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CNRS UMR 7589, Université Pierre et Marie Curie, 75005 Paris, France;
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We show that it is possible to initialize and manipulate in a deterministic manner protected qubits
using time varying Hamiltonians. Taking advantage of the symmetries of the system, we predict
the effect of the noise during the initialization and manipulation. These predictions are in good
agreement with numerical simulations. Our study shows that the topological protection remains
efficient under realistic experimental conditions.

Introduction. — Quantum error correcting codes are
deemed a crucial tool for the implementation of quantum
algorithms [1, 2]. Soon after their discovery, it was shown
that some errors can be self–corrected by assigning them
an energetic penalty. This is based on the encoding of
a single logical qubit in the degenerate ground state of
a composite system whose excited states are separated
by a finite energy gap from the ground state subspace
[3–5]. Following the pioneering proposal by Kitaev [6], it
has been shown that when this scheme is implemented
using specific Hamiltonians with collective symmetries,
it can reduce exponentially the influence of decoherence
on logical qubits and quantum gates [7–11].

It is usually recognized that logical qubits should verify
the so-called di Vincenzo criteria [12]. In particular, it is
necessary to be able to initialize to a fiducial state and
perform single and two qubits rotations on them. This
initialization is difficult because the protected states are
highly entangled states which are thus not reachable from
simple, separable states using local operations. Also, for
a protected qubit, there is an apparent conflict between
the protection and the ability to manipulate it. We show
here how to overcome these difficulties using time vary-
ing Hamiltonians with well–defined symmetries. Using
both high–order perturbation theory and numerical sim-
ulations, we also take into account explicitly the effect of
random noise during all these processes showing that the
qubits remain protected during these operations.

Protection Hamiltonian. — In Refs.[6–11], well–
designed Hamiltonians acting on an array of N × N
two–level systems were introduced and shown to yield
degenerate quantum states largely immune to decoher-
ence. The protection relies on the existence of a set
of symmetries, which are collective operators acting on
rows or columns independently, i.e. P̂i =

∏N

j=1
σ̂y
i,j , Q̂j =
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∏N

i=1
σ̂x
i,j where σ̂α

i,j is the standard Pauli matrix in the
α direction in spin–space acting on the two-level system
located at the intersection of row i and column j. They
obey the following rules : [P̂i, P̂i′ ] = [Q̂j , Q̂j′ ] = 0 =

{P̂i, Q̂j}, P̂
2
i = 1 = Q̂2

j . The symmetries enforce the two–
fold degeneracy of all eigenstates, including the ground
states {|0L〉, |1L〉}. It is convenient to choose these states
so that P̂i acts as a logical Pauli operator denoted τ̂z

while Q̂j acts as τ̂x. These states are complex entangled
states composed of arrays of N2 two-level systems that
cannot be prepared nor manipulated easily. They are
separated from the other eigenstates by a finite energy
gap ∆, whose exact value depends on the specific model
and on the system size. lines More quantitatively, the de-
generacy lifting when the system is subjected to a static
noise of amplitude h independently acting on N of its
constituents scales as hN/∆N−1, which decreases expo-
nentially with N provided h is smaller than ∆. Accord-
ingly, the coherence time increases exponentially with N .
In the physically relevant case of a dynamical noise,

this exponential improvement holds only below a criti-
cal size N⋆ which can roughly be estimated as the ratio
between the energy gap ∆ and the typical energy scale
(kBT for a noise source in thermal equilibrium) which
the environment can provide to the system in a single
elementary process. The existence of this finite N⋆ is
consistent with the notion that topological order in 2D
systems disappears at finite temperature in the thermo-
dynamical limit [13–15]. However, for the purpose of
quantum computation, we are interested in small sys-
tems initially prepared in their ground states and time
scales much shorter than the thermalization times.
To illustrate numerically how one can circumvent the

difficulties of initializing and manipulating such pro-
tected states, we will use the long–range Hamiltonian

Ĥ0 = −Jx

N
∑

i





N
∑

j

σ̂x
i,j





2

− Jy

N
∑

j

(

N
∑

i

σ̂y
i,j

)2

(1)
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where Jx and Jy are numerical constants and which can
be realized either using trapped ions [11] or supercon-
ducting circuits [16].

Initialization. — We now turn to the state initializa-
tion. In the same spirit as [17], we proceed by apply-
ing a static field that acts independently on each two-
level system. Such a local field is then adiabatically
turned off from t = 0 to t = T while the protecting
Hamiltonian is turned on during the same interval, in
a process described by the time dependent Hamiltonian
Ĥt = f(t)Ĥ0+(1−f(t))Ŝy, where f(t) is a slowly varying

function such that f(0) = 0 and f(t)
t→+∞

−→ 1 with a char-

acteristic time τ , and Ŝy =
∑N

i,j σ
y
i,j describes the effect

of the static field. The system can be prepared through
single site operations in the (ferromagnetic) ground state
of Ŝy. This state is an eigenstate of P̂i with the eigen-
value 1 which ensures that, after the evolution, the final
state is the protected eigenstate with the same eigen-
values, |0L〉. In such a state preparation scheme, the
system only reaches asymptotically the decoherence pro-
tected state. The time evolution of the instantaneous
energy levels is indicated in Fig. 1 (inset): at t = 0 the
energy levels are those of Ŝy and close to those of Ĥ0

at t = 5τ (where we have taken f(t) = exp(−t2/τ2)).
The effect of this procedure on the logical state is shown
in Fig. 1, top where we have plotted the error 1 − F (t)
where F (t) is the fidelity F (t) = |〈0L|ψ(t)〉|

2 of the pre-
pared state, with |ψ(t)〉 the quantum state of the system
at time t. This figure shows that for τ = 100, the final
state is extremely close to the target state(error of the
order of 10−10). Indeed, the error after a time t = 5τ
diminishes as τ increases and the error is below 10−5 for
τ ≥ 20 as shown in Fig. 1, bottom.

However, in a real experiment, during the whole evo-
lution, the system is subjected to noise that will ren-
der state preparation imperfect. An important point is
to evaluate the effect of noise on the fidelity. Simula-
tions show that the preparation scheme is quite robust
to noise. We have plotted in Fig. 1 the error for different
noise amplitudes as a function of τ . We consider here a
static noise with a random orientation applied on each of
the individual two-level systems. This figure shows that
even for realistic error rates, on the order of 0.01J , there
exists some values of τ for which the error will remain
smaller than 10−3 (2×2 case).

Our results are important for the realization of experi-
mental tests of protected qubits as they show that, under
realistic experimental conditions, errors will not destroy
the quality of the prepared state. Let us now turn our
attention to the manipulation of a single protected qubit.

Manipulation.— We address the possibility of manip-
ulating the ground states of the protecting Hamiltonian
using local operations.
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FIG. 1: (Color online) Top: Example of the state evolution
as a function of time without noise in 2×2 case and for τ =
100 which is large compared to ∆−1 = (

√
2 + 1)/2. Inset :

Evolution of the energy levels (normalized to J = Jx = Jy)
as a function of time: at t = 0 the energy levels are those of
Ŝy and close to those of Ĥ0 at t = τ . Bottom : Error as a
function of time for a static noise applied on all qubits on a
2 × 2. Noise amplitude 10−2 (squares) and 10−3 (circles)

We remark that, due to the symmetry of the system, an
operator acts within the logical qubit space if it either
preserves or changes into their opposites simultaneously

all the eigenvalues of the symmetry operators. This con-
dition will be denoted in the following Condition 1.

Firstly, we study the noiseless case. We thus consider
a perturbation Hamiltonian of the form Ŝu =

∑

i,j σ̂
u
i,j

where u = x or y. This Hamiltonian is assumed to be ap-
plied using a smooth time-varying gate function so that
the total Hamiltonian reads Ĥt = Ĥ0 + gu(t)Ŝu. The
maximal value attained by gu(t) , gumax remains small
compared to the energy gap of Ĥ0 so that no level cross-
ing occur. Furthermore, the typical variation time is cho-
sen much smaller than the inverse of the gap frequency
so that the transformation can be considered as adia-
batic within the excited manifold (it will naturally not
be adiabatic within the protected state where the energy
difference is initially zero). According to the quantum
adiabatic theorem, these conditions are sufficient to en-
sure that the final state will remain within the protected
subspace (|0L〉, |1L〉). Thus, the unitary operator Û de-
scribing the transformation from initial to final state can
be decomposed over the logical Pauli operators, denoted
τ̂x,y,z, and the two–dimensional identity matrix, Î2

Û = α1Î2 +
∑

i=x,y,z

αxτ̂
x (2)



3

In order to study the effect of the manipulation, one can
apply high order perturbation theory and decompose the
result according to (2). At the M th order, one obtains
a sum of terms of the form ĤM = σ̂u

i1,j1
σ̂u
i2,j2

. . . σ̂u
iM ,jM

(u is an arbitrary direction). Due to the adiabatic theo-
rem, ĤM will act within the logical qubit space so that
it must verify Condition (1) to have a non trivial effect.
Two pairs of exclusive possibilities can then be consid-
ered:
1. the first pair concerning the P̂i operators (whose eigen-
values are denoted pi)
(a) ĤM conserves all pi: in this case, ĤM commutes

with the symmetry operators P̂i and thus with the logi-
cal operator τ̂z. It must then induce a term of the form
aÎ2 + bτ̂z where, here and in the following, a and b are
constants depending on the exact shape of gu;
(b) ĤM changes all pi in their opposites: in this case,

ĤM anti–commutes with the symmetry operators P̂i and
thus with the logical operator τ̂z. It must then induce a
term of the form aτ̂x + bτ̂y;
2. the second pair concerning the Q̂j operators (whose
eigenvalues are denoted qj)

(c) ĤM conserves all qj : in this case, ĤM commutes

with the symmetry operators Q̂j and thus with the log-
ical operatorτ̂x. It must then induce a term of the form
aÎ2 + bτ̂x;
(d) ĤM changes all qj in their opposites: in this case,

ĤM anti–commutes with the symmetry operators Q̂j and
thus with the logical operator τ̂x. It must then induce a
term of the form aτ̂y + bτ̂z.

For a given Hamiltonian HM , only one term will re-
main for the two pairs of conditions which can be sum-
marized in Tab. (I). We see that, for each of the four
conditions, one term and only one will survive which sim-
plifies greatly the analysis.

Condition (c)
(qj → qj , ∀j)

Condition (d)
(qj → −qj , ∀j)

Condition (a)
(pi → pi, ∀i) I τ̂z

Condition (b)
(pi → −pi, ∀i) τ̂x τ̂y

TABLE I: Effective operator induced by the manipulation as
a function of its effect on the ground–state quantum numbers.

As discussed above, high order perturbation theory
yields a sum of terms of the form ĤM ,M ∈ N. Each
of these terms will have an effect summarized in Tab. (I)
and we have to consider the dominant terms in the sum.
Let us first consider the case of a manipulation along y.
At any order of perturbation theory, Ŝy will conserve the
pi quantum numbers, all terms appearing in the pertur-
bation theory development are thus in the first line of

Tab. (I). For M < N , there is at least one qj quantum
number which is preserved so that Condition (1) can not
be fulfilled: the manipulation in this case has no effect,
in good agreement with the idea of protection. The first,
non–zero term will appear when all columns are touched
at least once by the manipulation (condition (d)), that
is M = N . In this case, the effect will be on the order

of
(

gu

max

∆

)N
∆t
~
τz where t is the duration of the manip-

ulation. A similar reasoning can be made for a manipu-
lation along x which preserves the qj quantum numbers:
again, the first, non–zero term will appear when all lines
are touched at least once by the manipulation, that is
M = N . In this case, the effect will be of the order

of
(

gu

max

∆

)N
∆t
~
τx. Finally, combining these two types of

operations, any arbitrary rotation on the protected qubit
can be performed, a key operation toward the use of such
systems for quantum calculation purposes.

Let us now tackle the more difficult question of the
resistance of this procedure to noise. We consider here
an arbitrary static noise which is expressed as a sum of
single spin terms. In practice, one will overestimate the
effect noise by taking the dominant noise assumed to be
along v with amplitude fv. The total Hamiltonian now
reads Ĥ = Ĥ0 + g(t)Ŝu + f Ŝv.

At the M th order of perturbation theory, one
is left with a sum of terms of the form ĤM =
(

σ̂u
i1,j1

σ̂u
i2,j2

. . . σ̂u
im,jm

) (

σ̂v
i1,j1

σ̂v
i2,j2

. . . σ̂v
in,jn

)

where the
first term comes from the manipulation term and the sec-
ond from the noise term. We have naturally m+n =M .
In the case where manipulation and noise are parallel
(u = x = v or u = y = v), the two terms add up to
yield a term of the form (gumax + f)N τ̂x,z. In this case,
the rotation axis is not modified but the rotation angle is
affected to first order in f/gumax, without any gain from
the protection.

We now turn our attention to a case where manip-
ulation and noise are not parallel, for instance u = y
and v = x. The two terms affect respectively only the
columns (manipulation) or the lines (noise). The previ-
ous result can be used: one can have a change of sign
of a family of quantum numbers only if the correspond-
ing power (m for the manipulation and thus the columns
and n for the noise and thus the lines) is larger than or
equal to N : the smallest order for noise is thus either
2 (when there is no sign change of the pi) or N (when
all the pi change sign) while the smallest order for the
manipulation is either 0 (when there is no sign change of
the qj) or N (when all the qj change sign). Finally, these
terms must be compared with the effect of the manipula-

tion (proportional to
(

gu

max

∆

)N
∆t
~
) as it is the ratio which

is relevant and the corresponding results are detailed in
Tab. (II). Similar results can be obtained for the other
cases where noise is not parallel to the manipulation. We



4

Condition (c)
(qj → qj , ∀j)

Condition (d)
(qj → −qj , ∀j)

Condition (a)
(pi → pi, ∀i) not relevant f2

∆2 τ̂
z

Condition (b)
(pi → −pi, ∀i)

fN

(gx
max

)N
τ̂x fN

∆N
τ̂y

TABLE II: Dominant term induced by the manipulation and
noise terms as a function of its effect on the quantum numbers
where amplitudes are normalized by the effect of the manip-
ulation in the absence of noise.
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FIG. 2: Deviations of |αx| (red circles), |αy| (green squares)
and |αz| (blue rhombi) away from the noiseless manipulation
case as a function of the error amplitude f for a 2× 2 array.
The manipulation amplitude is gymax = 0.304 corresponding
to a π

8
phase–shift.

have thus demonstrated that manipulation of the logical
qubit state can be performed in a deterministic manner
and that this procedure is relatively resistant to noise. In
the worst case (noise parallel to the manipulation), the
noise sensitivity is the same as in the absence of protec-
tion, while for the other cases it varies at least quadrati-
cally with the perturbation strength, and the deviations
of the rotation axis in qubit space are exponentially small
in N .

In order to confirm these results, we used numerical
simulations performed on 2× 2 arrays. We first checked
the effect of a manipulation along x in the absence of
noise. As expected, the coefficients along αy and αz are
close to zero (typically smaller than 10−9.), showing that
the manipulation is a pure rotation along z of the log-
ical qubit. α1 and αx are, also with a good precision,
sinusoidal functions of the manipulation amplitude, gx.
This can be seen as Rabi–like oscillations between the
two–qubit states.

Concerning the effect of the noise, the effect of the pro-
tection is most apparent for a noise perpendicular to the
manipulation axis. Although we have explored numeri-
cally all combinations of directions for the manipulation
and noise, we discuss as above the specific case u = y
and v = x (Fig. 2).

Without noise, the manipulation should then be equiv-

alent to a perfect dephasing. We verify that the devia-
tions of αx and αy away from a noiseless manipulation
have a quadratic variation with the noise amplitude as
expected since N = 2 (see Tab. (II), bottom row). Note
that the deviation of αz also varies quadratically even
though it is several orders of magnitude smaller.

In any physical implementation, the binary interac-
tions between spins in the protected Hamiltonians are
likely to be subjected to residual fluctuations, so that
they become space and time dependent. In contrast with
early proposals of self–correcting qubits [3–5], these fluc-
tuations do not lift the ground state degeneracy and do
not induce decoherence because they preserve the non–
local symmetries Pi andQj . This remains valid as long as
the gap remains open, that is as long as the fluctuations
in the coupling are small in relative value. During the
manipulation, the effect of these fluctuations can be an-
alyzed as discussed above. It appears immediately that
they have no effect on the rotation axis. However, as in
the case of a single spin noise parallel to the manipu-
lation axis, the rotation angle is affected by an amount
proportional to the noise amplitude.

Conclusion. — Using high order perturbation theory
and exploiting the large number of symmetries present in
Hamiltonians yielding protected qubits, we have shown
that these qubits can be initialized and manipulated in
a noise resistant manner. This shows that there is no
contradiction between the concept of protection and the
ability to manipulate a qubit.
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