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Abstract

In this paper, we combine the KSS nest constructed in [KSS] and the analytic
method in [AKLS] to prove the combinatorial rigidity of multicritical maps.

1 Introduction

Rigidity is one of the fundamental and remarkable phenomena in holomorphic dy-
namics. The general rigidity problem can be posed as

Rigidity problem [L]. Any two combinatorially equivalent rational maps are
quasi-conformally equivalent. Except for the Lattès examples, the quasi-conformal
deformations come from the dynamics of the Fatou set.

In the quadratic case, the rigidity problem is equivalent to the famous hyper-
bolic conjecture. The MLC conjecture asserting that the Mandelbrot set is locally
connected is stronger than the hyperbolic conjecture (cf. [DH]). In 1990, Yoccoz
[Hu] proved MLC for all parameter values which are at most finitely renormaliz-
able. Lyubich [L] proved MLC for infinitely renormalizable quadratic polynomials
of bounded type. In [KSS], Kozlovski, Shen and van Strien gave the proof of the
rigidity for real polynomials with all critical points real. In [AKLS], Avila, Kahn,
Lyubich and Shen proved that any unicritical polynomial fc : z 7→ zd + c which
is at most finitely renormalizable and has only repelling periodic points is combi-
natorially rigid, which implies that the connectedness locus (the Multibrot set) is
locally connected at the corresponding parameter values. The rigidity problem for
the rational maps with Cantor Julia sets is totally solved (cf. [YZ], [Z]). In [Z],
Zhai took advantage of a length-area method introduced by Kozlovski, Shen and
van Strien (cf. [KSS]) to prove the quasi-conformal rigidity for rational maps with
Cantor Julia sets. Kozlovski and van Strien proved that topologically conjugate
non-renormalizable polynomials are quasi-conformally conjugate (cf. [KS]).

In the following, we list some other cases in which the rigidity problem is re-
searched (see also [Z]).
(i) Robust infinitely renormalizable quadratic polynomials [Mc1].
(ii) Summable rational maps with small exponents [GS].
(iii) Holomorphic Collet-Eckmann repellers [PR].
(iv) Uniformly weakly hyperbolic rational maps [Ha].

In [PT], we have discussed the combinatorial rigidity of unicritical maps. In this
paper, we will give a proof of the combinatorial rigidity of multicritical maps (see
the definition in section 2).

In the proof, we will exploit the powerful combinatorial tool called ”puzzle” and
a sophisticated choice of puzzle pieces called the KSS nest constructed in [KSS]
(see Theorem 7.11). To get the quasi-conformal conjugation, we adapt the analytic
method in [AKLS] (see Lemma 3.2).

The paper is organized as follows. In section 2, we introduce the definition of the
multicritical maps which we study in this paper and present the results of this paper,
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Theorems 2.1, 2.2, 2.3. In section 3, we apply the Spreading Principle appeared in
[KSS] to prove Theorem 2.1. In section 4, we resort to the quasiconformal surgery
to prove Theorem 2.2. Proof of Theorem 2.3 (a) is given in section 5. We reduce
Theorem 2.3 (b) to Main Proposition in section 6. The proof of Main Proposition is
presented in section 7. In subsection 7.1, we reduce Main Proposition to Proposition
7.3. The proof of Proposition 7.3 is given in subsection 7.2.

2 Statement

The Set up. V = ⊔i∈IVi is the disjoint union of finitely many
Jordan domains in the complex plane C with disjoint and quasi-circle boundaries,

U is compactly contained in V,
and is the union of finitely many Jordan domains with disjoint closures;

f : U → V is a proper holomorphic map with all critical points
contained in Kf := {z ∈ U | fn(z) ∈ U ∀n},

with each V-component containing at most one connected component of Kf

containing critical points.

Denote by Crit(f) the set of critical points of f and by P :=
⋃

n≥1

⋃
c∈Crit(f){f

n(c)}
the postcritical set of f .

Let intKf denote the interior of Kf . For x ∈ Kf , denote by Kf (x) the compo-
nent of Kf containing the point x. We call a component of Kf a critical component
if it contains a critical point. The map f maps each component of Kf onto a com-
ponent of Kf . A component K of Kf is called periodic if fp(K) = K for some
p ≥ 1, wandering if f i(K) ∩ f j(K) = ∅ for all i 6= j ≥ 0.

Two maps in the set-up (f : U → V), (f̃ : Ũ → Ṽ) are said to be c-equivalent
(combinatorially equivalent), if there is a pair of orientation preserving homeomor-
phisms h0, h1 : V → Ṽ such that






h1(U) = Ũ and h1(P) = P̃

h1 is isotopic to h0 rel ∂V ∪ P

h0 ◦ f ◦ h−1
1 |

Ũ
= f̃

h1|V\U is C0-qc (an abbreviation of quasi-conformal) for some C0 ≥ 1,

(1)

in particular

V ⊃ U
h1−→ Ũ ⊂ Ṽ

f ↓ ↓ f̃

V −→
h0

Ṽ

commutes.

This definition is to be compared with the notion of combinatorial equivalence
introduced by McMullen in [Mc2]. Notice that this definition is slightly different
from the definitions of combinatorial equivalence in [AKLS] and [KS], since we define
it without using the external rays and angles.

We say that f and f̃ are qc-conjugate off Kf if there is a qc map H : V\Kf →
Ṽ\Kf̃ so that H ◦ f = f̃ ◦ H on U\Kf ,

i.e.

U\Kf
H
−→ Ũ\Kf̃

f ↓ ↓ f̃

V\Kf −→
H

Ṽ\Kf̃

commutes.
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We say that f and f̃ are qc-conjugate off intKf if there is a qc map H̃ : V → Ṽ

so that H̃ ◦ f = f̃ ◦ H̃ on U\intKf ,

i.e.

U\intKf
H̃
−→ Ũ\intKf̃

f ↓ ↓ f̃

V\intKf −→
H̃

Ṽ\intKf̃

commutes.

We say that f and f̃ are qc-conjugate if there is a qc map H ′ : V → Ṽ so that
H ′ ◦ f = f̃ ◦ H ′ on U,

i.e.

V ⊃ U
H′

−→ Ũ ⊂ Ṽ

f ↓ ↓ f̃

V −→
H′

Ṽ

commutes.

Theorem 2.1. Let f, f̃ be two maps in the set-up. Suppose f and f̃ are qc-conjugate
off Kf by a qc map H. Assume that f satisfies the following property (∗):

For every critical component Kf (c) of Kf , c ∈ Crit(f), and every integer n ≥ 1,
there exists a puzzle piece Qn(c) containing c such that:

(i) For every critical component Kf (c), the pieces {Qn(c)}n≥1 form a nested
sequence with

⋂
n Qn(c) = Kf (c) (the depth of Qn(c) may not equal to n).

(ii) For each n ≥ 1, the union
⋃

c∈Crit(f) Qn(c) is a nice set.

(iii) There is a constant C̃, such that for each pair (n,Kf (c)) with n ≥ 1, a
critical component Kf (c), the map H|∂Qn(c) admits a C̃-qc extension inside Qn(c).

Then the map H extends to a qc map from V onto Ṽ which is a conjugacy off
intKf .

See Definition 1 (1) and (2) in the next section for the definitions of a puzzle
piece, the depth of it and a nice set.

Theorem 2.2. Let f be a map in the set-up. Then for any component D of intKf ,
f i(D) ∩ f j(D) = ∅ for all i 6= j ≥ 0.

Theorem 2.3. Let f, f̃ be two maps in the set-up. Then the following statements
hold.

(a) If f and f̃ are c-equivalent, then they are qc-conjugate off Kf .
(b) Suppose H : V\Kf → Ṽ\Kf̃ is a qc conjugacy off Kf . Assume that for

every critical component Kf (c), c ∈ Crit(f), satisfying that f l(Kf (c)) is a critical
periodic component of Kf for some l ≥ 1, there are a constant Mc and an integer
Nc ≥ 0 such that for each n ≥ Nc, the map H|∂Pn(c) admits an Mc-qc extension
inside Pn(c), where Pn(c) is a puzzle piece of depth n containing c. Then the map
H extends to a qc conjugacy off intKf . Furthermore, if for every component K of
Kf with non-empty interior, H|∂K extends to a qc conjugacy inside K, then f and
f̃ are qc-conjugate by an extension of H.

3 Proof of Theorem 2.1

Suppose that f and f̃ are qc-conjugate off Kf by a C0-qc map H. Starting from
the property (∗), we will prove that H admits a qc extension across Kf which is a
conjugacy off intKf .
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Definition 1. (1) For every n ≥ 0, we call each component of f−n(V) a puzzle

piece of depth n for f . Similarly, we call each component of f̃−n(Ṽ) a puzzle piece
of depth n for f̃ . Denote by depth(P ) the depth of a puzzle piece P .

We list below three basic properties of the puzzle pieces.
(a) Every puzzle piece is a quasi-disk and there are finitely many puzzle pieces

of the same depth.
(b) Given two puzzle pieces P and Q with depth(P ) > depth(Q), either P ⊂⊂ Q

or P ∩ Q = ∅.
(c) For x ∈ Kf , for every n ≥ 0, there is a unique puzzle piece of depth n

containing x. Denote the piece by Pn(x). Then Pn+1(x) ⊂⊂ Pn(x) and ∩n≥0Pn(x)
is exactly the component of Kf containing x.

(2) Suppose X ⊂ V is a finite union of puzzle pieces (not necessarily of the same
depth). We say X is nice if for any z ∈ ∂X and any n ≥ 1, fn(z) /∈ X as long as
fn(z) is defined, that is, for any component P of X, for any n ≥ 1, fn(P ) is not
strictly contained in X. For example, if X has a unique component, obviously it is
a nice set.

(3) Let A be an open set and z ∈ A. Denote the component of A containing z
by Compz(A).

Given an open set X consisting of finitely many puzzle pieces, let

D(X) = {z ∈ V | ∃k ≥ 0, fk(z) ∈ X} = ∪k≥0f
−k(X).

For z ∈ D(X)\X, let k(z) be the minimal positive integer such that fk(z)(z) ∈ X.
Set

Lz(X) := Compz(f
−k(z)(Compfk(z)(z)(X))).

Obviously, fk(z)(Lz(X)) = Compfk(z)(z)(X).

Lemma 3.1. Suppose X is a finite union of puzzle pieces. The following statements
hold.

(1) For any z ∈ D(X)\X, Lz(X), f(Lz(X)), · · · , fk(z)−1(Lz(X)) are pairwise
disjoint.

(2) Suppose X is nice and z ∈ D(X)\X. Then for all 0 ≤ i < k(z), f i(Lz(X))∩
X = ∅. In particular, if X ⊃ Crit(f), then Lz(X) is conformally mapped onto a
component of X by the iterate of fk(z).

Proof. (1) Assume there exist 0 ≤ i < j < k(z) with f i(Lz(X)) ∩ f j(Lz(X)) 6= ∅.
Then f i(Lz(X)) ⊂⊂ f j(Lz(X)) and

fk(z)−j(f i(Lz(X))) ⊂⊂ fk(z)−j(f j(Lz(X))) = fk(z)(Lz(X)) = Compfk(z)(z)(X).

So fk(z)−j+i(z) ∈ X. But 0 < k(z) − j + i < k(z). This is a contradiction with the
minimality of k(z).

(2) Assume there is some 0 ≤ i0 < k(z) with f i0(Lz(X))∩X 6= ∅. We can show
that f i0(Lz(X)) ∩ X ⊂⊂ f i0(Lz(X)). In fact, when i0 6= 0, this is due to the mini-
mality of k(z); when i0 = 0, it is because z 6∈ X. Let P be a component of X with
P ⊂⊂ f i0(Lz(X)). So fk(z)−i0(P ) ⊂⊂ fk(z)−i0(f i0(Lz(X))) = Compfk(z)(z)(X). It
contradicts the condition that X is nice.

The corollary below follows directly from the above lemma.
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Corollary 3.2. Suppose X is a finite union of puzzle pieces. The following state-
ments hold.

(i) For any z ∈ D(X)\X, {Lz(X), f(Lz(X)), · · · , fk(z)−1(Lz(X))} meets every
critical point at most once and

deg(fk(z) : Lz(X) → Compfk(z)(z)(X)) ≤ ( max
c∈Crit(f)

degc(f))#Crit(f)

(ii) Suppose X is nice and z ∈ D(X)\X. Then Lw(X) = Lz(X) for all w ∈
Lz(X) and Lw′(X) ∩ Lz(X) = ∅ for all w′ 6∈ Lz(X).

(iii) Suppose X is nice and z ∈ D(X)\X. Then for all 0 < i < k(z), f i(Lz(X)) =
Lf i(z)(X).

Let K be a critical component of Kf and c1, c2, · · · , cl be all the critical points
on K. Then Pn(c1) = Pn(c2) = · · · = Pn(cl) and

deg(f |Pn(c1)) = (degc1
(f) − 1) + · · · + (degcl

(f) − 1) + 1

for all n ≥ 0. We can view K as a component containing one critical point of degree
deg(f |Pn(c1)). Hence in the following, we assume that each V-component contains
at most one critical point.

Now we will combine the property (∗) and the Spreading Principle appeared in
[KSS] to prove Theorem 2.1.

Proof of Theorem 2.1. First fix n ≥ 1. We shall repeat the proof of the Spreading
Principle in [KSS] to get a qc map Hn from V onto Ṽ.

Set Wn :=
⋃

c∈Crit(f) Qn(c). Then by Lemma 3.1 (2), each component of D(Wn)
is mapped conformally onto a component of Wn by some iterate of f .

For every puzzle piece P , we can choose an arbitrary qc map φP : P → P̃ with
φP |∂P = H|∂P since H is a qc map from a neighborhood of ∂P to a neighborhood
of ∂P̃ and ∂P, ∂P̃ are quasi-circles (see e.g. [CT], Lemma C.1). Note that by the
definition of Wn, there are finitely many critical puzzle pieces not contained in Wn.
So we can take C ′

n to be an upper bound for the maximal dilatation of all the qc
maps φP , where P runs over all puzzle pieces of depth 0 and all critical puzzle pieces
not contained in Wn.

Given a puzzle piece P , let 0 ≤ k ≤ depth(P ) be the minimal nonnegative
integer such that fk(P ) is a critical puzzle piece or has depth 0. Set τ(P ) = fk(P ).
Then fk : P → τ(P ) is a conformal map and so is f̃k : P̃ → τ(P̃ ), where P̃ is
the puzzle piece bounded by H(∂P ) for f̃ and τ(P̃ ) = f̃k(P̃ ). Given a qc map
q : τ(P ) → τ(P̃ ), we can lift it through the maps fk and f̃k, that is, there is a qc
map p : P → P̃ such that f̃k ◦ p = q ◦ fk. Notice that the maps p and q have the
same maximal dilatation, and if q|∂τ(P ) = H|∂τ(P ), then p|∂P = H|∂P .

Let Y0 = V denote the union of all the puzzle pieces of depth 0. Set X0 = ∅.
For j ≥ 0, we inductively define Xj+1 to be the union of puzzle pieces of depth j +1
such that each of these pieces is contained in Yj and is a component of D(Wn); set
Yj+1 := (Yj ∩ f−(j+1)(V))\Xj+1. We have the following relations: for any j ≥ 0,

Yj = (Yj\f
−(j+1)(V)) ⊔ Xj+1 ⊔ Yj+1, Yj+1 ⊂⊂ Yj , Xj′ ∩ Xj = ∅ for any j′ 6= j .

Given any component Q of Yj+1, we claim that τ(Q) is either one of the finitely
many critical puzzle pieces not contained in Wn, or one of the finitely many puzzle
pieces of depth 0. In fact, for such Q, either Q ∩ D(Wn) = ∅ or Q ∩ D(Wn) 6= ∅.
In the former case, since Crit(f) ⊂ Wn ⊂ D(Wn), Q is mapped conformally onto a
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puzzle piece of depth 0 by the iterate of fdepth(Q). So τ(Q) is a puzzle piece of depth
0. In the latter case, if Q ∩ D(Wn) ⊂⊂ D(Wn), then Q is compactly contained in
a component of D(Wn), denoted by Q′, and Q′ ⊂⊂ Xj′ for some j′ < j + 1. But
Q ⊂⊂ Yj ⊂⊂ Yj−1 ⊂⊂ · · · ⊂⊂ Y0 and Xj∩Yj = ∅, Xj−1∩Yj−1 = ∅, · · · , X0∩Y0 = ∅.
This is a contradiction. Hence Q ∩ D(Wn) ⊂⊂ Q. If there is a critical point
c ∈ Q ∩ D(Wn), then the component of Wn containing c is compactly contained in
Q and τ(Q) = Q. Otherwise, τ(Q) must be a critical puzzle piece not contained in
Wn.

Define H(0) = φP on each component P of Y0. For each j ≥ 0, assuming that
H(j) is defined, we define H(j+1) as follows:

H(j+1) =






H(j) on V\Yj

H on Yj\f
−(j+1)(V)

the univalent pullback of φ on each component of Xj+1

the univalent pullback of φτ(Q) on each component Q of Yj+1,

where the map φ is the qc-extension obtained by the assumption (∗).
Set Cn = max{C0, C

′
n, C̃}. The {H(j)}j≥0 is a sequence of Cn-qc maps. Hence

it is precompact in the uniform topology.
By definition, H(j) = H(j+1) outside Yj . Thus, the sequence {H(j)} converges

pointwise outside
⋂

j

Yj = {x ∈ Kf | fk(x) /∈ Wn, k ≥ 0}.

This set is a hyperbolic subset, on which f is uniformly expanding, and hence has
zero Lebesgue measure, in particular no interior. So any two limit maps of the
sequence {H(j)}j≥0 coincide on a dense open set of V, therefore coincides on V to
a unique limit map. Denote this map by Hn. It is Cn-qc.

By construction, Hn coincides with H on V\((
⊔

j Xj) ∪ (
⋂

j Yj)) is therefore

C0-qc there; and is C̃-qc on
⊔

j Xj . It follows that the maximal dilatation of Hn

is bounded by max{C0, C̃} except possibly on the set
⋂

j Yj . But this set has zero

Lebesgue measure. It follows that the maximal dilatation of Hn is max{C0, C̃},
which is independent of n.

The sequence Hn : V → Ṽ has a subsequence converging uniformly to a limit
qc map H ′ : V → Ṽ, with H ′|V\Kf

= H. Therefore H ′ is a qc extension of H. On

the other hand, H ◦ f = f̃ ◦ H on U\Kf . So H ′ ◦ f = f̃ ◦ H ′ holds on U\intKf

by continuity. Therefore H ′ is a qc-conjugacy off intKf . This ends the proof of
Theorem 2.1.

4 Proof of Theorem 2.2

In this section let f : U → V be a map in the set-up. Let q ≥ 1 denote the number
of components of V. Enumerate the V-components by V1, V2, · · · , Vq.

Lemma 4.1. Let W be an open round disk centered at 0 with radius > 1 containing
V. The map f : U → V extends to a map F on V so that
–on each component Vi of V, the restriction F |Vi

: Vi → W is a quasi-regular
branched covering;
–every component of U is a component of F−1(V);
–the restriction F on F−1(V) is holomorphic.
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Proof. Part I. Fix any component Vi of V such that Vi ∩ U 6= ∅. We will extend
f |Vi∩U to a map F on Vi with the required properties. It will be done in three steps.
Refer to Figure 1 for the construction of F on Vi.

E

V1
D

u1

u2

V1

V2

v1

v2

D

W

Ψ1

Ψ2

F G

Figure 1 The construction of F on V1. In this figure, q = 2, i = 1.

Step 1. The first step is to construct a Blaschke product G : D → D of degree
di, where D denotes the unit disk and di is determined below.

For every component Vj of V, we define

qij = #{U a component of U | U ⊂ Vi, f(U) = Vj}

Set qi = maxj qij . Then qi ≥ 1 and

#{components of U ∩ Vi} =
∑

j

qij ≤ q · qi .

We construct a Blaschke product G : D → D, as well as a set D which is the
union of q Jordan domains in D with pairwise disjoint closures, as follows:

• If Vi does not contain critical points of f , then set G(z) = zqi , and choose D
to be a collection of q Jordan domains compactly contained in D\{0} with pairwise
disjoint closures. Set di = qi. Note that each component of D has exactly qi

preimages. So

#{components of G−1(D)} = q · qi

≥ #{components of U ∩ Vi} .

• Otherwise, by assumption in the set-up, the set Crit(f) intersects exactly one
component U of U ∩ Vi. Set di = qi + deg f |U − 1. Choose G so that it has
degree di, and has two distinct critical points u1 and u2 such that degu1

(G) = qi,
degu2

(G) = deg(f |U ) and G(u1) 6= G(u2).
2 Set vi = G(ui), i = 1, 2. Now choose D

2One way to construct such a map G is as follows: Consider the map z 7→ zqi together with a preimage
x ∈]0, 1[ of 1/2. Cut D along [x, 1[, glue in deg(f |U ) consecutive sectors to define a new space D̃ . Define
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to be a collection of q Jordan domains compactly contained in D\{v1} with pairwise
disjoint closures and with v2 ∈ D. Note that the preimage of any D-component
not containing v2 has di components, whereas the preimage of the D-component
containing v2 has di − deg(f |U ) + 1 = qi components. So

#{components of G−1(D)} = (q − 1)di + qi

= (q − 1)(qi + deg f |U − 1) + qi

= q · qi + (q − 1)(deg f |U − 1)

> q · qi

≥ #{components of U ∩ Vi} .

In both cases G : D\G−1(D) → D\D is a proper map with a unique critical
point.

Step 2. Make U,V ’thick’.

In W, take q Jordan domains with smooth boundaries V̂j , j = 1, · · · , q, such

that each V̂j is compactly contained in W, Vj ⊂ V̂j for each j = 1, · · · , q, and all of

the V̂j have pairwise disjoint closures. Denote V̂ = ∪q
j=1V̂j .

In Vi, take Û to be a union of #{components of G−1(D)} (which is greater than
the number of U-components in Vi) Jordan domains with smooth boundaries with
the following properties:
– Û is compactly contained in Vi;
– (U ∩ Vi) is compactly contained in Û;
– each component of Û contains at most one component of (U ∩ Vi);
– the components of Û have pairwise disjoint closures.

There exists a qc map Ψ2 : W → D such that Ψ2(V̂) = D.
Let now U be any component of U. There is a unique component Û of Û

containing U . Also f(U) = Vj ⊂ V̂j for some j, and Ψ2(V̂j) is a component, denoted
by D(U), of D. See the following diagram:

U ⊂ Û G−1(D(U))
↓ f ↓ G

Vj ⊂ V̂j
Ψ2−→ D(U)

There is a qc map Ψ1 : V i → D so that Ψ1(Û) = G−1(D) and, for any component
U of Vi ∩ U, the set Ψ1(Û) is a component of G−1(D(U)). Then we can define a
quasiregular branched covering F : V i\Û → W\V̂ of degree di to be

Ψ−1
2 ◦ G|

D\G−1(D) ◦ Ψ1 .

Step 3. Glue.
Define at first F = f on Vi ∩ U. For each component Ê of Û not containing

a component of U, take a Jordan domain E with smooth boundary compactly

a new map that maps each sector homeomorphically onto D\[
1

2
, 1[, and agrees with z 7→ zqi elsewhere.

This gives a branched covering Ĝ from D̃ onto D with two critical points and two critical values. Use Ĝ
to pull back the standard complex structure of D turn D̃in a Riemann surface. Uniformize D̃ by a map
φ : D → D̃. Then G = Ĝ ◦ φ suites what we need.
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contained in Ê. Then F maps ∂Ê homeomorphically onto ∂V̂j for some j. Define
F to be a conformal map from E onto Vj by Riemann Mapping Theorem and F
extends homeomorphically from E onto V j .

Notice that the map F is defined everywhere except on a disjoint union of annular
domains, one in each component of Û. Furthermore F maps the two boundary
components of each such annular domain onto the boundary of V̂j\Vj for some j,
and is a covering of the same degree on each boundary component.

This shows that F admits an extension as a covering of these annular domains.
As all boundary curves are smooth and F is quasi-regular outside the annular do-
mains, the extension can be made quasi-regular as well.

Part II. We may now extend F to every V component intersecting U following
the same procedure as shown in Part I. Assume that Vi is a V-component disjoint
from U. We define F : Vi → W to be a conformal homeomorphism and we set
di = 1. We obtain a quasi-regular map F : V → W as an extension of f : U → V.
By construction, F is holomorphic on F−1(V).

Lemma 4.2. There is an integer d so that for the map g : z 7→ zd, the map
F has an extension on W\V so that F : W\V → g(W)\W is a quasi-regular
branched covering, coincides with g on ∂W and is continuous on W. In particular
F−1(W) = V and F is holomorphic on F−2(W) = F−1(V).

Proof. Set d =
∑q

i=1 di, where the di’s are defined in the proof of Lemma 4.1. See
Figure 2 for the proof of this lemma.

V1

V2

W

W

g(W)

F P

Ψ1

Ψ2

Figure 2

The domain V̂ is defined as in the proof of the previous lemma. Now take a
Jordan domain Ŵ with smooth boundary such that W ⊂⊂ Ŵ ⊂⊂ g(W).

Let
P (z) = (z − a1)

d1(z − a2)
d2 · · · (z − aq)

dq ,

where a1, a2, · · · , aq ∈ C are distinct points.
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Note that for each 1 ≤ i ≤ q, we have P (ai) = 0, and ai is a critical point of P
whenever di > 1.

Take r > 0 small enough and R > 0 large enough such that {0 < |z| ≤ r}∪{R ≤
z| < ∞} contains no critical value of P . Obviously P : P−1({r ≤ |z| ≤ R}) → {r ≤
|z| ≤ R} is a holomorphic proper map of degree d.

Note that P−1({|z| ≤ R} is a closed Jordan domain, and the set P−1({|z| ≤ r})
consists of q disjoint closed Jordan domains, each containing exactly one of the ai’s
in the interior.

There exist qc maps Φ1 : W → P−1({|z| ≤ R}), Φ2 : g(W) → {|z| ≤ R} such
that for i = 1, · · · , q, the set Φ1(V̂i) is equal to the component of P−1({|z| ≤ r})

containing ai, and Φ2(Ŵ) = {|z| ≤ r}, and that

P (Φ1(z)) = Φ2(g(z)), z ∈ ∂W.

Set F = Φ−1
2 ◦ P ◦ Φ1 on W\V̂.

Fix any i = 1, · · · , q. Both maps F : ∂V̂i → ∂Ŵ and F : ∂Vi → ∂W are
coverings of degree di. We may thus extend as before F to a qusiregular covering
map from V̂i\Vi onto Ŵ\W.

This ends the construction of F .

Proof of Theorem 2.2. Extend the map F in Lemma 4.2 to C by setting F = g on
C\W.

This F is quasi-regular, and is holomorphic on (C\W)∪F−2(W). So every orbit
passes at most twice the region W\F−2(W). By Surgery Principle (see Page 130
Lemma 15 in [Ah]), the map F is qc-conjugate to a polynomial h. The set KF can
be defined as for h and the two dynamical systems F |KF

and h|Kh
are topologically

conjugate.
Theorem 2.2 holds for the pair (h,Kh) (in place of (f,Kf ) ) by Sullivan’s no-

wandering-domain theorem. It follows that the result also holds for (F,KF ). But
Kf is an F -invariant subset of KF with every component of Kf being a component
of KF , and with F |Kf

= f |Kf
. So the theorem holds for the pair (f,Kf ).

5 Proof of Theorem 2.3 (a)

We just repeat the standard argument (see for example Appendix in [Mc2]).
Assume that f, f̃ are c-equivalent. Set U = U1, and Un = f−n(V). The same

objects gain a tilde for f̃ . For t ∈ [0, 1], let ht : V → Ṽ be an isotopy path linking
h0 to h1.

Then there is a unique continuous extension (t, z) 7→ h(t, z), [0,∞[×V → Ṽ such
that

0) each ht : z → h(t, z) is a homeomorphism,
1) ht|∂V∪P = h0|∂V∪P, ∀t ∈ [0,+∞[,
2) for n ≥ 1, t > n and x ∈ V\Un we have ht(x) = hn(x),
3) for t ∈ [0, 1] the following diagram commutes:
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...
...

U2
ht+2
−→ Ũ2

↓ f ↓ f̃

U1
ht+1
−→ Ũ1

↓ f ↓ f̃

V
ht−→ Ṽ.

Set then Ω =
⋃

n≥1 V\Un = V\Kf , and Ω̃ = Ṽ\Kf̃ . Then there is a qc

map H : Ω → Ω̃ such that H(x) = hn(x) for n ≥ 1 and x ∈ V\Un and that
H ◦ f |Ω∩U = f̃ ◦ H|Ω̃∩Ũ

, i.e. H realizes a qc-conjugacy from f to f̃ off Kf . The qc
constant of H is equal to C0, the qc constant of h1 on V\U.

6 Proof of Theorem 2.3 (b)

Main Proposition. Let f be a map as in the set-up. Assume that for every
critical component Kf (c), c ∈ Crit(f), satisfying that f l(Kf (c)) is a critical periodic
component of Kf for some l ≥ 1, there are a constant Mc and an integer Nc ≥ 0
such that for each n ≥ Nc, the map H|∂Pn(c) admits an Mc-qc extension inside
Pn(c), where Pn(c) is a puzzle piece of depth n containing c. Then f satisfies the
property (∗) stated in Theorem 2.1.

We will postpone the proof of Main Proposition in the next section. Here we
combine this proposition and Theorem 2.1 to give a proof of Theorem 2.3 (b).

Proof of Theorem 2.3 (b). Combining Main Proposition and Theorem 2.1, we have
a qc conjugacy off Kf admits a qc extension across Kf which is a conjugacy off
intKf .

7 Proof of Main Proposition

In this section, we always assume f is a map in the set-up with the assumption that
each V-component contains at most one critical point.

7.1 Reduction of Main Proposition

Definition 2. (1) For x, y ∈ Kf , we say that the forward orbit of x combinato-

rially accumulates to y, written as x → y, if for any n ≥ 0, there is j ≥ 1 such
that f j(x) ∈ Pn(y).

Clearly, if x → y and y → z, then x → z.
Let Forw(x) = {y ∈ Kf | x → y} for x ∈ Kf .
(2) Define an equivalence relation in Crit(f) as follows:

for c1, c2 ∈ Crit(f), c1 ∼ c2 ⇐⇒ c1 = c2, or c1 → c2 and c2 → c1.

Let [c] denote the equivalence class containing c for c ∈ Crit(f).
It is clear that [c] = {c} if c 6→ c.
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(3) We say that [c1] accumulates to [c2], written as [c1] → [c2], if

∃ c′1 ∈ [c1],∃ c′2 ∈ [c2] such that c′1 → c′2.

It is easy to check that if [c1] → [c2], then

∀ c′′1 ∈ [c1],∃ c′′2 ∈ [c2] such that c′′1 → c′′2.

It follows from this property that if [c1] → [c2], [c2] → [c3], then [c1] → [c3].
(4) Define D(f) := Crit(f)/ ∼. Define a partial order ≤ in D(f):

[c1] ≤ [c2] ⇐⇒ [c1] = [c2] or [c2] → [c1].

We can decompose the quotient D(f) as follows. Let D0(f) be the set of elements
in D(f) which are minimal in the partial order ≤, that is, [c] ∈ D0(f) if and only
if [c] doesn’t accumulate to any element in D(f)\{[c]}. For every k ≥ 0, assume
Dk(f) is defined, then Dk+1(f) is defined to be the set of elements in D(f) which
are minimal in the set D(f) \ (Dk(f) ∪ Dk−1(f) ∪ · · · ∪ D0(f)) in the partial order
≤.

For the construction above, we can prove the properties below.

Lemma 7.1. (P1) There is an integer M ≥ 0 such that D(f) =
⊔M

k=0 Dk(f).
(P2) For every k ≥ 0, given [c1], [c2] ∈ Dk(f), [c1] 6= [c2], we have [c1] 6→ [c2] and

[c2] 6→ [c1].
(P3) Let [c1] ∈ Ds(f), [c2] ∈ Dt(f) with s < t. Then [c1] 6→ [c2].
(P4) For every k ≥ 1, every [c] in Dk(f) accumulates to some element in

Dk−1(f).

Proof. (P1) holds because D(f) is a finite set and Di(f) ∩ Dj(f) = ∅ for i 6= j.
(P2) and (P3) follow directly from the minimal property of the elements in Dk(f)

for every 0 ≤ k ≤ M .
(P4) Let k = 1. If there is some element [c1] ∈ D1(f) such that it doesn’t

accumulate to any element in D0(f), then combining with (P2) and (P3), we have
[c1] doesn’t accumulate to any element in D(f)\{[c1]}. Consequently, [c1] ∈ D0(f).
But [c1] ∈ D1(f) and by (P1), D0(f) ∩ D1(f) = ∅. We get a contradiction. So any
element in D1(f) will accumulate to some element in D0(f).

Now we suppose k ≥ 2 and (P4) holds for D1(f),D2(f), · · · ,Dk−1(f). Assume
(P4) is not true for Dk(f), that is, there is some [ck] ∈ Dk(f) such that [ck] doesn’t
accumulate to any element in Dk−1(f).

If [ck] doesn’t accumulate to any element in ∪k−2
j=0Dj(f), then by (P2) and (P3),

we conclude that [ck] ∈ D0(f) which contradicts the condition that [ck] ∈ Dk(f)
and the fact that Dk(f) ∩ D0(f) = ∅ by (P1).

Let 0 ≤ i ≤ k − 2 be an integer satisfying that [ck] won’t accumulate to any
element in ∪k−1

j=i+1Dj(f) and [ck] accumulates to some element in Di(f). Then [ck]

won’t accumulate to any element in ∪M
j=i+1Dj(f)\{[ck]} and hence [ck] ∈ Di+1(f).

But notice that i + 1 ≤ k − 1 and [ck] ∈ Dk(f). A contradiction.

Combining with the transitive property stated in Definition 2 (3), we can con-
secutively apply (P3) above and prove the following.

Corollary 7.2. For every k ≥ 1, every [c] in Dk(f) accumulates to some element
in D0(f).

We will deduce Main Proposition from the following result.



13

Proposition 7.3. Assume that for every critical component Kf (c), c ∈ Crit(f),
satisfying that f l(Kf (c)) is a periodic critical component of Kf for some l ≥ 1,
there are a constant Mc and an integer Nc ≥ 0 such that for each n ≥ Nc, the map
H|∂Pn(c) admits an Mc-qc extension inside Pn(c), where Pn(c) is a puzzle piece of
depth n containing c. Then for every c ∈ [c0] and every integer n ≥ 1, there is a
puzzle piece Kn(c) containing c with the following properties.

(i) For every c ∈ [c0], the pieces {Kn(c)}n≥1 is a nested sequence.
(ii) For each n ≥ 1,

⋃
c∈[c0] Kn(c) is a nice set.

(iii) There is a constant M̃ = M̃([c0]), such that for each n ≥ 1 and each c ∈ [c0],
H|∂Kn(c) admits an M̃ -qc extension inside Kn(c).

We will postpone the proof of Proposition 7.3 to the next subsection. Here
we prove the following lemma and then use it and Proposition 7.3 to prove Main
Proposition.

Lemma 7.4. Let [c1] and [c2] be two distinct equivalence classes. Suppose that for
each i = 1, 2, Wi is a nice set consisting of finitely many puzzle pieces such that
each piece contains a point in [ci].

(1) If [c1] 6→ [c2] and [c2] 6→ [c1], then W1∪W2 is a nice set containing [c1]∪ [c2].
(2) Suppose [c2] 6→ [c1] and

min
P2 a comp. of W2

depth(P2) ≥ max
P1 a comp. of W1

depth(P1),

i.e., the minimal depth of the components of W2 is not less than the maximal depth
of those of W1. Then W1 ∪ W2 is nice.

Before proving this lemma, we need to give an assumption for simplicity. Notice
that given two critical points c, c′, if c 6→ c′, then there is some integer n(c, c′)
depending on c and c′ such that for all j ≥ 1, for all n ≥ n(c, c′), f j(c) 6∈ Pn(c′).
Since #Crit(f) < ∞, we can take n0 = max{n(c, c′) | c, c′ ∈ Crit(f)}. Without loss
of generality, we may assume that n0 = 0, that is to say we assume that

(∗∗) for any two critical points c, c′, for all j ≥ 1, f j(c) 6∈ P0(c
′) if c 6→ c′.

In the following paragraphs until the end of this article, we always assume (∗∗)
holds.

Proof of Lemma 7.4. (1) According to Definition 2 (3) and the assumption (∗∗), we
know that

[c1] 6→ [c2] ⇐⇒ ∀c′1 ∈ [c1],∀c′2 ∈ [c2], c
′
1 6→ c′2

⇐⇒ ∀c′1 ∈ [c1],∀c′2 ∈ [c2],∀n ≥ 0,∀j ≥ 0, f j(c′1) 6∈ Pn(c′2)

⇐⇒ ∀ a puzzle piece P ∋ c′1,∀n ≥ 0,∀j ≥ 0, f j(P ) ∩ Pn(c′2) = ∅.

In particular, for any c′1 ∈ [c1], any c′2 ∈ [c2], for the component P1 of W1 containing
c′1 and the component P2 of W2 containing c′2, for any j ≥ 0, f j(P1) ∩ P2 = ∅. It is
equivalent to say that for any component P of W1, for any j ≥ 0, f j(P ) ∩ W2 = ∅.

Similarly, from the condition that [c2] 6→ [c1], we can conclude that for any
component Q of W2, for any j ≥ 0, f j(Q) ∩ W1 = ∅. Hence W1 ∪ W2 is a nice set.

(2) On one hand, from the proof of (1), we know that [c2] 6→ [c1] implies that
for any component Q of W2, for any j ≥ 0, f j(Q) ∩ W1 = ∅.
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On the other hand, for any component P of W1, for any j ≥ 0, we have

depth(f j(P )) = depth(P ) − j

≤ max
P1 a comp. of W1

depth(P1) − j

≤ min
P2 a comp. of W2

depth(P2)

and then f j(P ) can not be strictly contained in W2.
Hence W1 ∪ W2 is nice.

Now we can derive Main Proposition from Proposition 7.3.

Proof of Main Proposition. (i) follows immediately from Proposition 7.3 (i).
(ii) For every [c̃] ∈ D(f) and every ĉ ∈ [c̃], let {Kn(ĉ)}n≥1 be the puzzle pieces

obtained in Proposition 7.3.
Given [c0] ∈ Dk(f), 0 ≤ k < M , let Ak([c0]) = {[c] ∈ Dk+1(f) | [c] → [c0]}.

Clearly, #Ak([c0]) < ∞.
Recall that D(f) = ⊔M

i=0Di(f). For every [c0] ∈ DM (f), set Qn(c) = Kn(c) for
each c ∈ [c0].

Now consider [c0] ∈ DM−1(f).
If AM−1([c0]) = ∅, then set Qn(c) = Kn(c) for each c ∈ [c0].
Otherwise, there exists a subsequence {ln}n≥1 of {n} such that

min
c′∈[c0]

depth(Kln(c′)) ≥ max
[c′]∈AM−1([c0])

depth(Qn(c′))

because minc′∈[c0] depth(Kn(c′)) increasingly tends to the infinity as n → ∞.
We repeat this process consecutively to DM−2(f), · · · ,D0(f) and then all Qn(c)

are defined. Combining the properties (P2), (P3) stated in Lemma 7.1 and Lemma
7.4, we easily conclude that ∪c∈Crit(f)Qn(c) is a nice set for every n ≥ 1.

(iii) Since #D(f) < ∞, we can take the constant C̃ = max{M̃([c̃]) | [c̃] ∈
D(f)}.

7.2 Proof of Proposition 7.3

First, we need to introduce a classification of the set Crit(f) and several preliminary
results.

Definition 3. (i) Suppose c → c. For c1, c2 ∈ [c], we say that Pn+k(c1) is a child of
Pn(c2) if fk(Pn+k(c1)) = Pn(c2) and fk−1 : Pn+k−1(f(c1)) → Pn(c2) is conformal.

c is called persistently recurrent if for every n ≥ 0, every c′ ∈ [c], Pn(c′) has
finitely many children. Otherwise, c is said to be reluctantly recurrent.

It is easy to check that if c is persistently recurrent, then so is every c′ ∈ [c] and
this is also true for a reluctantly recurrent c.

(ii) Let

Critn(f) = {c ∈ Crit(f) | c 6→ c′ for any c′ ∈ Crit(f)},

Crite(f) = {c ∈ Crit(f) | c 6→ c and ∃ c′ ∈ Crit(f) such that c → c′},

Critr(f) = {c ∈ Crit(f) | c → c and c is reluctantly recurrent},

Critp(f) = {c ∈ Crit(f) | c → c and c is persistently recurrent}.

Then Crit(f) = Critn(f)⊔Crite(f)⊔Critr(f)⊔Critp(f) is a classification of Crit(f).
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In this section, we will use sometimes the combinatorial tool – the tableau defined
by Branner-Hubbard in [BH]. The reader can also refer to [QY] and [PQRTY] for
the definition of the tableau.

For x ∈ Kf , the tableau T (x) is the graph embedded in {(u, v) | u ∈ R
−, v ∈ R}

with the axis of u pointing upwards and the axis of v pointing rightwards (this is
the standard R

2 with reversed orientation), with vertices indexed by −N×N, where
N = {0, 1, · · · }, with the vertex at (−m, 0) being Pm(x), the puzzle piece of depth
m containing x, and with f j(Pm(x)) occupying the (−m + j, j)th entry of T (x).
The vertex at (−m + j, j) is called critical if f j(Pm(x)) contains a critical point. If
f j(Pm(x)) contains some y ∈ Kf , we call the vertex at (−m + j, j) is a y-vertex.

All tableau satisfy the following three basic rules (see [BH], [QY], [PQRTY]).
(Rule 1). In T (x) for x ∈ Kf , if the vertex at (−m,n) is a y-vertex, then so is

the vertex at (−i, n) for every 0 ≤ i ≤ m.
(Rule 2). In T (x) for x ∈ Kf , if the vertex at (−m,n) is a y-vertex, then for

every 0 ≤ i ≤ m, the vertex at (−m + i, n + i) is a vertex being P−m+i(f
i(y)).

(Rule 3) (See Figure 3). Given x1, x2 ∈ Kf . Suppose there exist integers m0 ≥
1, n0 ≥ 0, i0 ≥ 1, n1 ≥ 1 and critical points c1, c2 with the following properties.

(i) In T (x1), the vertex at (−(m0+1), n0) is a c1-vertex and (−(m0+1−i0), n0+
i0) is a c2-vertex.

(ii) In T (x2), the vertex at (−m0, n1) is a c1-vertex and (−(m0 + 1), n1) is not
critical.

If in T (x1), for every 0 < i < i0, the vertex at (−(m0 − i), n0 + i) is not critical,
then in T (x2), the vertex at (−(m0 + 1 − i0), n1 + i0) is not critical.

T (x1) : n0 n0 + i0

−(m0 − i0)

−(m0 + 1 − i0)

−m0

−(m0 + 1)

T (x2) : n1 n1 + i0

−(m0 − i0)

−(m0 + 1 − i0)

−m0

−(m0 + 1)c1

c2

c1

c2

Figure 3

Recall that in subsection 7.1, we make the assumption (∗∗). Here, we translate
that assumption in the language of the tableau. It is equivalent to assume that for
c, c′ ∈ Crit(f), c′-vertex appears in T (c) iff c′ ∈ Forw(c).

Lemma 7.5. 1. Let Kf (c) be a periodic component of Kf with period p. Then the
following properties hold.

(1) f i(Kf (c′)) ∈ {Kf (c), f(Kf (c)), · · · , fp−1(Kf (c))}, ∀c′ ∈ Forw(c), ∀i ≥ 0.
(2) Forw(c) = [c].
(3) c ∈ Critp(f).
2. Let c ∈ Critp(f) with Kf (c) non-periodic. Then the following properties hold.
(1) Forw(c) = [c].
(2) For every c′ ∈ [c], c′ ∈ Critp(f) with Kf (c′) non-periodic.
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Proof. 1. Notice that Kf (c) is periodic iff there is a column in T (c)\{0-th column}
such that every vertex on that column is a c-vertex. According to this and using
the tableau rules, it is easy to check that the statements in Point 1 are true.

2. (1) This property is the same as Lemma 1 in [QY]. For self-containedness,
we introduce the proof here.

Assume there is some c′ ∈ Crit(f) with c → c′ but c′ 6→ c. In the following, all
the vertices we discuss are in T (c). One may refer to Figure 4 for the proof.

T (c) : 0 mi ni + mi ni + mi + ti

−ti

−ni

−(ni + ti)

c1(i) ∈ W1(i) ∩ [c]

c′ /∈ [c]

c2(i) ∈ [c]

Figure 4

If there exists a column such that every vertex on it is a c′-vertex, then c′ → c
because c → c. Hence there are infinitely many c′-vertices {(−ni,mi)}i≥1 such that
(−(ni + 1),mi) is not critical and limi→∞ ni = ∞.

By the tableau rule (Rule 2) and the assumption (∗∗), we can see that there
are no vertices being critical points in [c] on the diagonal starting from the vertex
(−ni,mi) and ending at the 0-th row. Since c → c, from the vertex (0, ni + mi),
one can march horizontally ti ≥ 1 steps to the right until the first hit of some
c2(i)-vertex in [c]. Then by (Rule 1), there are no vertices being critical points in
[c] on the diagonal from the vertex (−ti, ni + mi) to the vertex (0, ni + mi + ti).
Therefore, there are no vertices being critical points in [c] on the diagonal from the
vertex (−(ni + ti),mi) to the vertex (0, ni + mi + ti), denote this diagonal by I.

If there exists a point c̃ ∈ Forw(c)\[c] on the diagonal I, then by the assumption
(∗∗), every vertex, particularly the end vertex (0, ni + mi + ti) of I, can’t be a
ĉ-vertex for any ĉ ∈ [c]. This contradicts the choice that the vertex (0, ni + mi + ti)
is a c2(i)-vertex for c2(i) ∈ [c].

Consequently, there are no critical points in Forw(c) on the diagonal I. Com-
bining with the assumption (∗∗), we know that there are no critical points on the
diagonal I.

Follow the diagonal from the vertex (−(ni + ti),mi) left downwards until we
reach a critical vertex W1(i) (such W1(i) exists since the 0-th column vertex on that
diagonal is critical). Let c1(i) be the critical point in W1(i). Then c1(i) ∈ [c] follows
from the fact that (0, ni +mi +ti) is a c2(i)-vertex for c2(i) ∈ [c] and the assumption
(∗∗)
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Therefore, W1(i) is a child of P0(c2(i)). Notice that the depth of W1(i) is greater
than ni. As c2(i) lives in the finite set [c] and ni → ∞ when i → ∞, some point in
[c] must have infinitely many children. This is a contradiction with the condition
that c ∈ Critp(f).

(2) follows directly from Point 1 (1) and Point 1 (2).

Set
Critper(f) = {c ∈ Critp(f) | Kf (c) is periodic}.

Lemma 7.6. (i) If c ∈ Critn(f) ∪ Critp(f), then [c] ∈ D0(f); if c ∈ Crite(f), then
[c] 6∈ D0(f).

(ii) For every c0 ∈ Crit(f), one of the following cases will occur.
Case 1. Forw(c0) ∩ (Critn(f) ∪ Critr(f)) 6= ∅.
Case 2. Forw(c0) ⊂ Critp(f).
Case 3. For any c ∈ Forw(c0), either c ∈ Critp(f) or, c ∈ Crite(f) and Forw(c)
contains a critical point in Critp(f), and the latter c always exists.

Proof. (i) By the definitions of Critn(f) and Crite(f), we easily see that if c ∈
Critn(f), [c] = {c} ∈ D0(f) and if c ∈ Crite(f), [c] = {c} 6∈ D0(f). If c ∈ Critp(f),
then by the previous lemma, we know that Forw(c) = [c] and then [c] ∈ D0(f).

(ii) Suppose that Case 1 and Case 2 do not happen. Let c ∈ Forw(c0) with
c /∈ Critp(f). Notice that Crit(f) = Critn(f) ∪ Critr(f) ∪ Critp(f) ∪ Crite(f). So
c ∈ Crite(f) and then by (i), [c] ∈ Dk(f) for some k ≥ 1. It follows from Corollary
7.2 that [c] = {c} accumulates to some element [c̃] ∈ D0(f).

Since Case 1 does not happen, we conclude that for every [ĉ] ∈ D0(f) with [c0] →
[ĉ], every point in [ĉ] belongs to Critp(f). Note that [c0] → [c] → [c̃] and [c̃] ∈ D0(f).
Hence every point in [c̃] belongs to Critp(f), particularly, c̃ ∈ Critp(f).

Recall that in section 3, for an open set X consisting of finitely many puzzle
pieces, we define the set D(X) and Lz(X) for z ∈ D(X)\X. The following is a
property about Lz(X) when X consists of a single piece.

Lemma 7.7. Let P be a puzzle piece and the set {x1, · · · , xm} ⊂ V be a finite set
of points with each xi ∈ D(P )\P for 1 ≤ i ≤ m. Let fki(Lxi

(P )) = P for some
ki ≥ 1. Then
(1) for every 1 ≤ i ≤ m, every 0 ≤ j < ki, either

f j(Lxi
(P )) = Lxs(P ) for some 1 ≤ s ≤ m,

or
f j(Lxi

(P )) ∩ Lxt(P ) = ∅ for all 1 ≤ t ≤ m;

(2) ∪m
i=1Lxi

(P )
⋃

P is a nice set.

Proof. (1) (by contradiction). Assume that there are integers 1 ≤ i0 ≤ m, 0 ≤ j0 <
ki0 , and there is some Lxi1

(P ) for 1 ≤ i1 ≤ m, such that

f j0(Lxi0
(P )) 6= Lxi1

(P ) and f j0(Lxi0
(P )) ∩ Lxi1

(P ) 6= ∅.

Then either f j0(Lxi0
(P )) ⊂⊂ Lxi1

(P ) or f j0(Lxi0
(P )) ⊃⊃ Lxi1

(P ).

We may assume f j0(Lxi0
(P )) ⊂⊂ Lxi1

(P ). The proof of the other case is similar
to this case.

On one hand , since fki0
−j0 : f j0(Lxi0

(P )) → P and fki1 : Lxi1
(P ) → P , we

have ki0 − j0 > ki1 .
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On the other hand, we know that ki0 −j0 is the first landing time of the points in
f j0(Lxi0

(P )) to P because f j0(Lxi0
(P )) = Lfj0 (xi0

)(P ) by Corollary 3.2 (3), while

from the assumption that f j0(Lxi0
(P )) ⊂⊂ Lxi1

(P ), we have ki1 is also the first

landing time of the points in f j0(Lxi0
(P )) to P . So ki0 − j0 = ki1 . A contradiction.

(2) For any q ≥ 1 (as long as depth(f q(P )) ≥ 0),

depth(f q(P )) < depth(P ) < depth(Lxs(P ))

for every 1 ≤ s ≤ m. So f q(P ) can not be strictly contained in ∪m
i=1Lxi

(P ) for all
q ≥ 1.

Fix 1 ≤ i ≤ m. For 1 ≤ j < ki, by (1), we know that f j(Lxi
(P )) is not strictly

contained in ∪m
i=1Lxi

(P ). Since P is a single puzzle piece and then it is nice, by
Lemma 3.1 (2), we have f j(Lxi

(P )) ∩ P = ∅. When j ≥ ki, notice that as long as
depth(f j(Lxi

(P ))) ≥ 0, we have

depth(f j(Lxi
(P ))) ≤ depth(P ) < depth(Lxs(P ))

for every 1 ≤ s ≤ m which implies that f j(Lxi
(P )) is not strictly contained in

∪m
i=1Lxi

(P )
⋃

P .

Lemma 7.8. Let Q,Q′, P, P ′ be puzzle pieces with the following properties.
(a) Q ⊂⊂ Q′, c0 ∈ P ⊂⊂ P ′ for c0 ∈ Crit(f).
(b) There is an integer l ≥ 1 such that f l(Q) = P, f l(Q′) = P ′.
(c) (P ′\P ) ∩ (∪c∈Forw(c0) ∪n≥0 {f

n(c)}) = ∅.
Then for all 0 ≤ i ≤ l, (f i(Q′)\f i(Q)) ∩ Forw(c0) = ∅.

Proof. If f l−1(Q′)\f l−1(Q) contains some c ∈ Forw(c0), notice that f(f l−1(Q)) = P
and deg(f : f l−1(Q′) → P ′) = degc(f), then f(c) ∈ P ′\P . It contradicts the
condition (c).

For the case l = 1, the lemma holds.
Now assume that l ≥ 2.
We first prove that (f l−2(Q′)\f l−2(Q)) ∩ Forw(c0) = ∅.
If (f l−1(Q′)\f l−1(Q)) ∩ (Crit(f)\Forw(c0)) = ∅, then

f : f l−1(Q′)\f l−1(Q) → P ′\P.

If f l−2(Q′)\f l−2(Q) contains some c′ ∈ Forw(c0), notice that f(f l−2(Q)) = f l−1(Q)
and deg(f : f l−2(Q′) → f l−1(Q′)) = degc′(f), so f(c′) ∈ f l−1(Q′)\f l−1(Q) and then
f2(c′) ∈ P ′\P which contradicts the condition (c). Hence under the assumption
that (f l−1(Q′)\f l−1(Q)) ∩ (Crit(f)\Forw(c0)) = ∅, we come to the conclusion that
(f l−2(Q′)\f l−2(Q)) ∩ Forw(c0) = ∅.

Otherwise, f l−1(Q′)\f l−1(Q) contains some c1 ∈ Crit(f)\Forw(c0). Since c1 6∈
Forw(c0), c1 6∈ Forw(c) for any c ∈ Forw(c0). By the assumption (∗∗), we conclude
that (f l−2(Q′)\f l−2(Q)) ∩ Forw(c0) = ∅.

Continue the similar argument as above, we could prove the lemma for all 0 ≤
i ≤ l − 3.

The analytic method we will use to prove Proposition 7.3 is the following lemma
on covering maps of the unit disk.

Lemma 7.9. (see [AKLS] Lemma 3.2)
For every integer d ≥ 2 and every 0 < ρ < r < 1 there exists L0 = L0(ρ, r, d)

with the following property. Let g, g̃ : (D, 0) → (D, 0) be holomorphic proper maps
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of degree at most d, with critical values contained in Dρ. Let η, η′ : T → T be
two homeomorphisms satisfying g̃ ◦ η′ = η ◦ g, where T denotes the unit circle.
Assume that η admits an L-qc extension ξ : D → D which is the identity on Dr.
Then η′ admits an L′-qc extension ξ′ : D → D which is the identity on Dr, where
L′ = max{L,L0}.

In the following, we will discuss Critper(f),Critp(f),Critn(f) ∪ Critr(f) and
Crite(f) successively.

For any c ∈ Critper(f), by the condition of Proposition 7.3, there are a constant
Mc and an integer Nc such that the map H extends to an Mc-qc extension inside
Pn(c) for all n ≥ Nc.

The following lemma can be easily proved by Lemma 7.7.

Lemma 7.10. Given a point c0 ∈ Critper(f) and set N := max{Nc, c ∈ [c0]}. Let
Kn(c0) = Pn+N (c0) and for every c ∈ [c0]\{c0}, let Kn(c) = Pn+N+lc(c), where lc
is the smallest positive integer such that f lc(Kf (c)) = Kf (c0). Then ∪c∈[c0]Kn(c)
is nice for every n ≥ 1.

Set
b = #Crit(f) and δ = max

c∈Crit(f)
degc(f) (2)

and orbf ([c0]) =
⋃

n≥0

⋃
c∈[c0]{f

n(c)} for c0 ∈ Crit(f).
The following theorem is proved in [PQRTY].

Theorem 7.11. Given a critical point c0 ∈ Critp(f)\Critper(f). There are two
constants S and ∆0 > 0, depending on b, δ and µ̂ (see below), and a nested sequence
of critical puzzle pieces Kn(c0) ⊂⊂ Kn−1(c0), n ≥ 1, with K0(c0) to be the critical
puzzle piece of depth 0, satisfying

(i) each Kn(c0), n ≥ 1, is a pullback of Kn−1(c0), that is fpn(Kn(c0)) =
Kn−1(c0) for some pn ≥ 1, and deg(fpn : Kn(c0) → Kn−1(c0)) ≤ S,

(ii) each Kn(c0), n ≥ 1, contains a sub-critical piece K−
n (c0) such that

mod(Kn(c0)\K
−
n (c0)) ≥ ∆0 and (Kn(c0)\K

−
n (c0)) ∩ orbf ([c0]) = ∅.

Here

µ̂ = min{mod(P0(c0)\W ) | W a component of U contained in P0(c0)}. (3)

Lemma 7.12. Given a critical point c0 ∈ Critp(f)\Critper(f). Let (Kn(c0),K
−
n (c0))n≥1

be the sequence of pairs of critical puzzle pieces constructed in Theorem 7.11. For
c ∈ [c0]\{c0}, let Kn(c) := Lc(Kn(c0)). Then

(1) for every c ∈ [c0] and every n ≥ 1, H|∂Kn(c) admits a qc extension inside
Kn(c) with the maximal dilatation independent of n;

(2) for each n ≥ 1, ∪c∈[c0]Kn(c) is nice.

Proof. (1) We first prove that H|∂Kn(c0) admits an L′-qc extension inside Kn(c0)
where L′ is independent of n. This part is similar to the proof of Proposition 3.1 in
[PT].

Since H preserves the degree information, the puzzle piece bounded by H(∂Kn(c0))
(resp. H(∂K−

n (c0))) is a critical piece for f̃ , denote it by K̃n(c̃0) (resp. H(∂K̃−
n (c̃0))),

c̃0 ∈ Crit(f̃).
Notice that H|∂K1(c0) has a qc extension on a neighborhood of ∂K1(c0). It

extends thus to an L1-qc map K1(c0) → K̃1(c̃0), for some L1 ≥ 1 (see e.g. [CT],
Lemma C.1).
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In the construction of the sequence in Theorem 7.11, the operators Γ,A,B are
used. As they can be read off from the dynamical degree on the boundary of the
puzzle pieces, and H preserves this degree information, Theorem 7.11 is valid for
the pair of sequences (K̃n(c̃0), K̃

−
n (c̃0))n≥1 as well, with the same constant S, and

probably a different ∆̃0 as a lower bound for mod(K̃n(c̃0)\K̃
−
n (c̃0)).

Recall that for each i ≥ 1, pi denotes the integer such that fpi(Ki(c0)) =
Ki−1(c0). We have f̃pi(K̃i(c̃0)) = K̃i−1(c̃0), and fpi : Ki(c0) → Ki−1(c0) and
f̃pi : K̃i(c̃0) → K̃i−1(c̃0) are proper holomorphic maps of degree S.

Fix now n ≥ 1.
Set vn = c0, and then, for i = n − 1, n − 2, · · · , 1, set consecutively vi =

fpi+1+...+pn(c0).
Since (Ki(c0)\K

−
i (c0)) ∩ orbf ([c0]) = ∅, all the critical values of fpi+1 |Ki+1(c0),

as well as vi, are contained in K−
i (c0), 1 ≤ i ≤ n − 1.

Let ψi : (Ki(c0), vi) → (D, 0) be a bi-holomorphic uniformization, i = 1, · · · , n.
For i = 2, · · · , n, let gi = ψi−1 ◦ fpi ◦ ψ−1

i . These maps fix the point 0, are
proper holomorphic maps of degree at most S, with the critical values contained in
ψi−1(K

−
i−1(c0)).

Let ψi(K
−
i (c0)) = Ωi. Since mod(D \ Ωi) = mod(Ki(c0))\K

−
i (c0)) ≥ ∆0 > 0

and Ωi ∋ ψi(vi) = 0, 1 ≤ i ≤ n, these domains are contained in some disk Ds with
s = s(∆0) < 1. So the critical values of gi are contained in Ωi−1 ⊂ Ds, 2 ≤ i ≤ n.

The corresponding objects for f̃ will be marked with tilde. The same assertions
hold for g̃i. Then all the maps gi and g̃i satisfy the assumptions of Lemma 7.9, with
d ≤ S, and ρ = max{s, s̃}.

(D, 0)
ψn
←− (Kn(c0), vn) (K̃n(c̃0), ṽn)

ψ̃n
−→ (D, 0)

gn ↓ ↓ fpn f̃pn ↓ ↓ g̃n

(D, 0)
ψn−1
←− (Kn−1(c0), vn−1) (K̃n−1(c̃0), ṽn−1)

ψ̃n−1
−→ (D, 0)

gn−1 ↓ ↓ fpn−1 f̃pn−1 ↓ ↓ g̃n−1
...

...
...

...

g3 ↓ ↓ fp3 f̃p3 ↓ ↓ g̃3

(D, 0)
ψ2
←− (K2(c0), v2) (K̃2(c̃0), ṽ2)

ψ̃2
−→ (D, 0)

g2 ↓ ↓ fp2 f̃p2 ↓ ↓ g̃2

(D, 0)
ψ1
←− (K1(c0), v1) (K̃1(c̃0), ṽ1)

ψ̃1
−→ (D, 0)

Note that each of ψi, ψ̃i extends to a homeomorphism from the closure of the
puzzle piece to D.

Let us consider homeomorphisms ηi : T → T given by ηi = ψ̃i ◦ H|∂Ki(c0) ◦ ψ−1
i .

They are equivariant with respect to the g-actions, i.e., ηi−1 ◦ gi = g̃i ◦ ηi.
Due to the qc extension of H|∂K1(c0), we know that η1 extends to an L1-qc map

D → D. Then η1 is a L1-quasisymmetric map. Fix some r with ρ < r < 1. We
conclude that η1 extends to an L-qc map ξ1 : D → D which is the identity on Dr,
where L depends on L1, ρ and r.

Let L0 = L0(ρ, r, S) be as in Lemma 7.9, and let L′ = max{L,L0}. For i =
2, 3, · · · , n, apply consecutively Lemma 7.9 to the following left diagram (from below



21

to top):

T
ηn
−→ T

gn ↓ ↓ g̃n

T
ηn−1
−→ T

gn−1 ↓ ↓ g̃n−1
...

...

T
η2
−→ T

g2 ↓ ↓ g̃2

T
η1
−→ T

, we get

(D, 0)
ξn
−→ (D, 0)

gn ↓ ↓ g̃n

(D, 0)
ξn−1
−→ (D, 0)

gn−1 ↓ ↓ g̃n−1
...

...

(D, 0)
ξ2
−→ (D, 0)

g2 ↓ ↓ g̃2

(D, 0)
ξ1
−→ (D, 0)

so that for i = 2, . . . , n, the map ηi admits an L′-qc extension ξi : D → D which is
the identity on Dr. The desired extension of H|∂Kn(c0) inside Kn(c0) is now obtained

by taking ψ̃−1
n ◦ ξn ◦ ψn.

Now we show that for c ∈ [c0]\{c0}, for each n ≥ 1, H|∂Kn(c) admits an L̃′-qc

extension inside Kn(c) with the constant L̃′ independent of n.
Fix n ≥ 1.
Let f qn(Kn(c)) = Kn(c0). Since Kn(c0))\K

−
n (c0)∩orbf ([c0]) = ∅, all the critical

values of f qn |Kn(c) are contained in K−
n (c0).

Let ϕn : (Kn(c0), f
qn(c)) → (D, 0) and λn : (Kn(c), c) → (D, 0) be bi-holomorphic

uniformizations. Set πn = ϕn◦f qn◦λ−1
n . This map fixes the point 0, are proper holo-

morphic maps of degree at most δb, with the critical values contained in ϕn(K−
n (c0)).

Since

mod(D \ ϕn(K−
n (c0))) = mod(Kn(c0)\K

−
n (c0)) ≥ ∆0 > 0

and ϕn(f qn(c)) = 0 belongs to ϕn(K−
n (c0)), the set ϕn(K−

n (c0)) is contained in the
disk Ds (here s is exactly the number defined for the case of c0 in this proof). So
the critical values of πn are contained in ϕn(K−

n (c0)) ⊂ Ds.

(D, 0)
λn←− (Kn(c), c) (K̃n(c̃), c̃)

λ̃n−→ (D, 0)

πn ↓ ↓ f qn f̃ qn ↓ ↓ π̃n

(D, 0)
ϕn
←− (Kn(c0), f

qn(c)) (K̃n(c̃0), f̃
qn(c̃))

ϕ̃n
−→ (D, 0)

Let K̃n(c̃), c̃ ∈ Crit(f̃) be the puzzle piece bounded by H(∂Kn(c)). The corre-
sponding objects for f̃ will be marked with tilde. The same assertions hold for π̃n.
Then all the maps πn and π̃n satisfy the assumptions of Lemma 7.9, with d ≤ δb,
and ρ = max{s, s̃}.

Note that each of ϕn, ϕ̃n, λn, λ̃n extends to a homeomorphism from the closure
of the puzzle piece to D.

Let us consider homeomorphisms αn : T → T and βn : T → T given by αn =
ϕ̃n ◦ H|∂Kn(c0) ◦ ϕ−1

n and βn = λ̃n ◦ H|∂Kn(c) ◦ λ−1
n . Then βn ◦ πn = πn ◦ αn.

Due to the L′-qc extension of H|∂Kn(c0), we know that αn extends to an L′-qc
map D → D. We still fix the number r with ρ < r < 1. We can extend αn to be an
L̃-qc map µn : D → D which is the identity on Dr, where L̃ depends on L′, ρ and r.
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Let L̃0 = L̃0(ρ, r, δb) be as in Lemma 7.9, and let L̃′ = max{L̃, L̃0}. We apply
Lemma 7.9 to the following left diagram:

T
βn
−→ T

πn ↓ ↓ π̃n

T
αn−→ T

, we get

(D, 0)
νn−→ (D, 0)

πn ↓ ↓ π̃n

(D, 0)
µn
−→ (D, 0)

so that the map βn admits an L̃′-qc extension νn : D → D which is the identity on Dr.
The desired extension of H|∂Kn(c) inside Kn(c) is obtained by taking λ̃−1

n ◦ νn ◦ λn.
(2) The set ∪c∈[c0]Kn(c) is nice follows directly from Lemma 7.7.

Lemma 7.13. Given c0 ∈ Critn(f) ∪ Critr(f). Then there exist a puzzle piece P
of depth n0, a topological disk T ⊂⊂ P , and a nested sequence of puzzle pieces
containing c, denoted by {Kn(c)}n≥1, for each c ∈ Crit(f) with c = c0 or c → c0,
satisfying the following properties.

(1) Every Kn(c) is a pullback of P , that is fsn(Kn(c)) = P for some sn ≥ 1,
deg(fsn : Kn(c) → P ) ≤ δb+1, and all critical values of the map fsn : Kn(c) → P
are contained in T .

(2) H|∂Kn(c) admits a qc extension inside Kn(c) with the maximal dilatation
independent of n.

(3) For every n ≥ 1,
⋃

c∈[c0] Kn(c) is a nice set.

Proof. (1) Suppose c0 ∈ Critn(f) and then [c0] = {c0}. In T (c0)\{0-th column},
every vertex is non-critical. So for each n ≥ 1,

deg(fn : Pn(c0) → P0(f
n(c0))) = degc0

(f) ≤ δ.

Since there are finitely many puzzle pieces of the same depth, we can take a subse-
quence {un}n≥1 such that fun(Pun(c0)) = P for some fixed puzzle piece P of depth
0.

Given c → c0, c ∈ Crit(f), let fvn(Lc(Pun(c0)) = Pun(c0). Then

deg(fvn+un : Lc(Pun(c0)) → P )

= deg(fvn : Lc(Pun(c0)) → Pun(c0)) · deg(fun : Pun(c0) → P )

≤ δb · δ

For c0 ∈ Crit(f), we set Kn(c0) = Pun(c0) and sn = un. For c → c0, c ∈ Crit(f),
set Kn(c) = Lc(Pun(c0)) and sn = vn + un.

Now suppose c0 ∈ Critr(f) and c → c0, c ∈ Crit(f). Since T (c0) is reluctantly
recurrent, there exist an integer n0 ≥ 0, c1, c2 ∈ [c0] and infinitely many integers ln ≥
1 such that {Pn0+ln(c2)}n≥1 are children of Pn0(c1) and then deg(f ln : Pn0+ln(c2) →
Pn0(c1)) = degc2

(f) ≤ δ. Suppose fkn(Lc(Pn0+ln(c2))) = Pn0+ln(c2) for kn ≥ 1.
Then

deg(f ln+kn : Pn0+ln+kn
(c) → Pn0(c1))

= deg(fkn : Lc(Pn0+ln(c2)) → Pn0+ln(c2)) · deg(f ln : Pn0+ln(c2) → Pn0(c1))

≤ δb · δ.

Take a strictly increasing subsequence of ln, still denoted by ln such that {Pn0+ln(c2)}n≥1

is a nested sequence of puzzle pieces containing c2 and then {Pn0+ln+kn
(c)}n≥1 is a
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nested sequence of puzzle pieces containing c. Set P = Pn0(c1). For c = c2, set sn =
ln and Kn(c) = Pn0+ln(c); for c 6= c2, set sn = kn + ln and Kn(c) = Pn0+kn+ln(c).

Now fix c0 ∈ Critn(f) ∪ Critr(f). Take a topological disk T ⊂⊂ P such that T
contains all the puzzle pieces of depth n0+1. For each c = c0 or c → c0, c ∈ Crit(f),
each n ≥ 1, all critical values of fsn |Kn(c) are contained in the union of puzzle pieces
of depth n0 + 1 because Crit(f) ⊂ Kf and f(Kf ) = Kf . Consequently, the set T
contains all the critical values of the map fsn |Kn(c).

(2) We will use Lemma 7.9 to construct the qc extension.
Fix c = c0 or c → c0 and n ≥ 1.
Let P̃ and K̃n(c̃) be the puzzle pieces for f̃ bounded by H(∂P ) and H(∂Kn(c))

respectively. Since H preserves the degree information, for the map f̃ , we also have
the similar statement as for f in (1), more precisely, f̃sn(K̃n(c̃)) = P̃ , deg(f̃sn :
K̃n(c̃) → P̃ ) ≤ δb+1, and all critical values of the map f̃sn : K̃n(c̃) → P̃ are
contained in T̃ , where T̃ is a topological disk in P̃ containing all puzzle pieces for f̃
of depth n0 + 1 in P̃ .

Let mod(P\T ) = ∆1 and mod(P̃\T̃ ) = ∆̃1.
Let ιn : (P, fsn(c)) → (D, 0) and θn : (Kn(c), c) → (D, 0) be bi-holomorphic

uniformizations. Let hn = ιn ◦ fsn ◦ θ−1
n . Then hn fixes the point 0, is a proper

holomorphic map of degree at most δb+1, with all the critical values contained in
ιn(T ).

Since mod(D \ ιn(T )) = mod(P\T ) = ∆1 > 0 and ιn(T ) ∋ ιn(fsn(c)) = 0, we
have ιn(T ) ⊂ Dt with t = t(∆1) < 1. So the critical values of hn are contained in
ιn(T ) ⊂ Dt.

The corresponding objects for f̃ will be marked with tilde. The same assertions
hold for h̃n. Then the maps hn and h̃n satisfy the assumptions of Lemma 7.9, with
d ≤ δb+1, and ρ = max{t, t̃}.

(D, 0)
θn←− (Kn(c), c) (K̃n(c̃), c̃)

θ̃n−→ (D, 0)

hn ↓ ↓ fsn f̃sn ↓ ↓ h̃n

(D, 0)
ιn←− (P, fsn(c)) (P̃ , f̃sn(c̃))

ι̃n−→ (D, 0)

Note that each of ιn, ι̃n, θn, θ̃n extends to a homeomorphism from the closure of
the puzzle piece to D.

Let us consider homeomorphisms κn : T → T and σn : T → T given by κn =
ι̃n ◦ H|∂P ◦ ι−1

n and σn = θ̃n ◦ H|∂Kn(c) ◦ θ−1
n respectively. Then κn ◦ hn = h̃n ◦ σn.

Notice that H|∂P has a K1-qc extension in P for some K1 ≥ 1. The number K1

is independent of n because the choice of P does not depend on n. Fix some r with
ρ < r < 1. We conclude that κn extends to a K-qc map ωn : D → D which is the
identity on Dr, where K depends on K1, ρ and r.

Let K0 = K0(ρ, r, δb+1) be as in Lemma 7.9 and let K ′ = max{K,K0}. Apply
Lemma 7.9 to the following left diagram :

T
σn−→ T

hn ↓ ↓ h̃n

T
κn−→ T

, we get

(D, 0)
ζn
−→ (D, 0)

hn ↓ ↓ h̃n

(D, 0)
ωn−→ (D, 0)

so that the map σn admits a K ′-qc extension ζn : D → D which is the identity
on Dr. The desired extension of H|∂Kn(c) inside Kn(c) is now obtained by taking

θ̃−1
n ◦ ζn ◦ θn.
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(3) Fix n ≥ 1.
For c0 ∈ Critn(f), since [c0] = {c0}, we know that ∪c∈[c0]Kn(c) = Kn(c0) and

obviously Kn(c0) is nice.
For the case that c0 ∈ Critr(f), we apply Lemma 7.7 to

⋃

c∈[c0]

Kn(c) = ∪c∈[c0]\{c2}Lc(Pn0+ln(c2))
⋃

Pn0+ln(c2)

and easily get the conclusion.

Lemma 7.14. Suppose c0 ∈ Crite(f). Then
(1) there is a nested sequence of puzzle pieces containing c0, denoted by {Kn(c0)}n≥1,

such that for each n ≥ 1, H|∂Kn(c0) admits a qc extension inside Kn(c0) with the
maximal dilatation independent of n,

(2) for every n ≥ 1,
⋃

c∈[c0] Kn(c) is a nice set.

Proof. Suppose c0 ∈ Crite(f). Recall that

Forw(c0) = {c ∈ Crit(f) | c0 → c}

and in Lemma 7.6 (ii), we distinguish three cases for Forw(c0). In the following, we
will discuss the three cases.

In Case 1, i.e., Forw(c0)∩(Critn(f)∪Critr(f)) = ∅, by using Lemma 7.13, we can
get a nested sequence of puzzle pieces containing c0, denoted by {Kn(c0)}n≥1, and
H|∂Kn(c) admits a qc extension inside Kn(c0) whose maximal dilatation independent
of n.

We divide Case 2 (Forw(c0) ⊂ Critp(f)) into two subcases.
Subcase 1. There is a critical point c1 ∈ Forw(c0) ∩ (Critp(f)\Critper(f)). Let

(Kn(c1),K
−
n (c1))n≥1 be the sequence of pairs of critical puzzle pieces constructed

in Theorem 7.11.
For n ≥ 1, set

K−
n (c0) = Lc0(K

−
n (c1)), f

rn(K−
n (c0)) = K−

n (c1) and Kn(c0) = Compc0
(f−rn(Kn(c1))).

Clearly, (Kn(c0)\K
−
n (c0)) ∩ Crit(f) = ∅. Since (Kn(c1)\K

−
n (c1)) ∩ orbf ([c1]) =

∅ and Forw(c1) = [c1], by Lemma 7.8, we conclude that for all 1 ≤ i < rn,
(f i(Kn(c0))\f

i(K−
n (c0))) ∩ Forw(c1) = ∅.

We claim that for every n ≥ 1 and every 1 ≤ i ≤ rn,

(f i(Kn(c0))\f
i(K−

n (c0)))
⋂

(Crit(f)\Forw(c1)) = ∅.

If not, there is some n such that

{f(Kn(c0))\f(K−
n (c0)), · · · , f rn−1(Kn(c0))\f

rn−1(K−
n (c0))}

meets some critical point, say c2 ∈ Crit(f)\Forw(c1). See Figure 5.
Then c0 → c2 → c1. Since Forw(c0) ⊂ Critp(f), we have c2 ∈ Critp(f) and then

Forw(c2) = [c2]. So c1 → c2. It contradicts c2 6∈ Forw(c1).
Hence for every n ≥ 1 and every 0 ≤ i < rn,

(f i(Kn(c0))\f
i(K−

n (c0)))
⋂

Crit(f) = ∅. (4)

From the equation (4) and K−
n (c0) = Lc0(K

−
n (c1)), we conclude that for n ≥ 1,

deg(f rn : Kn(c0) → Kn(c1)) ≤ δb.
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Again by the equation (4), we know that all critical values of the map f rn : Kn(c0) →
Kn(c1) are contained in K−

n (c1).
Using the similar method as in the proof of Lemma 7.12 (1), we could obtain

the uniformly qc extension of H|Kn(c0) inside Kn(c0). We omit the details here.
Subcase 2. Suppose Forw(c0) ⊂ Critper(f).
If f l(Kf (c0)) is periodic for some l ≥ 1, then there is some critical periodic

component in the periodic cycle of it. By the condition of Proposition 7.3, there is
an integer Nc0 such that PNc0+n(c0) has an Mc0 extension, where Mc0 is independent
of n. Set Kn(c0) := PNc0+n(c0). It is done.

Now we suppose Kf (c0) is wandering. For each ĉ ∈ Forw(c0), by the condition
of Proposition 7.3, there are a constant Mĉ and an integer Nĉ such that the map H
extends to an Mĉ-qc extension inside Pn(c) for all n ≥ Nĉ. Set N := max{Nĉ, ĉ ∈
Forw(c0)}.

We claim that

Claim 1. There exist a point c1 ∈ Forw(c0), a topological disk Z ⊂⊂ PN (c1) and a
nested sequence of puzzle pieces containing c0, denoted by {Kn(c0)}n≥1, satisfying
that for every n ≥ 1, fwn(Kn(c0)) = PN (c1) for some wn ≥ 1, deg(fwn : Kn(c0) →
PN (c1)) ≤ δb and all critical values of the map fwn |Kn(c0) are contained in the set
Z.

Proof. Suppose c ∈ Forw(c0). Refer to the following figure for the proof.
Since Kf (c0) is wandering, in T (c0), there are infinitely many vertices {(−(N +

mn), kn)}n≥1 such that (−(N + mn), kn) is the first vertex being c on the mn-th
row, (−(N + mn + 1), kn) is not critical and limn→∞ mn = ∞. Then

fkn(Lc0(PN+mn(c))) = PN+mn(c)

and deg(fkn : PN+mn+kn
(c0) → PN+mn(c)) ≤ δb.

Let p be the period of Kf (c). Then in T (c), for every 0 < j < p, either
(−(N +mn−j), j) is not critical or (−(N +mn +1−j), j) is critical. Using (Rule 3)
several times, we conclude that there are no critical vertices on the diagonal starting
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−(N + 1)

−(N + mn)

−(N + mn + 1)

−(N + mn + kn)

−(N + mn + kn + ln)

c

c1(n) ∈ Forw(c0)

from the vertex at (−(N +mn +1), kn) to the vertex at (−(N +1),mn + kn). From
the vertex (−N, mn + kn), march horizontally ln ≥ 1 steps until the first hit of
some c1(n) vertex for some c1(n) ∈ Forw(c0). Then there is no critical vertex on
the diagonal starting from the vertex (−(N + mn + kn + ln − 1), 1) to the vertex
(−(N + 1),mn + kn + ln − 1). Therefore

deg(fmn+kn+ln : PN+mn+kn+ln(c0) → PN (c1(n))) ≤ δb.

Since c1(n) belongs to the finite set Forw(c0) and mn → ∞ as n → ∞, we could
find a subsequence of n, say itself, such that {PN+mn+kn+ln(c0)}n≥1 form a nested
sequence and c1(n) ≡ c1. Set wn = N + mn + kn + ln.

Similarly to the proof of Lemma 7.13 (1), one take a topological disk Z ⊂⊂
PN (c1) such that all the puzzle pieces of depth N + 1 are contained in Z and
particularly, all of the critical values of fmn+kn+ln |PN+mn+kn+ln (c0) are contained in
Z.

Using the similar method in the proof of Lemma 7.13 (2), we could show that
H|∂Kn(c0) admits a qc extension inside Kn(c0) whose maximal dilatation is indepen-
dent of n.

In Case 3, we will first draw the similar conclusion to Lemma 7.13 (1).
Take arbitrarily a point c ∈ Crite(f)∩Forw(c0) such that Frow(c) contains some

point in Critp(f). In T (c0), let {(0, tn)}n≥1 be all the c-vertices on the 0-th row
with 1 ≤ t1 < t2 < · · · .

Since c0 ∈ Crite(f) and then c0 6→ c0, by the assumption (∗∗), the c0-vertex
will not appear in T (c0)\{0-th column}, in particular, for each n ≥ 1, there are no
c0-vertices on the diagonal starting from the vertex (−(tn − 1), 1) and ending at the
vertex (−1, tn − 1). Denote that diagonal by Jn. Since c 6→ c, by the assumption
(∗∗), there are no c-vertices on the diagonal Jn.

We claim that for every n ≥ 1, the diagonal Jn meets every point in Crit(f)\{c0, c}
at most once. In fact, if not, then there is some n′ and some c′ ∈ Crit(f) such that
the diagonal J ′

n meets c′ at least twice. By the assumption (∗∗), we can conclude
that c0 → c′ → c′ → c. See Figure 6. By the condition of Case 3 and c′ → c′, we
know that c′ ∈ Critp(f) and then Forw(c′) = [c′] by Lemma 7.5. Thus c → c′ and
then c → c. This contradicts c ∈ Crite(f).
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By the argument above, one easily find that {Ptn(c0)}n≥1 is a nested sequence
of puzzle pieces containing c0 and deg(f tn : Ptn(c0) → P0(c)) ≤ δb−1. Let T2 be a
topological disk compactly contained in P0(c) such that T2 contains all the puzzle
pieces of depth 1 in P0(c). Notice that all the critical values are contained in the
union of all the puzzle pieces of depth 1 in P0(c), so they are also contained in T2.

Set Kn(c0) := Ptn(c0) and then we get similar objects as in Lemma 7.13 (1).
Using the similar method in the proof of Lemma 7.13 (2), we could also show
that H|∂Kn(c0) admits a qc extension inside Kn(c0) whose maximal dilatation is
independent of n.

(2) Since c0 ∈ Crite(f) and then [c0] = {c0}, we know that ∪c∈[c0]Kn(c) = Kn(c0)
and obviously Kn(c0) is nice.

Summarizing Lemmas 7.12, 7.13 and 7.14, we have proved Proposition 7.3.

A An application of Theorem 2.3

Cui and Peng proved the following result in [CP] (see Theorem 1.1 in [CP]).

Theorem A.1. Let U be a multiply-connected fixed (super)attracting Fatou com-
ponent of a rational map f . Then there exist a rational map g and a completely
invariant Fatou component V of g, such that
(1) (f, U) and (g, V ) are holomorphically conjugate, i.e., there is a conformal map
mapping from U onto V and conjugating f to g,
(2) each Julia component of g consisting of more than one point is a quasi-circle
which bounds an eventually superattracting Fatou component of g containing at most
one postcritical point of g.
Moreover, g is unique up to a holomorphic conjugation.

We call (g, V ) is a holomorphic model for (f, U).

To show the uniqueness of the model (g, V ), they divided the proof into two
parts. First they proved the following proposition (see also Proposition 1.3 in [CP]).
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Proposition A.2. Suppose g, g̃ are two rational maps and V, Ṽ are two completely
invariant Fatou components of g and g̃ respectively satisfying the conditions (1) and
(2) in Theorem A.1. Then there is a qc map from the Riemann sphere C onto itself
conjugating g and g̃ on C and this conjugation is conformal on the Fatou set of g.

The other part is to show the Julia set of the model g carries no invariant line
fields (see Proposition 1.4 in [CP]).

In this appendix, we will apply Theorem 2.3 (b) to give an another proof of
Proposition A.2.

Proof of Proposition A.2. First starting from (g, V ) and (g̃, Ṽ ), we construct (g :
U → V) and (g̃ : Ũ → Ṽ) satisfying the conditions as in the set-up.

We may assume that the fixed points of g and g̃ in V and Ṽ are the infinity
point. By Koenigs Linearization Theorem and Böttcher Theorem, we can take a
disk D0 = {|z| > r} ⊂ V such that
(1)D0 ⊂⊂ g−1(D0),
(2)∂D0

⋂
(∪n≥1 ∪c∈Crit(g) {f

n(c)}) = ∅,
where Crit(g) denotes the critical point set of g.

Let Dn be the connected component of g−n(D0) containing D0 for each n ≥ 1.
Then Dn ⊂⊂ Dn+1 and V =

⋃∞
n=0 Dn. There is an integer N0 satisfying that

for any n ≥ 0, g−n(DN0) has only one component, the set Crit(g) is contained in
g−n(DN0) and every component of C\DN0 contains at most one component of C\V
having critical points.

By Theorem A.1 (1), there is a conformal map H : V → Ṽ with g̃ ◦ H = H ◦ g
on V . Set V := C\DN0 , Ṽ := C\H(DN0) and U := g−1(V) and Ũ := g̃−1(Ṽ).
One can check that (g : U → V) and (g̃ : Ũ → Ṽ) satisfying the conditions as in
the set-up.

Clearly, Kg = C\V and Kg̃ = C\Ṽ . Since H : V → Ṽ is a qc conjugacy from
g to g̃ and V := C\DN0 , Ṽ := C\H(DN0), we know that H : V\Kg → Ṽ\Kg̃

is a qc conjugacy off Kg. Let E be a periodic critical component of Kg which
is mapped to a periodic critical component of Kg under some forward iterate of
g. According to Theorem A.1 (2), E is a quasi-circle which bounds an eventually
superattracting Fatou component containing a critical point c. In the proof of
Proposition 4.4 in [CP], a qc map hE is constructed. That map is defined on a
puzzle piece PnE

(c) containing E. From the definition of that map, one can easily
check that hE |∂PnE

+n(c) = H for all n ≥ 0. Set Nc := nE and let Mc be the
maximal dilatation of the map hE . Then by Theorem 2.3 (2), H extends to a qc
conjugacy off intKg. Notice that every component of intKg is a bounded eventually
superattracting Fatou component and vice versa. So H can extend to a conformal
map in every component of intKg which is again a conjugacy (refer to the proof of
Claim 4.1). Hence H extends to a qc conjugacy on V, that is, H extends to a qc
conjugacy on C which is conformal on the Fatou set of g.
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