1, q2. 918
02 43, 412, 415 02 0> 43, 412, 415
03 q4 03 03, 04 q4, 4165 417
04 q16- 417 (on 0s. O qs, 9205 46, 49
0Os 45, 420 0s 07. 08 47, 48, 410, 419
0Os q6- 99 O6 09. D10 q13: q14- 411, 21
07 q7- 48

0Os 10+ 19

0o q13. q14

QIOZQref q11. 921

reaction path CE.

p—1
V(Q) = Vigg(Qfef) + Zvécl;ef( Qaa Qref)
a=l1
p—1
+ 2 2 A A
Voz,ﬂ,rcf(QDt7 Qﬂ’ Qref)
a<fi

p—1
+ Z V(f;;.%ref(Qou Qﬂ9 Q}M Qref) + - ) (19)

a<p<y

where
vr(gf)'(Qref) = V(Qref, 0, ey 0),

Vé{zef(Qu, Qref) = V(Qou Qrefa 0,...,0)— Vigf)(Qref),
(20)
etc.

Naturally, for the proton transfer, Q.. contains the reac-
tion coordinate gy; as it is of particular importance.

For the CE we introduce 10 particles or logical coordi-
nates Q.,k =1, ..., 10, each comprising one to three phys-
ical coordinates as outlined in Table II. Here, it should be
stressed that the combinations of coordinates given below are
selected to provide a good convergence behavior of the CE.
They have been chosen such that most of the largest corre-
lations between two or three coordinates induced by the po-
tential are already covered exactly within one particle O, and
higher order terms of Eq. (19) only add comparably small cor-
rections while remaining (in terms of grid points) reasonably
small, i.e., below 10° sampling points on the combined primi-
tive grid. The clusters (except v?) are then brought to product
form, Eq. (6), with the aid of the potfit algorithm,?3-2%-32-34

This mode combination for the CE differs from the one
used for the actual MCTDH calculations as the A-vector
in Eq. (1) would — for 10 particles — become too large to
be treated efficiently. For the actual calculations within the
MCTDH program, we further combined some of the logi-
cal coordinates outlined in Table II. The combination scheme
used in MCTDH consists of 6 particles as displayed in
Table III (see Subsection IV A).

As stated elsewhere,*® it is rather difficult to estimate at
which order the expansion equation (19) can be truncated and
which of the clusters are actually important for an accurate
description of the PES, especially in the region where the

wavefunction resides. A natural choice would be an £? norm,
possibly subject to a weight function that roughly resembles
the ground state density, to estimate the difference between
the true and the approximated potential. However, this would
require an integral over the complete grid which is precisely
what is to be avoided. Also, the numerical effort that is needed
to calculate the clusters prohibits a “brute force” generation of
the terms in Eq. (19) beyond second or third order.

As in Ref. 48, we use a Metropolis algorithm?®>°
to estimate the expectation values M., = ((v*(Q,.

Qp. ..., Orwr)) and root-mean-square (RMS) values Rémg
= ((v"™(Qy, Op. ..., Oret)*))!/? to estimate the contribu-
tions of the terms in Eq. (19). A similar analysis can be per-
formed for the total error of all clusters compared to the exact
PES.

Within the Metropolis algorithm, at step i a random vec-
tor Aq of length |Aq| = [ is generated and added the present
coordinate vector q; to generate the trial configuration g
=, + Aq. The trial configuration is then tested against
a random number r in the interval [0, 1] via p
= exp(—B(V(q;) — V(q;))) with 8 being an “inverse temper-
ature”. If r < p the step is accepted, leading to the new con-
figuration q;,; = q}, otherwise the step is rejected and the
procedure is repeated with a different random Aq.

The trajectory generated by this Metropolis algorithm
follows a Boltzmann distribution (o exp(—p8V)) for the given
temperature and roughly resembles the density of the ground
state wavefunction. It can therefore be used to estimate the
quality of the CE as well as the contributions of the single
terms in Eq. (19). It should be noted here, however, that the
width of the resulting Boltzmann distribution within the dif-
ferent DOF is only determined by the “temperature” and un-
derlying potential. For a 1D harmonic potential the Boltz-
mann distribution exp(—pV) coincides with the ground state
density if B~! = w/2. Hence, to achieve a distribution com-
parable with the ground state density in all DOF, a different
temperature would have to be used for all DOF, scaled ac-
cording to the normal mode frequencies as in Table 1. This
would account for the missing contribution of the KEO. As
the system is not separable, this is not possible and choos-
ing a single temperature therefore constitutes a compromise.
In particular (and depending on the temperature chosen), the
distribution will tend to be too wide for modes with low
normal-mode frequencies and too narrow for modes with high
normal-mode frequencies. In the present case a “temperature”
B! =400 cm™! was used.
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As clusters we included the zeroth order one, v®(Qef),
and all first and second order clusters, vf])(Qi, Oref),
v 0. Qrr) Wwith 1 <i<j<9. Guided by the
statistical analysis, we additionally included the five
clusters Vﬁg,g(él, q7, Qs Oref)s VS;A(QL, 03, 04, q21),
VS;A(QL 03, 04, q21)s Vgiﬁ(Q& 04, O6, Orer),  and
Vf;ﬁ’&g(Q% q10, 911, Q14, 416, g20) Which are those that were
found to have an expectation value M of more then +1 cm™".
All other clusters have been neglected.

The amount of data reduction achieved by the CE is quite
remarkable. The potential evaluated on the product grid con-
sists of 1 x 10% data points, but the included clusters take
only 1.7 x 108 points. After potfitting the clusters, the data
are further reduced to 3 x 107 points.

IV. RESULTS
A. MCTDH setup

As mentioned above, the particles used for the cluster ex-
pansion outlined in Table IT have been further combined into
six logical coordinates as shown in Table III to reduce the
length of the A-vector and especially the size of the Hamilto-
nian matrix in the SPF basis.

Note, that the SPF now contains three to four physical
DOF, thus reaching the limit of today’s computational
capacities. The underlying primitive grids for the physical co-
ordinates are given in Table IV. For most of the normal mode
coordinates 11-13 sampling points using a harmonic oscil-

TABLE IV. Primitive grids: HO — harmonic oscillator DVR; SIN — sine
DVR functions using mass and frequency scaled normal modes. For the HO
DVR the ranges result from the number of grid points chosen. As mass an
frequency scaled normal modes are used, the mass and frequency parameters
of the HO-DVR are set to unity.

Physical Type of No. of grid

coordinate primitive basis points Range

q1 HO 13 —4.101 to 4.101
@ HO 11 —3.668 to 3.668
3 HO 11 —3.668 to 3.668
qa HO 25 —6.164 to 6.164
qs HO 13 —4.101 to 4.101
q6 HO 11 —3.668 to 3.668
q7 HO 11 —3.668 to 3.668
qs HO 11 —3.668 to 3.668
q9 HO 13 —4.101 to 4.101
q10 HO 11 —3.668 to 3.668
q11 HO 11 —3.668 to 3.668
q12 HO 11 —3.668 to 3.668
q13 HO 13 —4.101 to 4.101
qi4 HO 11 —3.668 to 3.668
q15 HO 13 —4.101 to 4.101
q16 HO 11 —3.668 to 3.668
q17 HO 13 —4.101 to 4.101
q18 HO 11 —3.668 to 3.668
q19 HO 11 —3.668 to 3.668
420 HO 11 —3.668 to 3.668
921 SIN 24 —7.05 to —0.15
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lator DVR proved to be sufficient for an accurate description,
except for the mode g4 and, naturally, ¢>; which where sam-
pled using 25 and 24 grid points, respectively. Note, that for
g>1 a sine DVR is used and that it is only defined in one half
of the complete range as the method outlined in Sec. III B is
used.

B. Convergence checks

As discussed in Sec. II, the numerical effort for solv-
ing the Schrodinger equation within the MCTDH scheme
crucially depends on the calculation of the mean fields and
therefore the number (and size) of SPF used to represent
the wavefunction. With exponentially increasing numerical
effort, an accurate estimation of the state energy with a single
calculation is therefore especially for large systems, such
as malonaldehyde, not always possible. There are several
measures to check the convergence of the MCTDH ansatz.
In the following we use a scheme similar to the one proposed
by Hammer and co-workers:! starting from an in terms of the
number of SPF reasonably well converged reference calcu-
lation, for each mode, an additional calculation is performed
with the number of SPF doubled. Assuming that the change in
energy for almost converged wavefunctions is independent of
changes in other modes, the sum of all differences in energy
to the reference is then added to the reference energy to give
an estimate of the true state energy. Table V details the results
obtained for the ground state and the first excited state for a
wavefunction with a small set of SPF. Doubling the number of
SPF leads to a large drop of the state energy especially for the
particles 1 and 3. Extrapolating the state energy of the ground
state and the first excited state leads to a zero point energy of
14 669.424 cm™! and a tunneling splitting of 23.563 cm™'.

Note, that — in contrast to the proposal of Hammer et al.!
— all results presented have been calculated using indepen-
dent sets of SPF for the ground and excited state. This allows
for a better convergence of the individual wavefunctions. If
a combined set of SPF is used, the reference energy of the
ground (first excited) state outlined in Table V is obtained as
14 682.964 (14 707.750) cm~! which is 0.292 (0.209) cm™!
higher compared to calculations with separate sets of SPF.
This is to be expected since in case of the combined set, the
SPF constitute the basis set of two wave functions and cannot
adopt optimally to either one of the wave functions. Since the
convergence follows a variation principle higher energies in-
dicate poorer convergence. On the other hand, the tunneling
splitting is obtained as 24.786 cm™!, i.e., 0.083 cm™' lower
compared to the reference values of Table V. This may in-
dicate that within a combined set of SPF the convergence of
the excited state is slightly favored. However, the differences
are small and they become smaller for better converged wave
functions. Because separate calculations of E; and E_ are
numerically easier than a combined calculation and as the ob-
tained ZPE is better, we prefer separate calculations.

Returning to the discussion of Table V, the large drop
in energy in modes 1 and 3 suggests that the reference wave-
function was not well converged. Table VI outlines the result
obtained for a reference state with larger sets of SPF. The
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TABLE V. Extrapolation of the state energies using a small set of SPF as reference. AE denotes the difference

to the reference state. All energies are in cm™".

No. of SPF for

01 Q2 03 Q4 Qs Q¢ Energy(+) AE Energy (-) AE Splitting
7 6 7 10 10 20 14 682.672 (reference) 14 707.541 (reference) 24.869
14 6 7 10 10 20 14 679.648 —3.024 14 704.377 —-3.164 24.729
7 12 7 10 10 20 14 681.712 —0.960 14 706.560 —0.981 24.848
7 6 14 10 10 20 14 675.403 —7.269 14 699.317 —8.224 23914
7 6 7 20 10 20 14 682.071 —0.601 14 706.874 —0.667 24.803
7 6 7 10 20 20 14 682.167 —0.505 14 707.061 —0.480 24.894
7 6 7 10 10 40 14 681.783 —0.889 14 706.503 —1.038 24.720

Sum —13.248 —14.554

Extrapolated energy 14 669.424 14 692.987 23.563

increased set of SPF led to a drop in energy of approximately
10 cm™! for both, the ground and excited state.

Extrapolation of the reference energy leads to a reduc-
tion of additional 5 cm™, with the largest contributions stem-
ming from the increased number of SPF in modes three and
six, leading altogether to an estimated inversion splitting of
approximately 23.1cm~!. Note, that for the reference calcu-
lations an inversion splitting of approximately 23.8 cm™! is
observed, i.e., the convergence of the MCTDH wavefunction
seems to be of critical importance for result of the inversion
splitting.

The results outlined in Table VI still reveal a large drop
in energy upon increasing the number of SPF in modes three
and six. Doubling the number of SPF in both modes simulta-
neously (last three rows of Table VI) leads to a ground state
energy of 14 669.709 cm™! which is 3.075 cm™! lower than
the ZPE of obtained with the reference configuration. Inter-
estingly, the drop in energy is 0.346 cm™' (*13%) larger than
the sum of the two energy differences if the number of SPF in
these modes is doubled independently from each other. This
shows that the change in energy upon increasing the number
of SPF in one mode is not independent of the number of SPF
in other modes. If there are more SPFs in the other modes,

the newly added SPFs allow for more correlation and an even
larger drop in energy. The extrapolation scheme, therefore,
does not violate the variational property, the extrapolated en-
ergies are still upper bounds to the exact ones.

Turning to the excited state, we note that we ob-
tained with the same number of SPF a state energy of
14 692.999 cm™!, i.e., 3.588 cm™! lower than obtained
with the reference configuration. Here, the drop in energy is
0.294 cm™! (*9%) larger than the sum of the individually
obtained energy drops. Within this setup, therefore, the ZPE
is obtained as 14 667.314 cm™! and the splitting as 23.201
cm™!, i.e., 0.052 cm™! higher than estimated before.

To confirm the results outlined in the previous paragraph,
additional calculations with increased numbers of SPF, espe-
cially in modes three and six has been performed as displayed
in Table VII. Note that the first three rows are used for an ex-
trapolation scheme as outlined above but for modes three and
six only, where we increased the number of SPF only by 1/3
due to limited computational capacities.

All direct comparisons in Table VII yield a splitting
from 23.27 to 23.37 cm™! and also the extrapolated value is
23.27 em~! which is quite consistent with the value obtained
in the last line of Table VI. The drop in energy can mainly

TABLE VI. Extrapolation of the state energies as in Table V but with a larger set of SPF. AE denotes the
difference to the reference state. The last three rows outline the extrapolation with the number of SPF increased
in modes 3 and 6 simultaneously. We consider the values given in the last line of the table as our best results. All

energies are in cm ™.

No. of SPF for

01 Q2 Q03 Q4 Qs Q¢ Energy(+) AE Energy (-) AE Splitting

10 7 12 10 10 20 14 672.784 (reference) 14 696.587 (reference) 23.803

20 7 12 10 10 20 14672273 —0.511 14 696.034 —0.553 23.761

10 14 12 10 10 20 14 672.209 —0.575 14 695.985 —0.602 23.776

10 7 24 10 10 20 14 671.321 —1.463 14 694.722 —1.865 23.401

10 7 12 20 10 20 14 672.115 —0.669 14 695.847 —0.740 23.732

10 7 12 10 20 20 14 672.144 —0.640 14 695.998 —0.589 23.854

10 7 12 10 10 40 14 671.518 —1.266 14 695.158 —1.429 23.640
Sum -5.124 —5.778

Extrapolated energy 14 667.660 14 690.809 23.149

10 7 24 10 10 40 14 669.709 —3.075 14 692.999 —3.588 23.290
Sum —5.470 —6.072

Extrapolated energy 14 667.314 14 690.515 23.201
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TABLE VII. Largest direct calculations. The state energies are expected to
lie slightly above the extrapolated ones reported in Table VI. All energies are
in cm~!. The first three lines allow to extrapolate the energy. However, this
extrapolation only includes modes Q3 and Qg. A full extrapolation includ-
ing all modes is expected to lower the ZPE by additionally 0.3-0.6 cm™!,
bringing it to very close agreement with the extrapolated values of Table VI.

The last line of the table presents the results of our largest calculation.

No. of SPF for

01 Q> Q3 Q4 Qs Qs Energy(+) Energy(-) Splitting
12 11 15 14 13 30 14669.066 14 692.433 23.367
12 11 20 14 13 30 14668414 14691.737 23.323
12 11 15 14 13 40 14668.760 14 692.076 23.316

Extrapolated energy 14 668.108 14 691.380 23.272
13 11 20 15 14 33 14668.023 14691.293 23.270

be ascribed to mode three while the contribution to the
splitting is balanced. The largest calculations performed are
outlined in the last line of Table VII. Here we obtain a ZPE of
14 668.023 cm™! and an inversion splitting of 23.270 cm™!
which is merely 0.7 and 0.07 cm™! above the extrapolated
values of Table VI.

V. SUMMARY AND DISCUSSION

Calculations of the full-dimensional symmetric and
antisymmetric vibrational ground states of malonaldehyde
have been performed to obtain the tunneling splitting of
the proton transfer. Calculations including an extrapolation
scheme yielded a ground state energy of 14 667.3 cm™! and a
tunneling splitting of 23.2 cm™!, respectively. The following
calculations with larger SPF basis sets, but without extrapola-
tion, confirmed these results with an error of less than 2 cm™!
for the ground state and less than 0.1 cm ™' for the tunneling
splitting. The extensive convergence checks show that the
MCTDH energies are well converged. (See also the list of
natural populations.’?) Finally, when adding the estimated
contributions of the vibration-rotation coupling terms (2.4 and
0.2 cm~! obtained’! as expectation values) to our results, we
propose a ZPE of 14 670 cm™! and a tunneling splitting of
23.4 cm™! for the used PES.'?

The tunneling splitting obtained in the present calcula-
tions differs rather significantly from the experimental value
of 21.6 cm™!. It does, however, confirm the inversion split-
ting of 22.6 cm~! using normal mode coordinates reported in
Ref. 12 within their stated error margins of 2-3 cm™! and is in
very good agreement with the splitting of 23.8 cm™! recently
obtained by Hammer and Manthe.’'

The ZPE for normal mode coordinates, reported in
Ref. 12 could not be reproduced. Within the present calcu-
lations it is estimated lower than stated by Wang et al., who
reported a ZPE of 14 678 cm™!. One source of error could be
the truncation of the cluster expansion, and in fact we con-
sider the MCTDH calculations as better converged than the
potential representation. However, according to the statistical
analysis we have performed, we consider it as unlikely that
potential representation errors shift the ZPE down by more
than 4 cm~!. The corresponding shift in the energy splitting is

J. Chem. Phys. 134, 234307 (2011)

assumed an order of magnitude smaller because deficiencies
of the potential representation affect the plus and the minus
states in a similar way.
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