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Abstract The most general and elegant axiomatic framework on
which continuum mechanics can be based starts from the Principle
of Virtual Works (or Virtual Power). This Principle, which was
most likely used already at the very beginning of the development
of mechanics (see e.g. Benvenuto (1981), Vailati (1897), Colonnetti
(1953), Russo (2003)), became after D’Alembert the main tool for
an efficient formulation of physical theories. Also in continuum
mechanics it has been adopted soon (see e.g. Benvenuto (1981),
Salençon (1988), Germain (1973), Berdichevsky (2009), Maugin
(1980), Forest (2006)). Indeed the Principle of Virtual Works be-
comes applicable in continuum mechanics once one recognizes that
to estimate the work expended on regular virtual displacement fields
of a continuous body one needs a distribution (in the sense of
Schwartz). Indeed in the present paper we prove, also by using
concepts from differential geometry of embedded Riemanniam man-
ifolds, that the Representation Theorem for Distributions allows
for an effective characterization of the contact actions which may
arise in N−th order strain-gradient multipolar continua (as defined
by Green and Rivlin (1964)), by univocally distinguishing them in
actions (forces and n − th order forces) concentrated on contact
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surfaces, lines (edges) and points (wedges). The used approach re-
considers the results found in the pioneering papers by Green and
Rivlin (1964)-(1965) , Toupin (1962), Mindlin (1964)-(1965) and
Casal (1961) as systematized, for second gradient models, by Paul
Germain (1973). Finally, by recalling the results found in dell’Isola
and Seppecher (1995)-(1997), we indicate how Euler-Cauchy ap-
proach to contact actions and the celebrated tetrahedron argument
may be adapted to N−th order strain-gradient multipolar continua.

1 Introduction

In a forthcoming review paper the authors will try to describe why, how and
when many theories were conceived to go beyond the conceptual framework
established for continuum mechanics in the Euler and Cauchy era. In this
introduction are formulated only few comments about some papers which
seem to be the starting point of the most modern studies in continuum
mechanics. In this field -among the many available in the literature- the
textbooks which we have found more instructive are those of Paul Ger-
main and Jean Salençon. In them, without any loss of mathematical rigour,
what nowadays seems the most effective approach to the axiomatization of
mechanics is presented to the students of the École polytechnique. This
approach is based on the Principle of Virtual Works. Paul Germain re-
search paper on second gradient continua (1972) shows how fruitful is the
aforementioned approach. Most likely one of the most illuminating paper
in modern continuum mechanics is due to Green and Rivlin (1964): it is
entitled ”Simple force and stress multipoles” and formulates what the au-
thors call ”multipolar continuum mechanics”. Indeed Green and Rivlin start
there the foundation of what has been later called also the theory of general-
ized continua. They also address the problem of establishing simultaneously
the bulk evolution equations and the correct boundary conditions for gen-
eralized continua: equations and boundary conditions which they find by
postulating the Principle of Virtual Work. In this aspect their theory is
perfectly orthodox with respect to the paradigm put forward, many years
earlier, by Cosserat brothers, in their fundamental textbooks (1908)-(1909).
Of great importance for understanding the relationship between Cosserat
continua and higher order gradient continua studied by Green and Rivlin
is the short but very clear paper by Bleustein (1967), where the boundary
conditions found by Toupin in a previous work are interpreted also from a
physical point of view. We must also cite here the papers by Mindlin, who
also contributed greatly to the development of important generalizations of
Euler-Cauchy continuum models. In particular in Mindlin (1965) is started
the study of third gradient continua, which is developed in a great extent.
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However in all cited papers the Cauchy cuts considered are very regular:
therefore the cited authors refrain from the consideration of contact actions
concentrated on edges and wedges. Instead Germain considers Cauchy cuts
in which the normal can suffer discontinuities of the first kind: he therefore
needs to consider contact actions concentrated on edges. However Germain
limits his treatment to second gradient continua: in his theory there are not
wedge contact actions. Also in Toupin’s strain-gradient theory (1962) the
consideration is limited to second gradient continua. In cited paper Toupin
limits himself to the consideration of a particular class of second gradient
continua: those in which only a particular class of contact double-forces
(using the nomenclature by Germain) can be exerted: the class constituted
by ”couple-stresses”.

Those which are called by many authors (see e.g. Maugin (2010) and
Forest (2005)-(2006)) generalized continua actually strictly include higher
gradient continua which we consider here. In generalized continua together
with the placement field one can introduce many other kinematical de-
scriptors, which are other fields defined in the material configuration of
considered continuum. The first example of such a set further kinematical
descriptors is given by Cosserats who add to the placement field also a field
of ”changes of attitude”, i.e. a field of rotations, which describe a large class
of ”microscopically structured” continua. As clarified by Bleustein (1967)
Toupin’s continua are a class of Cosserat continua in which an internal con-
straint has been introduced. In the following sections, while commenting
some papers recently published in the field, it is discussed how the approach
used by Germain can be reconciled with an approach which parallels more
strictly the one used, for first gradient continua, by Cauchy.

It is not easy (but this analysis will be attempted in the aforementioned
review paper) to explain why the foundation of continuum mechanics ”à
la Cauchy” has been considered ”more physically grounded” than the ax-
iomatization based on the Principle of Virtual Powers. In the present work
we prove that .at least for higher gradient continuum theories, the two ap-
proaches are completely equivalent.

Variational Principles and Calculus of Variations have always been an
important tool in formulating mathematical models for physical phenomena.
Among many others the textbook by Berdichevsky (2009) clearly shows that
this statement holds, in particular, for Continuum Mechanics.

We are sure that the Principle of Virtual Works and the Principle of
Least Action have roots much deeper than many scientists believe. (see e.g.
Vailati (1897)). One can conjecture that the majority of physical theories
were first formulated in terms of these Principles, and only subsequently re-
considered from other points of view. The Principle of Least Action, which
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supplies a ”geometric” (see Russo (2003)) version of mechanics, is likely to
be indeed the tool used by the true founders of mechanics (i.e. the scientists
of the Hellenistic period) to establish it. As conjectured also by Colonnetti
(1953) and Rorres (2004) Archimedes himself was basing his mechanical
investigations on the Principle of Virtual Works. More recently, as already
stated above in a more detailed way, Green, Rivlin, Toupin, Mindlin, Casal,
and Germain formalized various versions of the theory of generalized con-
tinua basing them on the Principle of Virtual Powers: however the most
illuminating treatises in this subject remain those due to Cosserat brothers
(1908)-(1909).

For a long time some opponents to second gradient theories argued about
its ”lack of consistency”, due to the difficulties in ”interpreting” boundary
conditions. However it has to be remarked that if one refuses to use the
Principle of Virtual Powers he can find very difficult the job of finding
some set of boundary conditions which are compatible with the (indepen-
dently postulated!) bulk evolution equations. Actually it happens that
many epigones, after having initially refused to use this principle also in
continuum mechanics, have later rephrased with different notations many
of the results already available in the literature.

If instead one accepts the D’Alembertian approach to mechanics all these
problems of well-posedness of mathematical models completely disappear.

2 Second and Higher Gradient Continuum Theories

In the last fifty years it has been widely recognized that in order to de-
scribe a wealth of physical phenomena it is needed to introduce mechanical
theories which take into account contact actions more complex than those
considered in the format given by Cauchy to continuum mechanics. Some
well-known contributions in this regard are given in the papers listed in the
references by Toupin, Mindlin, Green, Rivlin, Maugin, Forest, Germain,
Suiker, Sokolowski, Triantafyllidis among many others.

More recently it has been recognized that second or even higher gradient
models are needed when continuum models are introduced for describing
systems in which strong inhomogeneities of physical properties are present
at eventually different length scales (see e.g. Abu et al. (2008), Alibert et al.
(2003), Polizzotto (2007), Pideri and Seppecher (1997), Trianttafyllidis et al.
(1986)-(1998), Yang and Misra (2010), Yang et al. (2011)), and may be of
great importance also in continuum systems in which some ”microscopical”
degrees of freedom can ”capture” a relevant amont of deformation energy
(see e.g. Carcaterra (2005) or Carcaterra et al. (2006)).

Actually, immediately after the development of the Cauchy format of
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continuum mechanics, a first relevant generalization in the aforementioned
direction was conceived by Eugène and François Cosserat, but their efforts
were not continued until late in XX century. Cosserat described continuum
bodies in which contact actions were to be modelled not only by means
of surface forces, but also by means of surface couples. The conceptual
differences between Cauchy-type continuum mechanics and Cosserat-type
continuum mechanics were relevant, and the second one could not be ob-
tained by means of simple modifications of the first one. The remarkable
mathematical difficulties confronted by Cosserat rendered their work diffi-
cult to be accepted, and for a long period their results were nearly com-
pletely ignored. This circumstance can be easily understood: the structure
of Cosserat contact actions is complex. Indeed in Cosserat continua one
needs, together with Cauchy stress tensor also a Couple stress tensor, for
representing contact Couples.

2.1 A first method for extending Cauchy model for continuous
bodies

In order to develop continuum mechanics by going beyond the Cauchy
format it is possible to use at least two different approaches.

The most simple of them, used also by Cosserats, starts by postulating
how the power expended by internal actions in a body depends on the ”vir-
tual” velocity field and its gradients. Starting from this postulate one can
deduce, by means of a successive application of the theorem of divergence,
i.e. by means of several iterative integrations by parts, which are the contact
actions which can be exerted at the boundary of the considered body. Hence,
this method starts from the notion of stress tensors and deduces from it the
concept of contact actions. It is based on the D’Alembert Principle of Vir-
tual Work and has been resumed by Green and Rivlin, Mindlin, Casal and
subsequently by Paul Germain, in his enlightening papers (1972-1973). This
Principle is undoubtedly a great tool in Mechanics which has not been im-
proved since its original first and ”standard” formulation, differently to what
stated in Fried and Gurtin (2006)-(2008) and in Podio-Guidugli (2009). It is
not clear why these last authors consider as ”non-standard” a formulation of
the Principle of Virtual Powers which can be found stated ”word-for-word”
for instance in the textbooks of Jean Salençon..

Indeed other authors (e.g. the paper by Degiovanni, Marzocchi, Musesti
(1999)-(2010) in the references ) stated that:

In particular, the approach by means of the theory of distributions, men-
tioned by Germain himself but not fully developed, is here adopted from the
beginning. Clearly, in order to obtain deeper results such as the Cauchy
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Stress Theorem, some extra regularity has to be assumed. Note that a power
depends in general from two variables, the velocity field and the subbody. So
it is a bit more complex than a mere distribution.

In the same spirit in dell’Isola and Seppecher (1995)-(1997) the starting
assumptions concerning contact actions are: i) for every subbody of consid-
ered body the power expended by contact actions on a generic velocity field
is a distribution (i.e. a linear and continuous functional on velocity fields)
ii) the power expended by contact actions is quasi-balanced (generalizing
the assumption used in Noll and Virga (1990)). Then in aforementioned pa-
pers by using different polynomial test velocity fields and different families
of subbodies, the Cauchy construction for stress tensors is obtained.

The works of Green and Rivlin, Mindlin and Germain have been taken
up again and again, (e.g. in Fried and Gurtin (2006)-(2008)) often rephras-
ing them without introducing any notable amelioration and often second
gradient continua are somehow confused with Cosserat continua.

Paul Germain, following a tradition set in France by André Lichnerow-
icz, uses the original version (and more efficient) absolute notation due to
Levi-Civita. This version, at least in this context, is the most adapted, as
many objects of different tensorial order are to be simultaneously handled.
Sometimes those who are refraining from using the most sophisticated ver-
sion of Levi-Civita absolute Calculus are lead to refer to the needed stress
tensors and the related contact actions indistinctly using the names ”hy-
perstresses” and ”hypertractions”. On the contrary Germain (following the
spirit of Green and Rivlin) tries to convey through the nomenclature chosen
the physical meaning to be attached to the new mathematical objects which
he is introducing: for instance he calls ”double forces” the actions which are
expending powers on the velocity gradient in the directions which are nor-
mal to the surfaces of Cauchy cuts. Germain then decomposes these ”double
forces” into ”couples” and ”symmetric double forces” recognizing (following
Bleustein) that couples were already introduced by Cosserats. Germain’s
notation supports the mechanical and physical intuition contrarily to what
does a generic nomenclature based on some ”hyper” prefixes.

2.2 A second method for extending Cauchy model and its rela-
tionship with the first

The second method starts by postulating the type of contact action
which can be exerted on the boundary of every ”regular” part of a body
and then proceeds by proving a ”representation” theorem for the considered
class of contact actions: the existence of stress tensors is then deduced from
the postulated form of contact actions with the addition of a ”balance-type”
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postulate, based on physical grounds. In other words: to the ”constitutive”
assumption adopted for characterizing the class of contact action under
consideration one must add a Principle of Balance: the contact actions
have to be balanced by a bulk action. This is the method followed by
Cauchy which is often considered as the only firm foundation of Continuum
Mechanics. The important contribution due to Noll and Virga (1990) is
to have introduced the assumption of ”quasi-balance” for powers, which
generalized, in the most suitable way, the Euler-Cauchy Postulate used in
Cauchy continuum mechanics.

The mathematical difficulties presented by this second
method

As remarked explicitly in dell’Isola and Seppecher (1995)-(1997) and in
Degiovanni, Mazzocchi and Musesti (1999)-(2010) the mathematical diffi-
culty to be confronted in order to establish a firm foundation for this sec-
ond method relies on the dual dependence of power functional on velocity
fields and on subbodies of the considered continuum. It is obvious, start-
ing from physical plausibility considerations, that power functionals must
be regarded as distributions on the set of test functions represented by the
admissible velocity fields (see e.g. the textbooks of Salençon and Germain).

A fundamental results due to Schwartz allows for representing distri-
butions (with compact support) as finite sums of derivatives of measures
Schwartz (1973). When (as it is important for considering contact ac-
tions) the distribution is concentrated on a smooth submanifold of three-
dimensional Euclidean space, then the derivatives to be considered are only
those ”normal” or ”transversal” to the submanifold itself. Unfortunately in
Schwartz it is not considered a representation theorem for families of distri-
butions ”attached to” the family of measurable subset of a given measurable
set.

Some of the efforts of Degiovanni, Marzocchi and Musesti (1999)-(2010),
Lucchesi, Šilhavý and Zani (2008) are directed, with remarkable results, to
the search of such a generalized Schwartz representation theorem and to the
formulation of weaker versions of Gauss divergence Theorem.

Indeed it is also of relevance the problem arising when one must define
generalized ”stresses” having a flux which allows for the representation of
contact action and a divergence to be used for formulating bulk ”local” form
of balance laws. This problem has been also addressed with some interesting
results (see Lucchesi, Silhavý and Zani (2008), Degiovanni, Marzocchi e
Musesti (1999), Šilhavý (1985)-(1991).
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2.3 The two methods can be reconciled.

During a long period the first method of the two previously described has
been rejected by many researchers and it is lucky for advancement of science
that its power has been, in the last decade, finally nearly unanimously
accepted.

Moreover the two methods can be reconciled.
Indeed the equivalence of the two methods has been explicitly established

by Cauchy him-self and made precise by Noll, for First Gradient Theories.
The same equivalence has been proven for the so called Second Gradient

Theories, i.e. for theories in which the internal power is a second order
distribution: this results has been obtained in the sequence of papers Noll
and Virga (1990), dell’Isola and Seppecher (1995)-(1997). In these last two
papers the relationship between the concept of contact line force and surface
double forces was proven and also a representation formula relating the two
kind of forces was obtained.

3 Some commentaries about a recent paper on second

gradient continua

Unfortunately it seems that the fundamental connection between the two
methods (and the available proof of the existence of this connection at least
for those materials which were called by Germain second gradient materials)
seems still not well understood in part of the mechanics community, while
it has been considered as established by others (see e.g. in the references
the works by Maugin, Markus and Forest).

• For instance, one can read in Podio-Guidugli Vianello (2010) that:

Although here we do not deal with this difficult issue directly, in Sect.
3, the bulk of this article,we do provide a full set of representation formu-
lae not only, as is relatively easy, for tractions and hypertractions in terms
of stresses and hyperstresses (see definition (26) for diffused tractions and
hypertractions, and definition (27) for tractions concentrated on edges), but
also, conversely, for stresses and hyperstresses in terms of diffused and con-
centrated tractions and hypertractions (see definitions (28, 29), and (34).
Such representation formulae generalize the corresponding formulae for sim-
ple (!first-gradient) materials, that we derive in our preparatory Sect. 2.
Since we work in a nonvariational setting, our results apply whatever the
material response. The PVP we use includes edge tractions, both internal
and external; without them, it would not be possible to arrive at the com-
plete representation formula for the hyperstress in terms of hypertractions
we construct in Sect. 3.5.
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However it is not possible to see any difference between the results listed
in the previous statement and those obtained by Casal and then by Germain.
The quoted results are also available in Seppecher (1987)-(1989), Casal and
Gouin (1985) and even recalled in the textbooks by Forest. An interesting
application of second gradient theories to the mechanics of porous media
are proposed e.g. in Collin et al. (2006) or in Sciarra, dell’Isola and Coussy
(2007), where many results listed in the commented paper are explicitly
exploited.

• In the commented one then reads:

An interesting feature of second-gradient materials is that, if bodies and
subbodies having non everywhere smooth boundary are considered, then edge
forces, i.e., line distributions of hypertractions are to be expected (and, if a
dependence on gradients higher than two is allowed, one has to deal also with
vertex forces, as exemplified by Podio-Guidugli [15]). To our knowledge,
a rigorous interaction theory accommodating such a nonstandard behavior
remains to be constructed; interesting attempts in this direction have been
carried out by Forte and Vianello [3], Noll and Virga [14], and Dell’Isola
and Seppecher [1].

This statement is not accurate: indeed the efforts leading to in the papers
Noll and Virga (1990), dell’Isola and Seppecher (1995)-(1997), as recognized
for instance in the works by Maugin and Forest cited in the references,
actually constructs the searched rigorous interaction theory.

• Again in the commented paper the following statement can be found:

Finally, in Sect. 4, we provide a new proof of the following not very
well-known fact in the theory of second-gradient materials: if edge tractions
are constitutively presumed null on whatever edge, then the hyperstress takes
a very special form whose information content is carried by a vector field.
We surmise that inability to develop edge interactions be characteristic of
certain second-gradient fluids, an issue that we take up in a forthcoming
article [17], continuing a line of thought proposed by Podio-Guidugli [16].

Indeed, this results, rather obvious, is obtained in dell’Isola and Seppecher
(1997), Remark 3, page. 48 and systematically exploited in the applica-
tion of second gradient theory presented in Sciarra et al. (2001)-(2008) or
in Madeo et al. (2008). Some interesting consideration about this point
are already available in Seppecher (1987) together with some consideration
about third gradient fluids. This result is well-known: for instance remark
that Equation (35) on page. 173 in the commented paper exactly is equal
to Equation (18) page. 6612 in Sciarra et al. (2007) or to Equation (13)
pag.107 in Sciarra et al. (2008).
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• Finally always in the commented paper one reads

Relations (7) and (8) are also arrived at when, as is customary, only
tractions on body parts are introduced, because stress is constructed à la
Cauchy as a consequence of balance of tetrahedron-shaped parts. The Cauchy
construction is the pillar on top of which the standard theory of diffuse (i.e.,
absolutely continuous with respect to the area measure) contact interactions
stands. For complex (i.e., nonsimple) material bodies, a Cauchy-like con-
struction has been attempted often, but not achieved so far, to our knowl-
edge.

On the contrary in the Conclusions of the paper dell’Isola Seppecher
(1997) one can read:

The most important concepts introduced in this paper are:
(i) the concept of quasi-balanced power of contact force distribution and
(ii) that of prescribed shapes.
They allowed us to develop a system of axioms “à la Cauchy’ for continua

in which edge contact forces are present.
It is not clear if the authors of the commented paper are completely aware

of this last statement and of the assumptions and theorems presented in the
just cited paper. In our opinion, the demanded Cauchy-like construction
for second gradient materials is supplied there.

3.1 Concluding remarks

The connection between internal power and the power expended by ex-
ternal actions has not been yet completely established for a generic N−th
Gradient Theory, although interesting and useful considerations can be
found in the papers by Green, Rivlin, Mindlin, Di Carlo and Tatone and
Podio-Guidugli cited in the references.

In the following sections it will be shown how the work started in dell’Isola
Seppecher (1997) can be continued. The aim in these lecture notes will be
to give a firm framework to those researchers which need to deal with more
complex contact actions (for instance ”wedge forces”), wish to refrain from
using the Principle of Virtual Power and instead prefer to adopt an approach
based on ”contact interactions” rather than on ”virtual power expended on
virtual velocity fields”.

Indeed the ideas presented in the just mentioned paper can be extended
rather easily to treat the case of all types of contact distributions: more
precisely the Cauchy tetrahedron argument can be generalized to prove
that all types of mechanical contact actions can be represented in terms of
a generalized stress tensors.

To our knowledge the results which we present are novel. It is however
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difficult to establish how many of them were already obtained in the litera-
ture: in general while trying to write a scientific work and in particular when
revisiting Cauchy’s, Green’s, Rivlin’s and Germain’s results it is advisable
to try to avoid the attitude of the novelist Pierre Menard (see Borges):

(...) Menard’s visible work can be easily enumerated. Hav-
ing examined with care his personal files, I find that they con-
tain the following items: (a list of works follows) I turn now to
his other work: the subterranean, the interminably heroic, the
peerless. And—such are the capacities of man!—the unfinished.
This work, perhaps the most significant of our time, consists
of the ninth and thirty-eighth chapters of the first part of Don
Quixote and a fragment of chapter twenty-two. I know such an
affirmation seems an absurdity; to justify this “absurdity” is the
primordial object of this note. (....) He did not want to compose
another Quixote —which is easy— but the Quixote itself. Need-
less to say, he never contemplated a mechanical transcription of
the original; he did not propose to copy it. His admirable inten-
tion was to produce a few pages which would coincide—word for
word and line for line—with those of Miguel de Cervantes. “My
intent is no more than astonishing,” (...) To be, in some way,
Cervantes and reach the Quixote seemed less arduous to him—
and, consequently, less interesting—than to go on being Pierre
Menard and reach the Quixote through the experiences of Pierre
Menard. (.....) “My undertaking is not difficult, essentially,”
I read in another part of his letter. “I should only have to be
immortal to carry it out.”

4 Resumé of some results in Differential Geometry of

Riemannian manifolds embedded in the Euclidean

Space.

The reference configuration of the continuum which we want to consider is
a regular region C∗ embedded in E3. Its boundary ∂C∗ is assumed to be a
piecewise regular orientable and rectifiable surface.

Following the ideas already expressed in Cosserat (1908) and formalized
e.g. by Germain (1972) or Salençon (1988-2005) we will assume that the
Principle of Virtual Powers holds at least for every ”regular” subbody of the
considered body. In this section we specify what we mean with ”regular”
subbody and in particular we specify how regular must be its topological
boundary.
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5 Gaussian Geometry of Piecewise Regular Surfaces

in E
3

The family of subbodies which we will consider in the Principle of Virtual
Powers will have a topological boundary which is a piecewise regular surface,
as defined in the following section. These surfaces represent a particular
class of ”shapes” as introduced in dell’Isola and Seppecher (1995)-(1997).

5.1 Piecewise regular surfaces embedded in E3.

In the present paper we will use the following nomenclature:

Definition 5.1. A surface S is a piecewise regular (orientable and rectifi-
able) surface embedded in E3when there exist a finite set

{γi ⊂ S, i = 1, ...N}

of C1 curves (called edges) and a finite set of points (called wedges)

{Wi ∈ S, i = 1, ...,M}

such that, once introduced the notation (which is reminiscent of the one
usually encountered in the formulation of Poincaré theorem for exterior
forms)

Support(∂S) :=

(
N⋃

i=1

γi

)

; (1)

Support(∂∂S) :=

(
M⋃

i=1

Wi

)

, (2)

the conditions appearing in the following list are verified.

LIST OF CONDITIONS

• for every p ∈ S− (∂S ∪ ∂∂S) (i.e. for every regular point belonging to
S) there exists a neighborhood in S which is locally (C2−)diffeomorphic
to R2 : we call any such local diffeomorphism

r : R2 → S − (∂S ∪ ∂∂S)

an internal chart of S, We assume that for every internal chart r the
set r(R2) is a rectifiable surface;

12



• for every p ∈ S − (∂S ∪ ∂∂S) there exists a translation vector in E3 ,
denoted with the symbol N(p), which is orthogonal to every tangent
vector to S,

• for every p ∈ ∂S − ∂∂S there exist two diffeomorphisms (called also
”border charts”)

r± : [0,∞[× R → I± ⊂ S (3)

such that

r±(0, 0) = p; r±(0,R) = ∂S ∩ I± (4)

; (∀y ∈ ]0,∞[× R)
(
r± (y) ∈ S − (∂S ∪ ∂∂S)

)
(5)

and both the following limits exist

lim
x→(0,0)

N(r± (x)) := N±(p).

Therefore every curve γi can be regarded as the border of two regular
surfaces S± one on the side + the other on the side − with respect to
γi . We will denote the unit outward pointing normal vector to γi in
the tangent plane to S± respectively with the symbol ν±.

• for every curve γi (the length of which is denoted by li) there exists a
global parametric C1 representation ri

ri : s ∈ [0, li] 7→ p ∈ S

such that ∥
∥
∥
∥

dri
ds

∥
∥
∥
∥
= 1,

dri
ds

·N± = 0.

We will assume that
dri
ds

×N± = ±ν±.

• for every Wj ∈ ∂∂S there exists at least one curve γi such that one of
the two following conditions holds

ri(0) = Wj or ri(li) = Wj .

Roughly speaking piecewise regular orientable and rectifiable surfaces,
in the particular conventional sense specified above, are surfaces where the
normal vector is defined in all points except those belonging to a finite set
of wedges and to a finite set of regular curves (the edges of the surface).
Along these curves a tangent vector is always defined together with both
the normals of the two subsurfaces concurring on the edge.

Definition 5.2. We call face of S every connected component of the set
S − (∂S ∪ ∂∂S)

13



5.2 Local parametrizations for regular curves and surfaces. Lo-
cal curvilinear coordinate systems in E3 adapted to surfaces
and surface edges.

We start recalling some basic definitions from differential geometry

Definition 5.3. A parametrization of a regular curve is a C1 one-to-one
function r : ]a1, b1[ → E3 such that

(∀p ∈ r (]a1, b1[))

(

t(p) :=
dr

dx1

(
r−1 (p)

)
6= 0

)

.

The vector t(p) is the tangent vector to the curve in p.

Definition 5.4. At every point p of a regular curve γ we can define the
following projection operators

Pγ,p := t(p)⊗ t(p); Qγ,p := N1(p)⊗N1(p) +N2(p)⊗N2(p)

where N1(p) and N2(p) form an independent set of vectors both orthogonal
to t(p).When this will not cause confusion we will skip one or both the
indices of the introduced projectors. Pγ,p will be called the projector in
the tangent bundle (or line) of γ at point p, while Qγ,pwill be called the
projector in the orthogonal bundle (or plane) of γ at point p.

Definition 5.5. A map

r :
(
x1, x2

)
∈ ]a1, b1[× ]a2, b2[ ⊂ R2 7→ r

(
x1, x2

)
∈ E3

is called a local parametrization for the regular surface S in the neigh-
borhood of p if r is a C1 diffeomorphism between ]a1, b1[ × ]a2, b2[ and
r (]a1, b1[× ]a2, b2[) =: Ip such that

r (]a1, b1[× ]a2, b2[) =: Ip ⊂ S; (6)

r−1(p) ∈ ]a1, b1[× ]a2, b2[ (7)

Once a local parametrization for the regular surface S is introduced then
a set of coordinate curves on S is established, together with a field of bases
for the tangent planes to S.

We will consider in the following the fields of vectors induced by a local
parametrization

(∀α ∈ {1, 2}) (∀q ∈ Ip)

(

aα(q) :=
∂r

∂xα

(
r−1 (q)

)
)

.

14



The couple {a1(q), a2(q)} is a basis of the tangent plane to S in the point
q. The set of points

r
({

x1
}
× ]a2, b2[

)
, r
(
]a1, b1[×

{
x2
})

are called the coordinate x2 and x1 curves. Remark that the vectors aα are
tangent to the coordinate xα curves. The C1 normal (to S) unit vector
field N can be calculated by the formula

N(q) =
a1(q)× a2(q)

‖a1(q)× a2(q)‖

Definition 5.6. Let the couple {a1(p), a2(p)} denote an othonormal basis
of the tangent plane to S in the point p. At every point p of a regular surface
S we can define the projector operators

PS,p := a1(p)⊗ a1(p) + a2(p)⊗ a2(p); (8)

QS,p := N(p)⊗N(p). (9)

When this will not cause confusion we will skip one or both the indices of
the introduced projectors. PS,p will be called the projector in the tangent
bundle (or plane) of S at point p, while QS,pwill be called the projector in
the ortogonal bundle (or line) of S at point p.

Remark 5.7. Because of the previous definitions, regular curves and sur-
faces are respectively one dimensional and two dimensional manifolds em-
bedded in the three dimensional Euclidean space.

The scalar fields

gαβ : q ∈ Ip 7→ aα(q) · aβ(q)

represent the components of a tensor field which is called the Riemannian
metric induced on S by the inner product in E3.

Remark 5.8. A given regular curve or surface can be endowed with the
structure of Riemannian manifold simply using the inner product of the
Euclidean space in which they are embedded. Indeed for any couple v and
w of vectors in their tangent bundle one can calculate their inner product
simply by regarding them as vectors in E3.

Although in the Euclidean space E3 the Cartesian system of coordinates,
using at every point the same vector basis to represent displacement vectors,
is in general sufficient, in the present context one needs to introduce the
following
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Definition 5.9. Local curvilinear coordinate systems in E3. A map

ϕ :
(
x1, x2, x3

)
∈ ]a1, b1[× ]a2, b2[× ]a3, b3[ ⊂ R3 7→ ϕ

(
x1, x2, x3

)
∈ E3

is called a local chart in E3 in the neighborhood Ip of p ∈ E3 determining
a local curvilinear coordinate system when it is a diffeomorphism between

]a1, b1[× ]a2, b2[× ]a3, b3[ and ϕ (]a1, b1[× ]a2, b2[× ]a3, b3[) =: Ip

A i − th (i ∈ {1, 2, 3}) coordinate curve is obtained fixing in the function
ϕ all arguments except the xi variable, and the tangent vectors of such
coordinate curves are denoted as follows

(∀q ∈ Ip)

(

ai(q) :=
∂ϕ

∂xi

(
ϕ−1 (q)

)
)

.

Obviously for every q ∈ Ip the set {ai(q), i ∈ {1, 2, 3}} is a basis of the vec-
tor space of translations in E3.Therefore the curvilinear coordinate system
which has been introduced generates a field of bases in all Ip.

Definition 5.10. In Ip we can introduce the following scalar fields

(∀q ∈ Ip) (gij(q) := ai(q) · aj(q))
which are the components, in considered curvilinear coordinate system, of
the Riemann metric in the Euclidean field E3.

Let us consider a piecewise regular surface: as we will see in what follows,
it is possible to introduce in the neighborhood of p charts (i.e. curvilinear
coordinate systems) in the Euclidean space E3 which are ”adapted” to i)
the surface in the neighborhood of regular point p ∈ S − (∂S ∪ ∂∂S) ii) to
the edge of the surface in the neighborhood of a point which is not a wedge.

Local curvilinear coordinate system in E3 adapted to S in
the neighborhood of a regular point.

The following Lemma is a consequence of the inverse function Theorem and
is the basis of an important part of Gaussian differential geometry (for a
proof see e.g. Kosinski (1986), dell’Isola and Kosinski (1989).

Lemma 5.11. Let r be a local parametrization of S in the neighborhood of
the regular point p ∈ S − (∂S ∪ ∂∂S). For a suitably small positive ε the
map ϕ defined by

ϕ :
(
x1, x2, x3

)
∈ ]a1, b1[× ]a2, b2[× ]−ε,+ε[ ⊂ R3 (10)

7→ r
(
x1, x2

)
+ x3N

(
r−1

(
x1, x2

))
∈ E3

actually is an invertible function and a diffeomorphism.
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Definition 5.12. When the map ϕ considered in the previous Lemma is
a diffeomorphism it is the called the chart adapted to S induced by the
parametrization r.

When this will not be cause of confusion we will admit an abuse of nota-
tion and we will use the symbols N

(
x1, x2

)
, gαβ

(
x1, x2

)
and aα

(
x1, x2

)
in-

stead of the symbolsN
(
r−1

(
x1, x2

))
, gαβ

(
r−1

(
x1, x2

))
and aα

(
r−1

(
x1, x2

))
.

The same abuse of notation will be repeated for all the fields ai and gij not
specifying the composition with the function ϕ−1.

The class of charts we have now introduced was first introduced by Gauss
(see e.g. Spivak (1979)).

We are now able to extend in the neighborhood in E3 of a regular point
p ∈ S the fields of projectors in the tangent and in the orthogonal bundles:

Definition 5.13. Let us consider a chart ϕ adapted to the surface S in
the neighborhood of a point p. For every x3 ∈ ]−ε, ε[ we can consider the
(regular) surface Sx3

which is defined by the following local parametrization

rx3
:= r + x3N.

On every surface Sx3
it is easy to introduce the tangent and orthogonal

projectors, which for x3 = 0 reduce to the projectors introduced already for
S = S0.We will denote these fields of projectors, also when defined in the
opens set

ϕ (]a1, b1[× ]a2, b2[× ]−ε,+ε[) ⊂ E3

with the same symbols PS,p and QS,p.

Local curvilinear coordinate system in E3 adapted to an
edge of S in the neighborhood of a point which is not a
wedge.

Let r be a local parametrization of an edge γ of S in the neighborhood of
a point p ∈ ∂S − ∂∂S. When it is a diffeomorphism, we will call the map ϕ
defined by

ϕ :
(
x1, x2, x3

)
∈ ]a1, b1[× ]−ε,+ε[× ]−ε,+ε[ ⊂ R3 (11)

7→ r
(
x1
)
+ x2N±(r−1

(
x1
)
) + x3ν±

(
r−1

(
x1
))

∈ E3

a chart adapted to S at the considered edge as induced by the edge parametriza-
tion r on the side + or − (respectively) depending on the consistent choice
adopted.
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Adapting the argument used in the proof of the Lemma of the previous
subsection, and using the assumed regularity hypotheses about S and its
edges, it can be proven again that, when the value of ε is chosen to be
positive and suitably small, ϕ actually is a diffeomorphism and can be used
as a chart in E3.

Definition 5.14. Let us consider a regular point of the edge γand a chart
adapted to S at γ. For every

(
x2, x3

)
∈ ]−ε,+ε[× ]−ε,+ε[ we can consider

the regular curves parametrized by the function

r±
x2,x3 := r + x2N± + x3ν±.

For each of these curves we can define the projection on the orthogonal and
tangent bundles, thus obviously extending in the neighborhood of γ the
already introduced projection fields Pγ,p and Qγ,p.

6 Gauss Divergence Theorem for embedded

Riemannian manifolds

We choose a global othonormal basis (ei, i = 1, 2, 3) for the vector field of
displacements in E3. All tensor fields, unless differently specified, will be
represented by means of the components with respect this basis. In this
section we consider an embedded Riemannian manifold M in E3. This man-
ifold can be therefore a regular curve or surface. Because we were able to
construct the so-called Gaussian coordinate systems adapted to considered
manifolds, then in a whole neighborhood of these manifolds it is possible
to introduce the projection operator fields P and Q. For reducing the com-
plication of the calculation which we will perform in what follows we do
not use directly the adapted curvilinear coordinates: instead, after having
established the existence of the fields P and Q in the neighborhood of M,we
introduce a global Cartesian coordinate system and represent all fields in it.
This technical choice is exactly the same one which allowed to Germain the
generalization, for second gradient materials, of the results found by Green,
Rivlin, Toupin and Mindlin.

It is easy to prove the following:

Lemma 6.1. If on each manifold M , P denotes the projection on the tan-
gent bundle : we have

δji = P j
i +Qj

i , P j
i P

k
j = P k

i , (12)

Qj
iQ

k
j = Qk

i , P j
i Q

k
j = 0.
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The unit external normal to M on its border is denoted ν; it belongs to the
tangent space to M .

Using these notations the divergence theorem reads (see e.g. Spivak
(1979))

Theorem 6.2. For any vector field W defined in the vicinity of M
∫

M

(P i
jW

j),kP
k
i =

∫

∂M

W iP k
i νk (13)

This theorem together with relation

Qi
j,kP

k
i = −Qi

jP
k
i,k

implies that

Corollary 6.3. For any vector field W defined in a neighborhood of M
∫

M

(
W i
)
,k P

k
i =

∫

M

(P i
jW

j),kP
k
i + (Qi

jW
j),kP

k
i = (14)

=

∫

M

W jQi
j,kP

k
i +

∫

∂M

W iP k
i νk = (15)

= −
∫

M

W jQi
jP

k
i,k +

∫

∂M

W iP k
i νk. (16)

7 Power expended by internal or external actions

Once we fix a subbody B of a given continuous body C and consider the set
A of all admissible velocity fields for B it is natural to admit that in A are
included all ”test functions” (i.e. infinitely differentiable functions) having
compact support.

It is also natural (as done e.g. by Salençon (1988-2005) or Germain
(1973)) to assume that the power expended by internal or external actions
(with respect to B) is a linear and continuous functional when defined in
the set of test functions (with respect to Frechèt topology).

In other word we accept the following

Postulate (Power)
The power expended by actions exerted on or in a subbody B is

a distribution (in the sense of Schwartz).
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It is clear that, once the previous postulate is accepted, the following
Theorems and Definitions, due to Schwartz (1973), become really relevant
in continuum mechanics:

Theorem 7.1. Every distribution having compact support K can be, in in-
finitely equivalent ways, represented as the sum of a finite number of deriva-
tives (in the weak sense) of continuous functions all having their support
included in a neighborhood of K.

Definition 7.2. A distribution is said to have order smaller than or equal
to k if one can represent it as the sum of derivatives of continuous functions
all having order smaller than or equal to k.

Theorem 7.3. Every distribution having support included in a regular
embedded submanifold M can be uniquely decomposed as a finite sum of
transversal derivatives of extensions of distributions defined on M.

7.1 Representations of distributions which are N−th order deriva-
tives of absolutely continuous measures concentrated on sub-
manifolds of RH with border

In what follows we will need to consider distributions having support con-
centrated on a regular submanifold M embedded in RH which are exactly
the N − th order derivatives of measures which are absolutely continuous
with respect to the corresponding Hausdorff measure.

More specifically we will be interested to consider distributions having
the form

P(V ) =

∫

M

T · ∇NV (17)

where T is a suitably integrable (with respect to the Hausdorff measure of
M) N -times contravariant tensor field.

We have now to get a Lemma which is essential when one wants to study
the structure of contact actions in n− th order continua.

Lemma 7.4. Let us consider a Riemannian ”regular” embedded manifold
M . Let T be a symmetric tensor field defined in the neighborhood of M. Let
us introduce the following ”projected” field

P(T )j1...jN−1l =

(
N−1∑

α=0

CN
α T i1i2...iNQj1

i1
..Qjα

iα
P

jα+1

iα+1
..P

jN−1

iN−1

)

P l
iN

(18)

20



where CN
α denotes the appropriate binomial coefficient. Then the following

formula of integration by parts holds:

∫

M

T i1i2...iNV,i1i2...iN = (19)

=

∫

M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (20)

−
∫

M

((
P(T )j1...jN−1l

)
,jN P jN

l

)

V,j1j2...jN−1
+ (21)

+

∫

∂M

P(T )j1...jN−1lV,j1j2...jN−1
P jN
l νjN (22)

Proof. We start decomposing identity tensor field in terms of tangent and
orthogonal projector fields adapted to M

∫

M

T i1i2...iNV,i1i2...iN = (23)

=

∫

M

T i1i2...iNV,j1j2...jN (P j1
i1

+Qj1
i1
)(P j2

i2
+Qj2

i2
) . . . (P jN

iN
+QjN

iN
). (24)

Subsequently we use the symmetry of T and orthogonality of P and Q
projectors thus obtaining with simple algebra

∫

M

T i1i2...iNV,i1i2...iN = (25)

=

∫

M

N∑

α=0

CN
α

(

T i1i2...iNQj1
i1
..Qjα

iα
V,j1j2...jN P

jα+1

iα+1
..P jN

iN

)

= (26)

=

∫

M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (27)

+

∫

M

N−1∑

α=0

CN
α

(

T i1i2...iNQj1
i1
..Qjα

iα
V,j1j2...jN P

jα+1

iα+1
..P jN

iN

)

. = (28)

=

∫

M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (29)

+

∫

M

(
N−1∑

α=0

CN
α T i1i2...iNQj1

i1
..Qjα

iα
P

jα+1

iα+1
..P

jN−1

iN−1

)

V,j1j2...jN−1jN P jN
iN

. (30)

We finally introduce the definition of the projected field P(T ), use Leibnitz
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differentiation rule and apply Divergence Theorem on M

∫

M

T i1i2...iNV,i1i2...iN = (31)

=

∫

M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (32)

+

∫

M

P(T )j1...jN−1lV,j1j2...jN−1jN P jN
l = (33)

=

∫

M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (34)

−
∫

M

(
P(T )j1...jN−1l

)
,jN P jN

l V,j1j2...jN−1
+ (35)

+

∫

M

(
P(T )j1...jN−1lV,j1j2...jN−1

)
,jN P jN

l = (36)

=

∫

M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (37)

−
∫

M

((
P(T )j1...jN−1l

)
,jN P jN

l

)

V,j1j2...jN−1
+ (38)

+

∫

∂M

P(T )j1...jN−1lV,j1j2...jN−1
P jN
l νjN (39)

so concluding the proof.

Remark 7.5. If T is a N − th order tensor field then also P(T ) is a N − th
order tensor field.

Definition 7.6. Let S be a N − th order tensor field having Si1i2...iN as
component fields . We denote by divMS the tensor field having the com-

ponents
((

Sj1...jN−1l
)
,jN P jN

l

)

.Obviously divMS is a tensor field of order

N − 1.

Definition 7.7. We will denote S⊥ the tensor field (equally of order N)
having the following components Si1i2...iNQj1

i1
Qj2

i2
..QjN

iN
.

Using the notation introduced in the previous remark and denoting with
a dot the complete saturation of contravariant with covariant indices, the
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formula obtained in the previous Lemma reads as follows
∫

M

T · ∇NV =

∫

M

T⊥ ·
(
∇NV

)

⊥
+ (40)

−
∫

M

(divMP(T )) · ∇N−1V+ (41)

+

∫

∂M

P(T ) ·
(
∇N−1V ⊗ ν

)
(42)

We can now apply a second time the Lemma thus obtaining
∫

M

T · ∇NV =

∫

M

T⊥ ·
(
∇NV

)

⊥
+

∫

∂M

P(T ) ·
(
∇N−1V ⊗ ν

)
(43)

−
∫

M

(divMP(T )) · ∇N−1V = (44)

=

(∫

M

T⊥ ·
(
∇NV

)

⊥

)

+

∫

∂M

P(T ) ·
(
∇N−1V ⊗ ν

)
+ (45)

−
(∫

M

(divMP(T ))⊥ ·
(
∇N−1V

)

⊥

)

+ (46)

+

(∫

M

divM (P (divMP(T ))) · ∇N−2V

)

+ (47)

−
∫

∂M

P (divMP(T )) ·
(
∇N−2V ⊗ ν

)
. (48)

Applying exactly N times the Lemma we get the following

Corollary 7.8. Under the same assumptions of the previous lemma and
having introduced the conventions

(divMP)
0
T = T, (divMP)

α
T = divMP(divMP......(divMP(T ))

︸ ︷︷ ︸

α times

the following equality holds if T is a symmetric tensor field K− times con-
travariant :

∫

M

T · ∇KV =

K−1∑

α=0

(−1)
α

∫

M

((divMP)
α
T )⊥ ·

(
∇K−αV

)

⊥
+ (49)

+ (−1)
K

∫

M

(

(divMP)
K
T
)

V+ (50)

+
K−1∑

α=0

(−1)
α

∫

∂M

P((divMP)
α
T ) ·

(
∇K−1−αV ⊗ ν

)
(51)
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An alternative expression for the previous representation formula is (the
lower dot indicates the saturation of the last index of the tensor at its left
with the first index of the tensor at his right) obtained by renominating the
indices:

∫

M

T · ∇KV =

K∑

J=1

(−1)
K−J

∫

M

(

(divMP)
K−J

T
)

⊥
·
(
∇JV

)

⊥
+ (52)

+ (−1)
K

∫

M

(

(divMP)
K
T
)

V+ (53)

+
K−1∑

L=0

(−1)
K−1−L

∫

∂M

P((divMP)
K−1−L

T ).ν · ∇LV (54)

The previous corollary allows us to find the unique representation in
terms of transversal derivatives of the distribution of the type specified by
equation 17. The existence of this representation is stated in Theorem 7.3.

8 Principle of Virtual Powers applied to N − th

gradient continua.

On a continuous body B external world can exert actions. While defor-
mation processes occur in the same body its subbodies interact because of
internal actions. We call ”internal” the power expended on an admissi-
ble velocity by internal actions, and ”external” the power expended on an
admissible velocity by external actions.

The following definitions are clearly inspired by Schwartz representation
theorem: however it has to be remarked that such definitions were put
forward by Green and Rivlin who, most likely, were unaware of Schwartz
results.

Definition 8.1. We call N − th gradient continuum a continuous body B
for which the internal power Pint is a distribution of order smaller or equal
to N. In formulas (the dot representing the saturation of contravariant with
covariant indices)

Pint(B, V ) =

N∑

Λ=0

∫

B

TΛ · ∇ΛV. (55)

Following Green and Rivlin we will call the Λ− times contravariant tensors
TΛ ”Λ-th order multipolar stress”.

Remark 8.2. The previous definition is clearly a ”constitutive” assump-
tion, specifying the ”type” of internal actions which are considered ”possi-
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ble” inside the body. The Theorem 7.1, once one accepts the Postulate 7,
proves that for a given body the internal power must be of finite order.

The energy transfer per unit time from the external world to the body
B can also be calculated by means of a suitable distribution calculated on
the admissible velocity field V.

We assume that in order to distinguish long range actions from contact
actions the power of external actions Pext exerted on the body B must
be represented by means of the theorem 7.3: long range external actions
exerted on B can be represented a distribution which is a integrable function
with respect threedimensional Lebesgue measure, while contact actions are
concentrated on the contact surface of B and are distributions which can be
transverse distributional derivatives on the regular part of this surface and
on its edges and wedges: these distributions will be represented by means
of integrals calculated with Hausdorff measures of dimension two or one or
by means of sums of Dirac Deltas.

We are now ready to add a second (for a beautiful presentation of the
ideas inspiring this axiom the reader is referred to Salençon(1988) or to
Cosserat (1908-1909))

Postulate (Principle of Virtual Powers or Power Balance)

For every subbody S of a given body and for every test velocity
field V the following equality holds

Pint(B, V ) = Pext(B, V ). (56)

9 Contact actions in N − th order strain-gradient

multipolar continua: N − th order forces and stress

multipoles.

The Principle of Virtual Powers clearly implies that the admissible external
contact actions which a N − th gradient continuum can ”sustain” belong to
a particular subset of the set of distributions concentrated on ∂B, ∂∂B and
∂∂∂B. The argument we develop here follows the same spirit as the papers
cited in the references by Green, Rivlin and Germain. Also of relevance are
the considerations in Seppecher (1987)-(1989).

In the following we want specify the aforementioned class.
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Lemma 9.1. Let B be a N − th gradient continuum. Let us assume that
the topological boundary of B is a piecewise regular surface as defined in
5.1. If the equality 56 holds then for the part of Pext having support on
∂B, ∂∂B and ∂∂∂B (i.e. for the external actions which are contact actions
concentrated on the topological boundary of B) the following properties hold
i) the part of Pext having support on ∂B and absolutely continuous with
respect to H2 measure is a distribution of order smaller or equal to N − 1,
ii) the part of Pext having support on ∂∂B and absolutely continuous with
respect to H1 measure is a distribution of order smaller or equal to N − 2,
iii) the part of Pext having support on ∂∂∂B is a distribution concentrated
on points, constituted by derivatives of Dirac Deltas of order smaller or
equal to N − 2.

Proof. The proof is easily obtained repeatedly applying to the addends of 55
the Corollary 7.8 to the embedded Riemannian manifolds which constitutes
the regular parts of the topological boundary of B and its edges.

Because of the previous Lemma and the Corollary 7.8 the following rep-
resentation form for Pext holds

Lemma 9.2. The external actions which can be sustained by a N − th
gradient continuum can only expend powers of the type

Pext(B, V ) =

∫

B

EV +

∫

SB

F0V +

N−1∑

∆=1

∫

SB

F∆ ·
(
∇∆V

)

⊥
+ (57)

+

∫

EB

G0 · V +

N−2∑

∆=1

∫

EB

G∆ ·
(
∇∆V

)

⊥
+

N−3∑

∆=0

∫

WB

H∆ · ∇∆V

(58)

where we used the notations SB := Support(∂B), EB := Support(∂∂B) and
WB := Support(∂∂B)

Remark 9.3. It is needed here (for more details see e.g. Arnold (1979)) to
precise the relationship between e.g. ∂∂B and its support. If an edge is the
border of two different regular surfaces belonging to ∂B then ∂∂B is the
union of the two borders of these concurring surfaces, with a sign depending
on the relative orientation of the curve, which constitutes the support of
the two different borders, and the concurring surface. These definitions are
those used generally in the theory of integration of differential forms defined
on differential manifolds.
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Definition 9.4. The fields F∆, G∆ and H∆ are called by Green and Rivlin
”contact n− forces” per unit surface, per unit line or concentrated on points.

Remark 9.5. In all previous considerations we have used the following
obvious but important facts: i) when applying Corollary 7.8 to the body
B there is no transverse direction in the embedding, ii) when the same
corollary was applied to regular parts of the topological boundary of B and
to its edges then the transverse directions in the corresponding embeddings
are the normal to the surfaces or the planes orthogonal to the tangents to
the edges, iii) in wedges all directions are transverse.

We want now to find how to generalize Cauchy representation Theorem
for contact force densities in terms of Cauchy stress to multipolar N− th
gradient continua basing it again on the Postulate 8 and on the Corollary
7.8.

We start from the formula 55

Pint(B, V ) =
N∑

Λ=0

∫

B

TΛ · ∇ΛV. (59)

and apply to each of its addends the formula obtained in the Corollary 7.8
when first identifying M with B, the projection operator P with the identity
and the outer normal ν with the normal n to the surface ∂B, we get

Pint(B, V ) =

N∑

Λ=0

∫

B

TΛ · ∇ΛV = (60)

=

∫

B

(
N∑

Λ=0

(−1)
Λ
divΛTΛ

)

V+ (61)

+
N∑

Λ=0

Λ−1∑

L=0

∫

∂B

((−1)
Λ−1−L

(div)
Λ−1−L

TΛ).n · ∇LV (62)

We now simply manipulate, using associativity of summation, the ob-
tained expression for getting the coefficients of every power of∇V appearing
in it. Therefore the equality

Pint(B, V ) =

N∑

Λ=0

∫

B

TΛ · ∇ΛV (63)

becomes
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Pint(B, V ) =

∫

B

(
N∑

Λ=0

(−1)
Λ
divΛTΛ

)

V+ (64)

N−1∑

L=0

∫

∂B

(
N∑

Λ=L+1

(−1)
Λ−1−L

divΛ−1−LTΛ.n

)

· ∇LV (65)

A simple inspection of equations 63 and 65 makes natural the introduc-
tion of to the following

Definition 9.6. Bulk and Surface Stress Tensors

T (B,Λ) := TΛ; T (∂B,L) :=

(
N∑

Λ=L+1

(−1)
Λ−1−L

divΛ−1−LTΛ.n

)

(66)

Definition 9.7. Bulk Internal Force

F (B, 0) :=

(
N∑

Λ=0

(−1)
Λ
divΛ(T (B,Λ))

)

By means of introduced notations the expression of internal power is
meaningfully simplified as follows:

Pint(B, V ) =

∫

B

F (B, 0)V +

N−1∑

L=0

∫

∂B

T (∂B,L) · ∇LV (67)

We now apply the Corollary 7.8, by identifying the embedded manifold
M with any of the regular parts of ∂B to transform the integrals involving
surface stresses thus obtaining:(in the following formulas ν represents the
unit normal to ∂∂B which is tangent to ∂B and we denoted with the symbol
Pσ the projector operator relative to the tangent planes of every the regular
parts of ∂B)

∫

∂B

T (∂B,L) · ∇LV = (68)

=

L∑

J=1

(−1)
L−J

∫

∂B

(

(div∂BPσ)
L−J

T (∂B,L)
)

⊥
·
(
∇JV

)

⊥
+ (69)

+ (−1)
L

∫

∂B

(

(div∂BPσ)
L
T (∂B,L)

)

V+ (70)

+

L−1∑

J=0

(−1)
L−1−J

∫

∂∂B

Pσ((div∂BPσ)
L−1−J

T (∂B,L)).ν · ∇JV (71)
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We get for the sum of all terms involving surface stresses

N−1∑

L=0

∫

∂B

T (∂B,L) · ∇LV =

=

N−1∑

L=0

L∑

J=1

(−1)
L−J

∫

∂B

(

(div∂BPσ)
L−J

T (∂B,L)
)

⊥
·
(
∇JV

)

⊥
+ (72)

+

N−1∑

L=0

(−1)
L

∫

∂B

(

(div∂BPσ)
L
T (∂B,L)

)

V

+
N−1∑

L=0

L−1∑

J=0

(−1)
L−1−J

∫

∂∂B

Pσ((div∂BPσ)
L−1−J

T (∂B,L)).ν · ∇JV

Using again associativity of summation the last equality becomes

N−1∑

L=0

∫

∂B

T (∂B,L) · ∇LV = (73)

=

N−1∑

J=1

∫

∂B

(
N−1∑

L=J

(−1)
L−J

(div∂BPσ)
L−J

T (∂B,L)

)

⊥

·
(
∇JV

)

⊥
+ (74)

+

∫

∂B

(
N−1∑

L=0

(−1)
L
(div∂BPσ)

L
T (∂B,L)

)

V (75)

+
N−2∑

J=0

∫

∂∂B

(
N−1∑

L=J+1

(−1)
L−1−J

Pσ((div∂BPσ)
L−1−J

T (∂B,L)).ν

)

· ∇JV

(76)

The nomenclature introduced in the previous definitions (which are based
on those introduced by Green and Rivlin) allows us a meaningful interpre-
tation of obtained result

9.1 The terms of surface (1-)forces and surface L+ 1− forces

Surface density F (∂B, 0) of (1−)force appears in the addend 75

F (∂B, 0) :=
N−1∑

L=0

(−1)
L
(div∂BPσ)

L
T (∂B,L)

The introduced vector quantity F (∂B, 0) generalizes Cauchy ”traction” vec-
tor: it is expending power on (virtual) velocities.
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Remark 9.8. In Cauchy Continua surface density of force F (∂B, 0) coin-
cides with the only non-vanishing surface stress T (∂B, 0). In Second Gra-
dient Continua (as established by Green and Rivlin, Mindlin and Germain)
the following equality holds

F (∂B, 0) = T (∂B, 0)− (div∂BPσ)T (∂B, 1).

We then consider the addend 74 which leads us to the definition

F (∂B, J) :=

(
N−1∑

L=J

(−1)
L−J

(div∂BPσ)
L−J

T (∂B,L)

)

⊥

(77)

Surface J + 1− forces F (∂B, J) expend power on the J − th transverse
gradient of (virtual) velocity fields.

Finally we consider the addend 76 which leads us naturally to the fol-
lowing

Definition 9.9. Line Stress Tensors

T (∂∂B,L) := .

(
N−1∑

L=J+1

(−1)
L−1−J

Pσ((div∂BPσ)
L−1−J

T (∂B,L)).ν

)

(78)

We have thus proven the following intermediate:

Lemma 9.10. For N − th gradient continua the following representation
formula holds

Pint(B, V ) =

∫

B

F (B, 0)V +

∫

∂B

F (∂B, 0) · V (79)

+

N−1∑

L=1

∫

∂B

F (∂B,L) ·
(
∇LV

)

⊥
+

N−2∑

L=0

∫

∂∂B

T (∂∂B,L) · ∇LV (80)

We must now proceed by applying again the Corollary 7.8 (when this
time M is any regular curve with border belonging to ∂∂B) to the terms
involving line stresses. Once we have introduced the projection operator Pλ

relative to every regular curve composing ∂∂B, and the vector t∂∂B denoting
the tangent vector of the generic edge concurring in the considered wedge
we get
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∫

∂∂B

T (∂∂B,L) · ∇LV = (81)

=
L∑

J=1

(−1)
L−J

∫

∂∂B

(

(div∂∂BPλ)
L−J

T (∂∂B,L)
)

⊥
·
(
∇JV

)

⊥
+ (82)

+ (−1)
L

∫

∂∂B

(

(div∂∂BPλ)
L
T (∂∂B,L)

)

V+ (83)

+
L−1∑

H=0

(−1)
L−1−H

∫

∂∂∂B

Pλ((div∂∂BPλ)
L−1−H

T (∂∂B,L)).t∂∂B · ∇HV

(84)

Summing over L and using once more associativity we get

N−2∑

L=0

∫

∂∂B

T (∂∂B,L) · ∇LV = (85)

=

N−2∑

J=1

∫

∂∂B

(
N−2∑

L=J

(−1)
L−J

(div∂∂BPλ)
L−J

T (∂∂B,L)

)

⊥

·
(
∇JV

)

⊥
+

(86)

+

∫

∂∂B

(
N−2∑

L=0

(−1)
L
(div∂∂BPλ)

L
T (∂∂B,L)

)

V+ (87)

+
N−3∑

H=0

∫

∂∂∂B

(
N−2∑

L=H+1

(−1)
L−1−H

Pλ((div∂∂BPλ)
L−1−H

T (∂∂B,L)).t∂∂B

)

·∇HV (88)

9.2 The terms of line (1-)forces and line J + 1− forces.

Concerning the addend in 87 we easily recognize that it must be inter-
preted as a line density of 1-force.

Therefore we introduce, in terms of introduced line stresses, the following

Definition 9.11. Line density of 1-force

F (∂∂B, 0) :=

N−2∑

L=0

(−1)
L
(div∂∂BPλ)

L
T (∂∂B,L)

Regarding the addend in 86, it naturally leads to the following
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Definition 9.12. Line density of J+ 1-force

F (∂∂B, J) :=

(
N−2∑

L=J

(−1)
L−J

(div∂∂BPλ)
L−J

T (∂∂B,L)

)

⊥

(89)

9.3 The terms of (1-)forces and J + 1− forces concentrated on
wedges

The process of integration by parts is finally ended. We are left with
forces, double forces, triple forces up to N−3 forces concentrated on wedges.
Indeed the terms in 88, naturally lead to the following

Definition 9.13. (1−) forces and H+ 1-forces concentrated on wedges

F (∂∂∂B, 0) :=

(
N−2∑

L=1

(−1)
L−1

Pλ((div∂∂BPλ)
L−1

T (∂∂B,L)).t∂∂B

)

(90)

F (∂∂∂B,H) :=

(
N−2∑

L=H+1

(−1)
L−1−H

Pλ((div∂∂BPλ)
L−1−H

T (∂∂B,L)).t∂∂B
(91)

In conclusion in the present subsection we have finally obtained the fol-
lowing

Representation formula for power expended by line stresses

N−2∑

L=0

∫

∂∂B

T (∂∂B,L) · ∇LV =

N−2∑

J=1

∫

∂∂B

F (∂∂B, J) ·
(
∇JV

)

⊥
+ (92)

+

∫

∂∂B

F (∂∂B, 0)V +

N−3∑

J=0

∫

∂∂∂B

F (∂∂∂B, J) · ∇JV (93)
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9.4 The obtained expression for Internal Power in N − th Gradi-
ent Continua

Gathering all results obtained in the previous subsection we get the
searched representation formula for internal power

Pint(B, V ) =

∫

B

F (B, 0)V +

∫

∂B

F (∂B, 0) · V

+
N−1∑

L=1

∫

∂B

F (∂B,L) ·
(
∇LV

)

⊥
+ (94)

+

∫

∂∂B

F (∂∂B, 0)V +

N−2∑

J=1

∫

∂∂B

F (∂∂B, J) ·
(
∇JV

)

⊥
+

+

N−3∑

J=0

∫

∂∂∂B

F (∂∂∂B, J) · ∇JV (95)

where all types of forces are represented in terms of bulk, surface and
line stresses by means of the relationships which we recall for convenience
in the following summary.

Remark 9.14. Surface stresses are defined in terms of bulk stresses and
line stresses in terms of surface stresses by means of equations 78 and 66.
Therefore All kind of stresses are defined in terms of bulk stresses. This
implies that all type of forces are represented in terms of bulk stresses.

We list now all introduced definitions for forces and stresses

T (∂B,L) :=

(
N∑

Λ=L+1

(−1)
Λ−1−L

divΛ−1−LTΛ.n

)

(96)

T (∂∂B, J) := .

(
N−1∑

L=J+1

(−1)
L−1−J

Pσ((div∂BPσ)
L−1−J

T (∂B,L)).ν

)

(97)

F (∂B, 0) :=

N−1∑

L=0

(−1)
L
(div∂BPσ)

L
T (∂B,L)

F (∂B, J) :=

(
N−1∑

L=J

(−1)
L−J

(div∂BPσ)
L−J

T (∂B,L)

)

⊥

(98)
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F (∂∂B, 0) :=

N−2∑

L=0

(−1)
L
(div∂∂BPλ)

L
T (∂∂B,L)

F (∂∂B, J) :=

(
N−2∑

L=J

(−1)
L−J

(div∂∂BPλ)
L−J

T (∂∂B,L)

)

⊥

(99)

F (∂∂∂B,H) :=

(
N−2∑

L=H+1

(−1)
L−1−H

Pλ((div∂∂BPλ)
L−1−H

T (∂∂B,L)).t∂∂B
(100)

Finally it is easy to prove the following corollaries:

Corollary 9.15. The tensor TN determines the surface N − 1 forces, the
edge N − 2 forces and the wedge N − 3 forces as established by means of the
following formulas:

F (∂B,N − 1) = T (∂B,N − 1) = (TN .n)⊥ (101)

F (∂∂B,N − 2) := T (∂∂B, n− 2) = (Pσ(TN .n).ν)⊥ (102)

F (∂∂∂B,N − 3) = (Pλ (Pσ(TN .n)).ν)).t∂∂B) (103)

Clearly

Corollary 9.16. The set of equations 96, 97, 98, 99 and 100 allow us to
define three functionals mapping the contact surface ∂B and the N − tuple
of tensor fields {TΛ} on to the set of corresponding contact actions







(F (∂B, J) , J = 0, ...N − 1)
F (∂∂B, J), J = 0, ...N − 1

F (∂∂∂B, J), J = 0, ..., N − 2






(104)

This map, for a fixed contact surface ∂B, is linear. We will denote the
introduced linear functionals with the symbols introduced by means of the
following definitionsF(∂B), F(∂∂B) and F(∂∂∂B)

F(∂B, {TΛ} , J) := F (∂B, J)
F(∂∂B, {TΛ} , J) := F (∂∂B, J)

F(∂∂∂B, {TΛ} , J) := F (∂∂∂B, J)
(105)

Proof. Simply consider the previous formulas 100, 96 and 97 and evaluate
them when H = N − 3, L = N − 2, L = N − 1.
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We will use the previous corollaries later, when we will consider the
consequence of the Cauchy tetrahedron argument on the structure of contact
actions in N − th gradient continua.

9.5 Some final considerations about obtained results:

Using the Postulate 8 and assuming that the bulk, surface and line
stresses are sufficiently regular so that all needed divergences can be es-
timated, then from the representation formulas 94 and 57 and arbitrariness
of test functions V we can get the following ”strong” version of the Principle
of Virtual Powers

F (B, 0) = E (106)

∀L = 0, ...N − 1 F (∂B,L) = FL (107)

∀J = 0, ...N − 2 F (∂∂B, J) = GJ (108)

∀J = 0, ...N − 3 F (∂∂∂B, J) = HJ (109)

The first of the listed equations is a system of PDE defined inside the ref-
erence configuration of the body B,while the others are appropriate bound-
ary conditions to be verified on regular surfaces, edges and wedges of the
topological boundary of B.

We explicitly remark that

• From equations 98 and 96 it is evident the very particular nature
of so called ”Cauchy Postulate”. Indeed the contact force per unit
surface at any regular part of a surface regarded as a Cauchy cut in
general do not depend only on the normal n of such surface. In N−th
gradient continua such contact force in general depends also on ∇n
up to ∇N−1n.

• From equations 99, 96 and 97 it is evident that line contact force
depends in general on the vectors and tensors ν and ∇Ln relative
to all regular surfaces concurring on considered edge, and on their
derivatives along the edges.

• Concentrated J−forces are present at wedges depending on the ge-
ometry of concurring edges and regular surfaces, and more precisely
on edges tangent vectors, on surface normals and their gradients, on
edges exterior normals and their gradients.

In the present section we have completely characterized the structure
of contact actions in N − th gradient continua by using the first method
delineated in the section 2.
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10 Bodies, Contact Surfaces and Shapes ??

In this section we start attacking the problem of characterizing the structure
of contact actions in N − th gradient continua by using the second method
delineated in the section 2: in other words we use the approach à la Cauchy.

Following Truesdell (1977) we call domains the closures of open Kellogg
(1929) regular regions. We want to describe the contact actions exerted on
a body, identified with the domain C it occupies in Euclidean space, through
its topological boundary S := ∂C (which we will call the contact surface).

Only when we will need to represent with integral formulas the power
expended by contact actions we will choose to limit our attention to a par-
ticular class of contact surfaces: those which are piecewise regular surfaces
with edges and wedges, as defined in the previous section 4.

Remark 10.1. The definition of piecewise regular surface with edges and
wedges will need to be generalized. In a forthcoming paper the present
analysis will be generalized and we will introduce edges and wedges of order
k + 1, i.e. curves (edges) on piecewise regular surfaces on which the k − th
order gradient of the normal suffers a jump (discontinuity of the first kind,
or jump discontinuity), and points (wedges) at which edges of order k are
concurring.

Remark 10.2. The reasonings developed in the previous section 4.prove
that on edges and wedges of order k+1 there may be concentrated h−forces
with h ≥ k + 1.

We are interested in the dependence of contact actions on the shape of
S.

Then we have to define precisely what we call shape of S : it will be a
local concept.

Definition 10.3. Surfaces locally having the same shape We say that
the shape of the contact surface S at the point x ∈ S is the same as the
shape of the contact surface S ′ at the point x′ ∈ S ′ if and only if there exist
two open sets I(x) and I(x′) such that

i) x ∈ I(x), x′ ∈ I(x′) and ii) tx′−x(I(x)∩S) = I(x′) ∩ S ′ (110)

where tu denotes the translation of points, vectors and sets induced by the
vector u. To say that the shape of the contact surface S at the point x ∈ S
is the same as the shape of the contact surface S ′ at the point x′ ∈ S ′ we
will occasionally use the notation

(x,S)R (x′,S ′) . (111)
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Definition 10.4. Shapes We call shape of S at the point x ∈ S the
equivalence class with respect to the above defined equivalence relation R

to which belongs the ordered pair (x,S).We denote this equivalence class
by means of the symbol [(x,S)].

Remark 10.5. Note that, according to this definition, when a surface is
rotated it do change its shape.

Definition 10.6. Sets of shapes: Let S be a contact admissible surface.
We introduce the set of the shapes of S

Φ(S) := {[(x,S)] / x ∈ S} (112)

We will also need to consider the set Φ of all admissible shapes:

f ∈ Φ ⇔ (∃S admissible) (f ∈ Φ(S)) (113)

Definition 10.7. Plane shapes Obviously the shape of a plane π at any
of its points depends only on the normal n to the plane. When there is no
ambiguity, we denote the shape of a plane simply by n.

Definition 10.8. Dihedral shapes Let us consider a non-degenerate di-
hedron. We denote by n1 and n2 the external normals to the half-planes
forming it, and by τ the unit vector tangent to the edge of the dihedron, i.e.
the line which is the intersection of the two half-planes. We assume that
the ordered triple (n1, n2, τ) verifies the condition

(n2 × n1) · τ > 0.

Each of considered two half-planes is a two-dimensional manifold with bor-
der: the outer normal to this border is given respectively by the vectors
ν1 = n1 × τ and ν2 = −n2 × τ.On the edge of such a dihedron, the shape
is constant and is determined by n1, n2 and τ . This shape will be denoted
by (n1, n2, τ) . Note that (n1, n2, τ) = (n2, n1,−τ) .The angle (−n1, n2) in
the plane oriented by τ will be called the dihedral angle of (n1, n2, τ); it is
different from 0, π and 2π.

Definition 10.9. Nondegenerate k−tuple of vectors. Let us consider
a point x and a k − tuple of vectors (n1, ..., nk) applied at x. The planes
πi are defined by the conditions: i) x ∈ πi and ii) ni⊥πi. The unit tangent
vector τi to the the edge γi := πi ∩ πi+1 is given by τi = ni × ni+1 (we
define nk+1 := n1).Let us denote Pπ the projection operator in the plane π.
The k− tuple (n1, ..., nk) of vectors is said to be nondegenerate when there
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exists a plane π such that i) x ∈ π, ii) for a unit vector e in π the following
property holds

(∀i ≤ k) (∀j ≤ k)

(

(i < j) ⇒
(

0 <
Pπτi

‖Pπτi‖
· e < Pπτj

‖Pπτj‖
· e
))

. (114)

Definition 10.10. (Nondegenerate) Polihedral Wedge Shapes or Mul-
tiple planar shapes with edges concurring in a wedge. Let us consider a
point x and a nondegenerate k − tuple of vectors (n1, ..., nk) applied at
x.We call Ai the angle having vertex in x and as sides the half-lines origi-
nating from x in the direction of τi. Let us consider the piecewise regular
surface

⋃

i Ai. We call polihedral wedge shape or multiple planar shape with
edges concurring in a wedge the equivalence class [(x,

⋃

i Ai)] . When this
will not lead to confusion we will denote a polihedral wedge shape with the

symbol ̂(n1, ..., nk).

Definition 10.11. Cuts. Let D1, ...Dp be p compact domains having as
(topological) boundaries the contact surfaces denoted S1, ...,Sp. Let S∩ be

the topological boundary of
p⋂

i=1

Di. At each point x in
p⋂

i=1

Si ∩ S∩ the

shape of S∩ depends only on the shape of all Si . For every x ∈
p⋂

i=1

Si ∩S∩

we denote the shape of
p⋂

i=1

Si ∩ S∩ at x by the symbols

Cut ([(x,Si)] , i = 1, .., p) ; or Cut ([(x,S1)] , [(x,S2)] , ..., [(x,Sp)]) .
(115)

Example 10.12. Plane Cuts. Let D be a domain the boundary of
which is the contact surface S. Let π be a plane and H the half-space
with boundary π and outer unit normal n. Let x ∈ π ∩ S . We will
call the Cut ([(x,S)] , [(x, π)]) a plane cut and we will shortly denote it by
Cut ([(x,S)] , n) .

Example 10.13. Multiple Plane Cuts. LetD be a domain the boundary
of which is the contact surface S. Let πi ; i = 1, ...p be planes having as

outer unit normal the vectors ni respectively. Let x ∈
p⋂

i=1

πi ∩ S . We will

call the Cut ([(x,S)] , [(x, π1)] , .., [(x, πp)]) a plane cut and we will shortly
denote it by Cut ([(x,S)] , n1, n2, ..., np) .

Definition 10.14. Admissible domains and contact surfaces. We
only consider domains the topological boundary of which S (contact ad-
missible surface) is piecewise regular. In other words we assume that i) S
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is a finite union of two-dimensional suitably regular compact manifolds with
border (called the faces of S) ii) the union of the borders of these faces is
a finite union of one-dimensional suitably regular compact manifolds with
boundary (called the edges of S), iii) the edges are concurring in wedges
and iv) the set of wedges is finite.

Definition 10.15. Regular points of contact surfaces All internal
points of the faces (i.e. those points which do not belong to the border
of the faces) are called regular points of the face, or points where S has
a regular shape. The set of regular points is denoted by Sr; the set of
all internal points of the edges (i.e. those points which do not belong to
the border of the faces) is denoted by Lr. An internal point of an edge is
also called regular point of the edge, or point where S has an edge shape.
The set of all wedges will be denoted by WS . Moreover, we assume that, i)
everywhere in Lr, S is tangent to a non degenerate dihedron and ii) at every
wedge in S there exists a tangent polihedral plane surface (i.e. a surface
having a polihedral wedge shape or, which is the same, a multiple planar
shape with edges concurring in it).

Remark 10.16. When we say that at a edge regular point the contact
surface is tangent to a nondegenerate dihedron we mean that the two regular
surfaces concurrent at the edge have both a tangent plane and that these
two plane form a nondegenerate dihedron. Similarly when we say that at
every wedge in S there exists a tangent polihedral plane surface we mean
that every edge concurring in the wedge has a tangent line and that every
regular surface concurring in the wedge has a tangent plane and the set
of these tangent lines and planes form a surface having a polihedral wedge
shape.

Definition 10.17. We denote by ΦF (S) the set of all face shapes of S, by
ΦE(S) the set of all edge shapes of S and by ΦW (S) the set of all wedge
shapes of S: in formulas

ΦF (S) := {[(x,S)] , x ∈ Sr} ; ΦE(S) := {[(x,S)] , x ∈ Lr} ; (116)

ΦW (S) := {[(x,S)] , x ∈ WS} . (117)

We remark that in this way we have found a partition of the set of shapes
of a contact admissible surface:

Φ(S) = ΦF (S) ∪ ΦE(S) ∪ ΦW (S) (118)

Definition 10.18. Prescribed shapes: A set of shapes E is called a set
of prescribed shapes if there exists a finite set {S1,S2, ...Sm} of compact

admissible contact surfaces such that E ⊆
m⋃

i=1

Φ(Si).
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The following examples should make clearer the meaning of the just
introduced definition.

Example 10.19. The set of images Ct of a cube C1 under a family of
homothetic transformations of ratio t ∈ ]0, 1] is a set of prescribed shapes;

Example 10.20. The set of images C ′
t of a cube C1 under a family of

rotations of angle t ∈ [0, π] around a given axis is not a set of prescribed
shapes;

Example 10.21. The family of spheres St of centre x and radius t ∈ ]0, 1]
has not prescribed shapes.

Definition 10.22. Let us consider a finite set {S1,S2, ...Sm} of compact
admissible surfaces and a finite set of unit vectors U := {u1, ..., uM}. A set
of shapes E is called a set of prescribed (multiple) plane cuts

E ⊆
M⋃

l=1

{Cut (f, u1, ..., ul) ; f ∈ Φ (Si) ;ui ∈ U, i = 1, ..., l} (119)

In what follows we will need to consider functions defined in some set
of shapes. It would be desirable to introduce in the set of shapes a topo-
logical structure: in the present context we refrain from such a task which
is really challenging. Instead, by introducing the concept of ”set of pre-
scribed shapes” we have considered a kind of ”compactness” in the set of
all admissible shapes. This definition will reveal itself to be sufficient to our
aims.

10.1 Contact Actions

In this paper we consider the class of continua which were introduced by
Green and Rivlin (1964) or Mindlin (1965). In these continua there are con-
tact actions which are not forces. An example of such generalized continua
is given by those studied by Germain, which called them second gradient
continua, as their deformation energy density depends not only on the first
gradient of displacement but also on the second gradient of displacement.
However in generalized continua forces represent an important class of con-
tact actions the properties of which are somehow different from those of the
other contact actions.

As first step we will start by accepting the following:

Generalized Cauchy Postulate: Part I

40



Let us consider a continuous body B occupying, in a given
configuration, a domain D having as topological boundary the ad-
missible contact surface S . Let D the set of admissible virtual dis-
placement of B starting from the considered configuration. Each
of these displacements is a field defined in D and having trace on
S and is a vector valued test function. We assume that the power
expended by contact actions exerted on B is a distribution in the
sense of Schwartz.

This postulate has been already introduced in continuum mechanics (in
a slightly less general form) at least already by Cosserat brothers (1908)-
(1909). A detailed historic review of the relevant literature can be found e.g.
in Maugin (1980). In the textbook of Salençon (1988-2005) this postulate
is presented in a attractive didactical form.

Because of the just introduced postulate we can be guided in the formu-
lation of the needed definitions by the already cited (see previous sections)
representation theorem for distributions due to Laurent Schwartz (quoted
in the previous section 4).

Therefore we start by considering contact actions which indeed are (1−)
forces and then proceed by considering k−forces.

Definition 10.23. Surface and Line density of contact (1−)forces.
Contact (1−)forces concentrated on wedges. Let us consider any
admissible domain D.Its boundary S is a contact piecewise regular surface,
including edges and wedges. We call contact (1−)force a contact action
for which the power expended on a virtual velocity field V is given by the
following expression

Pcon
0 (V ) =

∫

Sr

F
s
0V +

∫

Lr

F
l
0V +

∫

WS

F
c
0V. (120)

the vector functions, F
s
0,F

l
0 and F

c
0 defined respectively on the faces, the

edges and the wedges of S are called i) surface density of contact (1−)forces,
ii) line density of contact (1−)forces, iii) contact (1−)forces concentrated
on wedges.

Remark 10.24. In the following we will be willing to consider surface
contact forces depending continuously on curvature. We will assume that
such forces densities are bounded on a set of prescribed shapes but not on
the set of all admissible shapes.

Definition 10.25. Surface and Line density of contact k−forces.
Contact k−forces concentrated on wedges. Let us consider any ad-
missible domain D.Its boundary S is a contact piecewise regular surface,
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including edges and wedges. We call contact (k−)force a contact action for
which the power expended on a virtual velocity field V is given by the fol-
lowing expression (where we used the notations introduced in the previous
section 4)

Pcon
k (V ) =

∫

Sr

F
s
k ·
(
∇kV

)

⊥
+

∫

Lr

F
l
k ·
(
∇kV

)

⊥
+

∫

WS

F
c
k · ∇kV. (121)

the tensor functions, Fs
k,F

l
k and F

c
k defined respectively on the faces, the

edges and the wedges of S are called i) surface density of contact k−forces,
ii) line density of contact k−forces, iii) contact k−forces concentrated on
wedges.

On occasion we will denote a generic vector or tensor field in the set
{
F
s
k,F

l
k,F

c
k; k = 0, ..., L

}
simply with the symbol F,adding some super or

sub script when needed.
All the considerations which we will develop in this work are based on

the following further hypothesis:

Generalized Cauchy Postulate: Part II

Let us consider a body, occupying a region C included in the Euclidean
three-dimensional space and denote by V its space of translations. We
assume that all tensor functions F previously introduced are univocally de-
termined in terms of the position x and on the shape of S at x.

In other words:
we assume that there exists a function F̂k (which we will call k−th order

stress function) of the two independent variables x, and f, where f is a
shape

F̂k: (x, f) ∈ C × ⊕ 7→ F̂k (x, f) ∈ V ⊗ ...⊗ V
︸ ︷︷ ︸

k times

such that

Fk(x) = F̂k(x, [(x,S)]).

Definition 10.26. We call generalized stress state of the considered
body the set of the functions F̂ the existence of which we have just postu-
lated.

Remark 10.27. We do not assume uniform boundedness of all tensor par-
tial functions F̂(x, ·) in the set of all shapes Φ, i.e. -once x is fixed- with
respect to the variable f.
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Remark 10.28. Because of the previous definition the fields Fl
k may depend

not only on the geometry of the edge itself, but also on the ”limit properties”
of the faces common border of which is the considered edge.

Remark 10.29. Similarly the k−forces Fc
k depend on all the ”limit prop-

erties” of the faces and edges concurring in the considered wedge.

In the same way as the Cauchy’s construction of the stress tensor pre-
sumes the continuity of contact forces, our construction will require a list
of

Regularity assumptions.

The functions F̂ verifies all the conditions which follows:

1. Let SF be a face and L an edge of an admissible contact surface S.
The functions

x ∈ SF 7→ F̂
s(x, [(x,SF )]); x ∈ L 7→ F̂

l(x, [(x,L)])

are continuous.
2. Let E be a set of prescribed shapes or prescribed plane cuts. We

partition E into three disjoint subsets, El, Es, Ec which contain re-
spectively the edge shapes, the regular shapes and the wedge shapes
in E. For a suitably fixed shape f (i.e. for a regular, edge or wedge
shape depending on the type of F̂ we are considering) we can introduce
the partial function

F̂(·, f) : x 7→ F̂(x, f).

We assume the equi-continuity of the families of functions
{

F̂
s(·, f), f ∈ Es

}

,
{

F̂
l(·, f), f ∈ El

}

,
{

F̂
c(·, f), f ∈ Ec

}

that is, we assume that (the superscript α can assume the values l, s,
c)

(∀ε > 0) (∃η > 0) (∀x0) (∀x) (∀f ∈ Eα)
(

‖x− x0‖ < η ⇒
∥
∥
∥F̂

α(x0, f)− F̂
α(x, f)

∥
∥
∥ < ε

)

. (122)

3. Let SF be a given face of an admissible surface S, let u be a unit
vector nowhere normal to SF . We assume that the function which
maps the variables x into the vector

F̂
l(x,Cut ([(x,SF )] , u) (123)
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is a continuous function. In formulas

(∀ε > 0) (∀x0 ∈ SF ) (∃δ > 0) (∀x ∈ SF )
(

‖x− x0‖ < δ ⇒
⇒
∥
∥
∥F̂

l(x,Cut ([(x,SF )] , u)− F̂
l(x0, Cut ([(x0,SF )] , u)

∥
∥
∥ < ε

)

(124)

4. Let SF be a given face of an admissible surface S, let u1, ..., up be
unit vectors nowhere normal to SF . Let L be a given edge of an
admissible surface S, let u1, ..., uq be unit vectors nowhere normal to
L. Let us assume that for x ∈ SF and y ∈ L, Cut ([(x,SF )] , u1, ..., up)
and Cut ([(y,S)] , u1, ..., uq) are wedge shapes. We assume that the
functions

FSF
: (x, u1, ..., up) 7→ F̂

c(x,Cut ([(x,SF )] , u1, ..., up) (125)

FL : (y, u1, ..., uq) 7→ F̂
c(y, Cut ([(y,S)] , u1, ..., uq) (126)

are continuous functions respectively with respect to the variables x
or y.

Proposition 10.30. Let SF and L be the intersection with open subsets
of a face and an edge included in an admissible surface S, let u be a unit
vector nowhere normal to SF and let B be a compact set. Let us consider
the following functions, determined by the generalized stress state F̂ :

F s : (x, y) ∈ B × (B ∩ SF ) 7→ F̂
s (x, [(y,S)]) (127)

F l : (x, y) ∈ B × (B ∩ L) 7→ F̂
l (x, [(y,S)]) (128)

F l
Cut : (x, y) ∈ B × (B ∩ SF ) 7→ F̂

l (x,Cut ([(y,S)] , u)) . (129)

F c
Cut,S : (x, y) ∈ B × (B ∩ SF ) 7→ F̂

c(x,Cut ([(x,SF )] , u1, ..., up) (130)

F c
Cut,L : (x, y) ∈ B × (B ∩ L) 7→ F̂

c(y, Cut ([(y,S)] , u1, ..., uq) (131)

The regularity assumptions which we have accepted imply that F s, F l and
F l
Cut are uniformly continuous.

Proof. To prove this proposition for the function 127 let us consider (x, y) ∈
B × (B ∩ SF ) and (x̄, ȳ) ∈ B × (B ∩ SF ), the vector u = x − y,the point
ȳ′ = ȳ + u and the translated contact surface S ′ := tu(S). Obviously as
(y, ȳ) ∈ SF ×SF then x = y+u ∈ S ′, ȳ′ = ȳ+u ∈ S ′, [(ȳ,S)] = [(ȳ′,S ′)] and
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[(y,S)] = [(x,S ′)] . It is easy to verify that the following chain of equalities
and inequalities hold

∥
∥
∥F̂

s (x, [(y,S)])− F̂
s (x̄, [(ȳ,S)])

∥
∥
∥ = (132)

=
∥
∥
∥F̂

s (x, [(x,S ′)])− F̂
s (x̄, [(ȳ′,S ′)])

∥
∥
∥ ≤ (133)

≤
∥
∥
∥F̂

s (x, [(x,S ′)])− F̂
s (ȳ′, [(ȳ′,S ′)])

∥
∥
∥+ (134)

+
∥
∥
∥F̂

s (ȳ′, [(ȳ′,S ′)])− F̂
s (x̄, [(ȳ′,S ′)])

∥
∥
∥ . (135)

Finally one gets the required uniform continuity by finding separately the
upper bounds for the addends 134 and 135. The first of these upper bounds
is easily found by recalling the assumed continuity (numbered item 1. in
the regularity assumptions) which becomes uniform continuity as the set B
is assumed to be compact. The second upper bound is estimated by using
the equi-uniform continuity (numbered item 2.) when recalling that

‖ȳ′ − x̄‖ = ‖ȳ + u− x̄‖ ≤ ‖y − x‖+ ‖ȳ − x̄‖ .

With similar arguments we can prove the statement for the functions 128,
129, 130 and.131.

Proposition 10.31. . Let us consider a family of admissible contact sur-
faces {Sλ, λ ∈ I} where I is a suitable set of indices and the set of shapes

ΦI := {f ∈ Φ/ (∃λ ∈ I) (f ∈ Φ(Sλ))} . (136)

Let us assume that ΦI is a set of prescribed shapes or prescribed plane cuts.
Then the regularity hypotheses 1., 2. and 3. imply the uniform boundedness
of the families of functions (where k is the needed tensoriality order)






F̂(·, f) : x ∈ C 7→ F̂(x, f) ∈ V ⊗ ...⊗ V

︸ ︷︷ ︸

k times

, f ∈ ΦI






. (137)

Proof. Indeed, Proposition 10.30 implies that, for every admissible surface
Sλ, the functions 127,128,129,130 and 131 (in the definitions replace the
faces, edges and wedges of S with those of Sλ) are bounded in their domains
of definitions. The proposition is then proven simply recalling the definitions
of prescribed shapes and prescribed plane cuts.
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Remark 10.32. Proposition 10.31 states a kind of relative compactness of
the families 137 (see the Corollary to the Arzelà-Ascoli theorem in Abraham,
Marsden and Ratiu (1988)).

Remark 10.33. Our hypotheses allow for any continuous dependence of
contact k−forces densities F on the curvature tensor, edge curvature or
torsion or on any other higher order shape operator of the contact surface,
at any surface, edge or wedge point.

11 A Seeming Impossibility For Edge Forces

This section is very close to section 3. of the paper dell’Isola and Seppecher
(1997). It is aimed to persuade the reader of the validity of an important
statement:

Not all types of Contact Actions are physically admissible.

Indeed we will start by proving that
If a stress state is constituted only by contact surface and line

forces then it is physically admissible only when contact line forces
are always vanishing.

We must, obviously, specify what we mean with the expression: physi-
cally admissible.

We will say that a stress state is physically admissible when it verifies
the regularity assumptions 10.1 and quasi-balance of contact powers.

Quasi-balance of powers expended by contact actions is a condition
which has solid physical grounds: it implies stringent restrictions upon the
dependence of contact actions on shape It is a generalization of the hy-
pothesis of ‘quasi-balance of contact forces’ formulated by Noll and Virga
(1990). This last states that

Hypothesis of quasi-balance of contact forces

There exists a positive scalar K such that, for any admissible domain
V , the following inequality holds

‖F c (V )‖ < K |V | . (138)

In (? ) it is also assumed the following assumptions

Contact actions reduce to surface and edge forces
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In formulas:

F c (V ) =

∫

Sr

F̂
s
0 (x, [(x,S)]) ds+

∫

Lr

F̂
l
0 (x, [(x,S)]) dl. (139)

Using the language which we have introduced in this work: in the paper
Noll and Virga (1990) it is assumed that

i) the stress state is e completely specified by the two functions

F̂
s
0, F̂

l
0 (140)

ii) the only physically allowed stress states are those for which condition
138 holds.

In this section we prove that by means of its theoretical framework ac-
tually the aforementioned paper does not manage to abandon the Cauchy
format of continuum mechanics.

Instead: to give a framework where the searched generalization can be
obtained we must withdraw from the format of mechanics in which the most
fundamental concept is that of ”force” (so called Newtonian Axiomatics)
and we must embrace the point of view of D’Alembert whose Axiomatics is
based on the fundamental concept of power and who considers the concept
of force as a derived one.

By following the beautiful presentation of continuum mechanics due to
Salençon (1988-2005) we improve the preceding hypothesis 138, assuming
that

Hypothesis of quasi-balance of power expended by contact
actions

The power Pc
U of contact actions distribution expended on any C∞ ve-

locity field U is quasi-balanced. This means that, for any C∞ field U , we
assume the existence of a positive KU such that, for any admissible domain
V , the following inequality holds

|Pc
U | < KU |V | (141)

Remark 11.1. Everybody who wants to develop an axiomatization of me-
chanics must be willing to use power at least as a derived concept. Indeed
nobody is able to refrain from the use of the concept of power or may doubt
about the validity of equation 141. The most faithful followers of so called
Newtonian approach may be willing to deduce (!) 141 from a most funda-
mental (!) assumption but nobody can dare to state that it should not be
accepted as valid.
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Remark 11.2. The condition expressed by (138) is implied by the one
expressed by (142). This can be simply verified by considering that, when
considering in it three linearly independent constant fields, formula (142)
reduces to (138).

Once we accept the hypothesis 140 about contact actions then the hy-
pothesis 141 reads:

Quasi balance of Powers for
Contact Actions reducing to Surface and Line Forces

|Pc
U (V )| =

∣
∣
∣
∣

∫

Sr F̂
s
0 (x, [(x,S)]) .U (x) ds

+
∫

Lr F̂
l
0 (x, [(x,S)]) .U (x) dl

∣
∣
∣
∣
< KU |V | . (142)

for every field U, (v.w denotes the inner product between the vectors v and
w).

Remark 11.3. The dependence of KU on U will be immaterial in what
follows, as in our arguments the field U is always kept fixed.

In this section we want to show that 142 implies that on every edge Lr

of a contact surface S
F̂
l
0 (x, [(x,S)]) = 0.

This means that actually by assuming 142 one does not obtain any gen-
eralization of Cauchy format of continuum mechanics.

In the language which we have introduced in this work one can state
that: Quasi-balance of contact power and the assumption 140 about stress
state implies that no contact edge forces are possible.

Remark 11.4. The quasi-balance of moment of forces can be obtained
from condition 142 by considering three independent spins.

As hypothesis (142) is stronger than (138) it will imply more stringent
restrictions upon the dependence of contact actions on shape.

Our goal now is to study its consequences on the functions F̂. We begin
by considering edges whose shape is dihedral; we will then extend our results
to general edges.
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11.1 Condition 142 implies that Forces on Dihedral Edges must
vanish.

From the point of view of the logical flow of the presentation, stricto
sensu, the reader can simply jump this section. However the rigorous argu-
ment which is presented here gives a more intuitive ground to the following
Theorem 11.7.

In this subsection we see how quasi balance of power expended by contact
surface and line forces implies that line forces must vanish.

Theorem 11.5. For stess states of the form 140, and verifying the regular-
ity assumption 10.1 inequality (142) is incompatible with nonzero contact
line forces on dihedral edges: indeed (142) implies that for any dihedral
shape d, the following equality holds

F̂
l
0 (·, d) = 0. (143)

Proof. Let d = (n1,n2,τ).
We use the orthogonal coordinate system (x0;e1,e2,e3), with

e2 = τ, e3 =
n1 + n2

‖n1 + n2‖
(144)

We consider a family of domains, parametrized by the set of integers greater
than a positive N . The general element VN (the boundary of which we
denote by SN ) of this family is a thin slab with a grooved surface (see
Figure 1 in dell’Isola and Seppecher (1997)). This domain is a polyhedron
conceived in such a way that the set of shapes of its boundary is finite and
is independent of N (This set contains exactly 7 different plane shapes and
16 different dihedral shapes.) Its volume |VN | is of the same order as N−4

the total area of its boundary |SN | is of the same order as N−2, when N
tends to infinity. Let us define the following unions of edges:

L1
N = {x ∈ SN : [(x, S)] = (n1, n2, τ)} (145)

L2
N = {x ∈ SN : [(x, S)] = (n2, n1, τ)} (146)

and

L3
N = LN�

(
L1
N ∪ L2

N

)
. (147)

The total length of L3
N is of the same order as N−1 and the total lengths

of L1
N and L2

N tend to 1. Then the forces on the double array of edges
L1
N ∪ L2

N are dominant. As the shapes of VN are prescribed, contact force
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densities are bounded independently of N . Inequality (138) applied to VN

implies

lim
N−→∞

{
∫

L1
N

F̂
l
0 (x, (n1, n2, τ)) dl +

∫

L2
N

F̂
l
0 (x, (n2, n1, τ)) dl

}

= 0.

Using the mean value theorem for each component of the last equality and
again the continuity of F with respect to x we get an action-reaction prin-
ciple

F̂
l
0 (x0, (n1, n2, τ)) = −F̂

l
0 (x0, (n2, n1, τ)) . (148)

Consider the field
U : x 7→ (x.e3)U0,

U0 being a fixed vector. On VN , N2U is bounded independently of N . The
same reasoning as before shows that inequality (142) implies

lim
N−→∞

N2

{
∫

L1
N

F̂
l
0 (x, (n1, n2, τ)) .U (x) dl

+

∫

L2
N

F̂
l
0 (x, (n2, n1, τ)) .U (x) dl = 0.

(149)

On L1
N and L2

N , N2U does not depend either on N or on x as it is equal
respectively to U0 and 2U0. Then we obtain, because of arbitrariness of U0,

lim
N−→∞

{
∫

L1
N

F̂
l
0 (x, (n1, n2, τ)) dl + 2

∫

L2
N

F̂
l
0 (x, (n2, n1, τ)) dl

}

= 0.

Using the continuity of F̂l
0 with respect to x, the mean value theorem for

each component of the previous equality and Equation (148) we get

F̂
l
0 (x0, (n1, n2, τ)) = 0. (150)

Remark 11.6. This proof is not the simplest one can conceive (see the
proof of the following Theorem 11.7). However, we present it here because
it is suggestive: our construction shows that a limit of pairs of opposite edge
forces cannot be quasi-balanced. This means that in generalized continua
contact actions can include nonvanishing edge forces only if they also include
nonvanishing surface 2−forces. More precisely: the theorem we have just
proven shows how a sequence of systems of edge forces can converge to a
surface double force: we have thus rigorously illustrated the terms ‘double
forces’ and ‘double normal traction’ introduced by Germain (1973).
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11.2 Condition 142 implies that Forces on General Edges must
vanish.

The Theorem proven in the previous subsection can be actually gener-
alized to any edge of a contact surface.

Theorem 11.7. Let S be an admissible surface. For stess states of the
form 140, and verifying the regularity assumptions 10.1,inequality (142)
imply that, at every regular point x0 of an edge, we have

F̂
l
0 (x0, [(x0,S)]) = 0. (151)

In other words: inequality (142) implies that Cauchy stress states including
only surface contact forces cannot be generalized simply by adding contact
edge forces.

Proof. Let V be an admissible domain. Let its boundary S contain an edge
L, let x0 be a regular point of this edge. S is tangent at the point x0 to
the dihedral shape (n1, n2, τ). In this proof we consider the case when the
dihedral angle belongs to ]0, π[ (The proof has to be slightly modified if the
angle is greater than π). We use the coordinate system (x0; e1, e2, e3) with

e2 = τ, e3 = n1 + n2� ‖n1 + n2‖ .

For any ε > 0, let us translate V and its contact surface relatively to the
vector ε2e3:

V ′ := tε2e3 (V ) , S ′ := t
ε2e3

(S) , L′ = t
ε2e3

(L) (152)

and let us define Vε as the intersection of the domain V ′ with the paral-
lelepiped (represented in the introduced coordinate system)

Pε =
[
−cε2, cε2

]
× [0, ℓε]×

[
0, 2ε2

]
(153)

(see Figure 2 in dell’Isola and Seppecher (1997)). The dihedral angle be-
longs to ]0, π[ and the curvatures of the faces of S and of the edge L are
bounded. Then c and ℓ may be chosen in such a way that, for ε small
enough: i) L′ meets ∂Pε on the surfaces {x.e2 = 0} and {x.e2 = ℓ ε}, so
that at every point x on L′ ∩ Pε, we have x.e3 > 0 ii) S ′ meets ∂Pε on
surfaces {x.e2 = 0},{x.e2 = ℓ ε} and on the surface {x.e3 = 0}. The geom-
etry of considered construction is illustrated by Figure 2 in dell’Isola and
Seppecher (1997). We denote by Sε the boundary of Vε and by Lε the upper
edge of Vε : in formulas

Lε = L′ ∩ Pε. (154)
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The family of shapes
⋃

ε>0
Φ(Sε) is a set of prescribed shapes or prescribed

plane cuts. Then the surface force and the line force densities

F̂
l
0 (x0, [(x0,Sε)]) F̂

s
0 (x0, [(x0,Sε)]) (155)

are uniformly bounded with respect to ε. Let us consider the vector field
(this vector field will be kept fixed in our limit process)

U : x 7→ (x.e3)U0 (156)

U0 being a generic vector. The geometry of Vε assures that ε
−2U is bounded

independently of ε. On the other hand, as U vanishes on the plane (x0, e1, e2),
we do not have to consider the forces exerted on the edges which are in-
cluded in this plane. Considering the measure of each face and edge, we get
from inequality (142)

lim
ε−→0

ε−3

∫

Lε

F̂
l
0 (x, [(x,Sε)]) .U (x) dl = 0.

The length of Lε is equal to εℓ within higher order terms. On the other
hand, there exists a positive scalar k (depending on the curvature of the
edge at x0 and on ℓ but independent of ε) such that

lim
ε−→0

ε−3

∫

Lε

(x.e3) dl = k.

Let δ > 0, the geometry of the domain and Proposition 10.30 – which is a
consequence of our regularity assumptions – imply that, for ε small enough,

∀x ∈ Lε,
∥
∥
∥F̂

l
0 (x, [(x,Sε)])− F̂

l
0 (x0, [(x0,S)])

∥
∥
∥ < δ. (157)

Then

∣
∣
∣
∣
kF̂l

0 (x0, [(x0,S)]) .U0 − lim
ε−→0

ε−3

∫

Lε

F̂
l
0 (x, [(x,Sε)]) .U (x) dl

∣
∣
∣
∣
< kδ ‖U0‖ .

(158)
This result holds for any δ and for any U0, so that we can conclude with
the searched equality

F̂
l
0 (x0, [(x0,S)]) = 0.
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12 Generalized Noll Theorem

Theorem 11.7 states that when stress state is of the form specified as in 140
and if one accepts the quasi-balance of contact powers 142 then there are
no contact edge forces.

In this section we prove a generalization of Noll theorem for such stress
states.

Remark 12.1. In Noll (1959) it is proven (we use the language introduced
in the present work) that given a body i) occupying in a configuration the
compact region D, ii) for which the stress state is characterized by the only

function F̂
s
0, and iii) such that

∥
∥
∥F̂

s
0

∥
∥
∥ is bounded in the set D × Φr (i.e. if

contact surface forces are uniformly bounded in the set Φr of all possible
regular shapes of contact surfaces!!) then for every regular shape f tangent
to the plane π in the point x the following equality holds

F̂
s
0 (x, f) = F̂

s
0 (x, [(x, π)]) . (159)

Remark 12.2. The cited result by Noll cannot be applied in those cir-
cumstances in which one wants, e.g., to allow for a linear dependence of
contact surface forces on local curvature of contact surface. In Noll and
Virga (1990) it was announced for a future paper a generalization of Noll’s
result by relaxing the previously considered condition iii). We could not
find such a paper in the literature.

Remark 12.3. The regularity assumptions for stress state proposed in
dell’Isola and Seppecher (1997) and generalized in the present work actu-
ally relaxed the aforementioned condition iii) and allow for a more general
dependence of stress state functions on shapes. In particular our assump-
tions allow for a linear dependence of surface contact forces on curvature
tensor of contact surface.

Remark 12.4. In dell’Isola and Seppecher (1997) it is proved a general-
ization of Noll’s result under the weaker regularity assumptions 10.1 on
which also the present work is based.

We give now a proof of property 159 when stress state is characterized
only by a surface contact force function F̂

s
0 which, however, is not bounded

in the set of all regular shapes.

Theorem 12.5. When no edge forces are present, and under the regularity
assumptions 10.1, for all regular shapes f tangent to the plane shape n the
validity of quasi-balance of power 142 implies

F̂
s
0 (x, f) = F̂

s
0 (x, n) . (160)
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Proof. Let S be the boundary of an admissible domain V and let x0 be
a regular point of Sr. We call n0 the normal to S at x0. We use the
coordinate system (x0, e1, e2, e3) (with e3 = n0). Let us consider the family
of parallelepipeds

Cε = [0, ε]× [0, ε]× [−cε2, cε2].

Let us define the sets

Vε := V ∩ Cε, Sε = S ∩ Cε.

As the curvature of S is bounded in a neighborhood of x0, a positive scalar
c can be found such that, for ε sufficiently small, Sε does not intersect one
of the faces

S+ :=
{
x3 = cε2

}
, S− =

{
x3 = −cε2

}
(161)

of Cε (see Figure 3 in dell’Isola and Seppecher (1997)). The shapes of
the boundary of Vε are either prescribed shapes or prescribed plane cuts.
Inequality (138) when applied to Cε implies

lim
ε−→0

ε−2

∫

S+

F̂
s
0 (x, n0) ds+ lim

ε−→0
ε−2

∫

S−

F̂
s
0 (x,−n0) ds = 0,

which leads to

F̂
s
0 (x, n0) = −F̂

s
0 (x,−n0) . (162)

Inequality (138) when applied to Vε implies

lim
ε−→0

ε−2

∫

Sε

F̂
s
0 (x, [(x, S)]) ds+ lim

ε−→0
ε−2

∫

S−

F̂
s
0 (x,−n0) ds = 0,

which leads to

F̂
s
0 (x, [(x, S)]) + F̂

s
0 (x,−n0) = 0. (163)

Equation (160) is then obtained when recalling (162).

Remark 12.6. In the previous proof we just had to modify the argument
used in Truesdell (1977) by using a cylinder whose basis is a square instead
of a circle. The important difference is that -in this way- we use only
prescribed shapes (in the sense defined in ??).
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12.1 CAUCHY THEOREM

Stress states verifying the hypotheses of Theorem 11.7 cannot include
nonvanishing contact edge forces. Then the Cauchy’s construction of stress
tensor, which is strongly depending on the absence of edge contact forces,
(refer to Truesdell (1977)) is valid.

Theorem 12.7. When stress state is of the form specified in 140 and if one
accepts regularity assumptions 10.1 and the quasi-balance of contact powers
142 there exists a continuous tensor field T of order two and symmetric such
that, for any plane shape n,

F̂
s
0 (x, n) = T (x) .n. (164)

13 The structure imposed on stress states by the

regularity assumptions 10.1 and quasi-balance of

contact power

In this section we show how to generalize the results found in dell’Isola and
Seppecher (1995)-(1997) to N − th gradient continua. The complete proof
strategy is simply drafted: all the details of the mathematical concepts and
proofs will be presented in a forthcoming separate paper.

We start with a ”rough” statement which will be followed immediately
by a more formal one.

Balance of power implies that the stress state in a n− th order
generalized continuum B must verify the following conditions

1. The existence of k−forces concentrated on wedges implies the exis-
tence of line k + 1−forces distributed on edges

2. The existence of lines k + 1−forces distributed on edges implies the
existence of surfaces k + 2−forces distributed on faces

3. The existence of surfaces k+2−forces distributed on faces implies the
existence of n = k + 3−stresses in the volume occupied by the body.

More formally after the following

Remark 13.1. When considering a stress state, instead of using the pre-
viously introduced notation

{
F
s
k,F

l
k,F

c
k; k = 0, ..., L

}
, (165)

we will use another one slightly different. Indeed: instead of the superscripts
s,l ,c we want to use the superscripts 2,1 ,0.
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This change of notation will be useful in the formulation of the following
definitions and theorem.

Definition 13.2. Let B a body occupying in one of its configurations the
domain D. Let us consider a stress state S of the form

S =
{
F
2
k,F

1
k,F

0
k; k = 0, ..., L

}
. (166)

where all F are defined in D. Let S be the contact surface of D, and let Sr,
Lr and WS denote the subsets of S constituted by regular surface and edge
points and wedges respectively. The power expended on the velocity field
U by contact actions exerted on D through S (when B is in the stress state
S) is given by the following formula:

PU (S, D) :=

(∫

Sr

F
2
0 · U +

∫

Lr

F
1
0 · U +

∫

WS

F
0
0 · U

)

+ (167)

+

L∑

k=1

(∫

Sr

F
2
k ·
(
∇kU

)

⊥
+

∫

Lr

F
1
k ·
(
∇kU

)

⊥
+

∫

WS

F
0
k · ∇kU

)

(168)

When this will not lead to confusion we will skip the argument S in the
previous expression.

Definition 13.3. Let us consider a stress state S.We say that it is phys-
ically admissible when it verifies i) the regularity assumptions 10.1 and
ii) the quasi-balance of power

|PU (S,D)| ≤ KU |D| . (169)

Theorem 13.4. Let us consider a stress state S of the form

S =
{
F
2
k,F

1
k,F

0
k; k = 0, ..., L

}
. (170)

If S is physically admissible then there exists a (unique) natural number
N − 1 ≤ L such that

F
2
N−1 6= 0 (171)

(∀k ∈ {0, ..., L}) (∀a ∈ {0, 1, 2}) ((k + 2 ≥ N + a) ⇒ (Fa
k = 0)) (172)

Proof. It can be sketched by paralleling the previous proof of Theorem
11.7.

Definition 13.5. Let S be a physically admissible stress state. We call
grade of S the unique natural number NS the existence of which has been
proven in the previous theorem.
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It can also be proven the following:

Theorem 13.6. Let S be a physically admissible stress state of grade N.
If F1

N−2 = 0 then F
0
N−3 = 0.

Proof. The searched implication is obtained by means of a construction
generalizing the one used for Theorem 11.7.

Definition 13.7. Let B be a body. We say that B is a N − th gradient
continuum if i) the set of the stress states admissible for B is included in
the set of physically admissible stresses of grade N , and ii) there exists at
least one nonvanishing admissible stress state for B the grade of which is
exactly N.

14 The tetrahedron argument applied to N-th

gradient continua

In this final section we draft a line of thought which proves how the tetrahe-
dron argument valid for second gradient materials which was presented in
dell’Isola and Seppecher (1995),(1997) actually can be extended to encom-
pass all those continua imagined by Green and Rivlin (1964) and described
in the previous sections.

14.1 On contact actions including forces of order greater than
one.

Theorems 13.4 and 13.6 have shown that not all stress states are physi-
cally admissible. In the present subsection we want to establish a character-
ization theorem, which states how to construct physically admissible stress
states by means of suitably introduced (hyper-)stress tensor fields. We start
with second gradient continua.

Surface Double Forces

In dell’Isola and Seppecher (1995)-(1997) it was proven the impossibility
-under the assumption (142)- of considering stress states including only
nonvanishing surface and contact edge forces. The idea developed there was
the following: the power of contact actions is actually quasi-balanced but
the expression for this power used in inequality (142) is too naive. Indeed
the contact actions must be endowed with a more complex structure: to
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be precise (using the presently used notation) the simplest stress states
which can be considered -after those studied by Cauchy- have the following
structure (typical of Germain’s second gradient continua)

S =
{
F
2
0,F

2
1,F

1
0

}
. (173)

Remark 14.1. From a physical point of view, the need of introducing a
contact double force or contact ‘1-normal force’ can be justified as follows:
in the balance of energy an additional term must be considered which does
not appear in the balance of forces. An alternative approach trying to meet
this need is due to Dunn and Serrin (1985), who introduced directly a sup-
plementary flux of energy (‘interstitial working’). Our approach, based on
the concept of Schwartz distributions, has the following advantages when
compared with that found there: (i) it does not assume a priori that the ex-
tra energetic term is a flux, (ii) it shows the mechanical nature of this term,
its linear dependence on the velocity field being a basic assumption, (iii)
it naturally yields general and physically meaningful boundary conditions
(see e.g. Seppecher (1989)).

Most mechanicians will not be surprised by the introduction of contact
double forces distributions, as contact couples are needed already in the
standard theories of beams and shells. Another example of ‘1-normal’ con-
tact forces distribution found in the literature (this time for 3-D continua) is
given by couple stresses introduced by Cosserat (1908)-(1909). The micro-
scopic meaning of contact forces of order greater than one can be understood
by considering the asymptotic limit of non-local short range interactions.

Example 14.2. A system of non-local short range forces converging
to a surface contact double force (1-normal distribution). Using the
Cartesian coordinates (x1;x2;x3), the domain

V = {x : x1 < 0}

is in contact with the external world through the plane

S = {x : x1 = 0} .

Assume that the external forces exerted on V have short range ε ≪ 1
(compared with some other characteristic length) and that these forces are
represented by the volume density

fε (x) = f−γ
0 ϕ

(
ε−1x

1

)

where ϕ is a function whose support is a compact set included in ]−∞, 0[
and f0 is a given vector. If γ = 1 and ϕ is a non negative function whose
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integral is equal to 1, the distribution tends, as ε tends to 0, to the vector
measure on S having a surface density equal to f0: this is the classical case
of surface force density. However, if γ = 2 and ϕ is the derivative of a non
negative function whose integral is equal to 1, the distribution tends to a
‘1-normal’ distribution D such that

D (U) =

∫

S

f0 · ∂U�∂x1ds.

This force distribution i) is localized on S, ii) has no influence upon balance
of forces, iii) supplies energy in presence of velocity fields in V , even when
these fields vanish on S .

The assumption of quasi-balance of contact actions for stress states of the
form 173 takes the following particular form:

for all C∞ field U , there exists a scalar KU such that, for any admissible
domain V having contact surface S with surface and edge regular point sets
denoted respectively by Sr and Lr , we have

∣
∣
∣
∣

∫

Sr F
2
1(x, [(x, S)]).

∂U
∂n

(x) ds+
∫

Sr F
2
0(x, [(x, S)]).U (x) ds

+
∫

Lr F
1
0(x, [(x, S)]).U (x) dl

∣
∣
∣
∣
< KU |V | .

(174)

Remark 14.3. This assumption is less stringent on F
1
0 than the corre-

sponding hypothesis (142). It will imply less stringent restrictions upon
edge contact forces. Indeed condition (174) does not imply that edge con-
tact forces must be vanishing.

Remark 14.4. The fact that (174) implies the quasi-balance of forces (138)
is still true (it can be again verified by considering three linearly independent
constant fields U). Again, we do not need any assumption on the behavior
of KU with respect to U .

Remark 14.5. Note that, in each proof we present, a limit in inequality
(174) is calculated with a fixed field U . For this reason we do not need any
assumption on the behavior of KU with respect to U .

Dependence of second order stress functions on the shape
of the contact surface. A theorem analogous to Noll
Theorem.

We first prove a version of action-reaction principle valid for double forces
i.e. for second order stress functions.
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The theorem, at this stage, concerns only plane shapes.

Theorem 14.6. Under regularity assumptions 10.1 and having postulated
the quasi-balance of contact actions, at every point x, for all plane shape
n and for all dihedral shape (n, e1, e2) we have

F
2
1 (x, n)− F

2
1 (x,−n) = 0. (175)

F
1
0(x0, (n,−e1, e2)) + F

1
0(x0, (n, e1, e2)) = 0;

F
1
0(x0, (−n, e1, e2)) + F

1
0(x0, (n, e1, e2)) = 0;

F
1
0(x0, (n, e1,−e2)) + F

1
0(x0, (n, e1, e2)) = 0

(176)

Proof. Using the coordinate system (x0, e1, e2, e3) (with e3 = n : the vectors
ei are unitary, but not necessarily orthogonal), let introduce for every point
its coordinates (x1, x2, x3) in the introduced system and let us consider the
domain

Cε = [0, εα]×
[
0, εβ

]
× [0, εγ ]

(where α, β and γ are positive) and the vector field

Ū : x 7→ x3U0 (177)

where U0 is a given vector. We consider each face or edge of ∂Cε on which
some addends of LHS in inequality (174) when calculated on the velocity
field 177 are nonvanishing i.e.

S+
ε := {x : x3 = +εγ} , S−

ε := {x : x3 = 0} (178)

L+
α0 := [0, εα]× {0} × {εγ} L+

αβ := [0, εα]×
{
εβ
}
× {εγ}

L+
β0 := {0} ×

[
0, εβ

]
× {εγ} L+

βα := {εα} ×
[
0, εβ

]
× {εγ} (179)

L→
00 := {(0, 0)} × [0, εγ ] L→

0β :=
{(

0, εβ
)}

× [0, εγ ]

L→
α0 := {(εα, 0)} × [0, εγ ] L→

αβ :=
{(

εα, εβ
)}

× [0, εγ ]
(180)

the area or length of which are respectively given by

µ2(S
+
ε ) = µ2(S

−
ε ) = εαβ ; µ1(L

+
α0) = µ1(L

+
αβ) = εα; (181)

µ1(L
+
β0) = µ1(L

+
βα) = εβ ; (182)

µ1(L
→
00) = µ1(L

→
0β) = µ1(L

→
α0) = µ1(L

→
αβ) = εγ . (183)

As
(
∀x ∈ S+

ε

)
(x3 = εγ) ; (184)

(
∀x ∈ S−

ε

)
(x3 = 0) ; (185)

(
∀x ∈ S±

ε

) (
∂Ū/∂n = ±U0

)
(186)
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and µ3(Cε) = εαεβεγ ; the inequality (174) applied to Cε and the field 177
becomes:

∣
∣
∣
∣

∫

S+
ε

F
2
1(x, n).U0ds +

∫

S−
ε

F
2
1(x,−n). (−U0) ds+

+

∫

S+
ε

F
2
0(x, n).ε

γU0ds+

∫

L+
α

F
1
0(x, [(x, ∂Cε)]).ε

γU0dl+ (187)

+

∫

L+

β

F
1
0(x, [(x, ∂Cε)]).ε

γU0dl+

+

∫

L→
ε

F
1
0(x, [(x, ∂Cε)]). ((x− x0) · n)U0dl

∣
∣
∣
∣
∣
< KŪ

(
εαεβεγ

)
.

where

L+
α = L+

α0∪L+
αβ ; L+

β = L+
β0∪L+

βα; L→
ε = L→

00∪L→
0β ∪L→

α0∪L→
αβ . (188)

Remarking that

x ∈ L+ ⇒ [(x, S)] = (e1, n, n× e1)

or (e2, n, n× e2) or (−e1, n,−n× e1) or (−e2, n,−n× e2)

x ∈ L→
ε ⇒ [(x, S)] = (−e2,−e1, n)

or (e2,−e1, n) or (e2, e1, n) or (e1,−e2, n)

a simple inspection of previous formulas allows us to recognize that Φ(∂Cε)
is a set of prescribed shapes and therefore that all F are uniformly bounded
on the set

⋃

ε>0

(Cε × Φ(∂Cε)) . (189)

As a consequence we can state that there exist suitable constants K such
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that
∣
∣
∣
∣

∫

S±
ε

F
2
1(x, n).U0ds

∣
∣
∣
∣
< K2

1 ‖U0‖ εαεβ (190)

∣
∣
∣
∣

∫

S+
ε

F
2
0(x, n).ε

γU0ds

∣
∣
∣
∣
< K2

0 ‖U0‖ εαεβεγ (191)

∣
∣
∣
∣

∫

L+
α

F
1
0(x, [(x, ∂Cε)]).ε

γU0dl

∣
∣
∣
∣
< K1

0 ‖U0‖ εαεγ (192)

∣
∣
∣
∣
∣

∫

L+

β

F
1
0(x, [(x, ∂Cε)]).ε

γU0dl

∣
∣
∣
∣
∣
< K1

0 ‖U0‖ εβεγ (193)

∣
∣
∣
∣
∣

∫

L→
ε

F
1
0(x, [(x, ∂Cε)]). ((x− x0) · n)U0dl

∣
∣
∣
∣
∣
< K1

0 ‖U0‖ ε2γ . (194)

If one chooses γ > β and γ > α the inequality 187 (multiplied times ε−αε−β)
implies that

lim
ε→0

ε−αε−β

(∫

S+
ε

F
2
1(x, n).U0ds+

∫

S−
ε

F
2
1(x,−n). (−U0) ds

)

= 0

The continuity properties of the partial function F
2
1(·, n) and the arbitrari-

ness of U0 finally imply

F
2
1 (x0, n) = F

2
1 (x0,−n) . (195)

On the other hand let us multiply 187 times ε−βε−γ , let us choose arbitrarily
β > 0 and consequently α and γ verifying the conditions:

α > γ α > β > 0 (β > 0) ∧
(
γ2 − β − γ

)
> 0 ⇔ γ > 1

2

√
4β + 1 + 1

2

and finally calculate the limit for ε → 0, of the LHS of obtained inequality.
Recalling 188 we get

lim
ε→0

ε−βε−γ

(
∫

L+

β
=L+

β0
∪L+

βα

F
1
0(x, [(x, ∂Cε)]).ε

γU0dl

)

= (196)

= lim
ε→0

ε−β

(
∫

L+

β0

F
1
0(x, (n,−e1, e2)).U0dl +

∫

L+

βα

F
1
0(x, (n, e1, e2)).U0dl

)

= 0

(197)

The continuity properties of the partial function F
1
0(·, (u, v, w)) (where (u, v, w)

is a given dihedral shape) and the arbitrariness of U0 finally imply

F
1
0(x0, (n,−e1, e2)) + F

1
0(x0, (n, e1, e2)) = 0 (198)
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The other two relations in 176 are obtained with similar constructions.

We are now able to prove a theorem for ‘1-normal’ distributions analo-
gous to the theorem of Noll (? ), (? ).

Theorem 14.7. Under regularity assumptions 10.1 and having postulated
the quasi-balance of contact actions, at every point x and for every regular
shape f tangent to the plane shape n we have

F
2
1 (x, f) = F

2
1 (x, n) (199)

that is F
2
1, depends on the shape of the contact surface only through its

normal.

Proof. The proof is close to that we have given for the Theorem 12.5. At
a regular point x0 of the boundary S of an admissible domain, we consider
the family of domains Vε described in the proof of the Theorem 12.5 (see
also Figure 3 in dell’Isola and Seppecher (1997)). We consider the vector
field

U : x −→ (x · n0)U0

where n0 denotes the normal to S at x0 and U0 is any vector. The shapes of
∂Vε are either prescribed shapes or prescribed plane cuts. Moreover ε−2U
is bounded in Vε independently of ε. The inequality (174) applied to Vε

leads to

lim
ε−→0

ε−2

∫

S∩Cε

F
2
1(x, [(x, S)] · U0 (n · n0) ds+

+ lim
ε−→0

ε−2

∫

S−

F
2
1 (x,−n0) · (−U0) ds = 0.

As n · n0 is a continuous function with respect to x on S, the regularity
properties of F

2
1 and the arbitrariness of U0 imply

F
2
1(x0, [(x0, S)] = F

2
1 (x0,−n0) = F

2
1 (x0, n0) . (200)

14.2 A Representation Theorem for surface 1−forces generaliz-
ing the Cauchy tetrahedron Theorem.

The celebrated Cauchy tetrahedron argument can be used also to get a
representation Theorem which is valid for N − th gradient continua. Obvi-
ously it needs to be suitably adapted.
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The reader should not believe that the argument has to be applied, in the
framework of the theory of N − th gradient continua, to the surface density
of 1− force. Instead it has to be applied to surface density of N−forces. It
happens that N−force surface density depends only on the tangent planar
shape to the contact surface and this dependence is a polynomial one: its
grade is exactly N.

Theorem 14.8. Let B a body occupying in one of its configurations the
domain D. Let us consider a stress state S having the form

{
F
2
0,F

2
1,F

1
0

}
.

Let us assume the regularity assumptions 10.1. If quasi balance of power
holds then there exists a continuous three-tensor field C such that, at any
point x0 ∈ D and for any plane shape n,

F
2
1 (x0, n) = (C(x0).n) .n. (201)

Proof. We follow the tetrahedron construction due to Cauchy (see Figure 4
in dell’Isola and Seppecher (1997)). In an orthonormal coordinate system
(x0, e1, e2, e3) , we define the tetrahedron V whose faces S, S1, S2 and S3 are
respectively normal to n,−e1,−e2 and −e3and whose height (perpendicular
to S) is h. In our construction the origin of the coordinate system belongs
to the face S. We denote respectively by f1 = (−e

2
,−e

3
, e

1
) , f2 =

(−e
3
,−e

1
, e

2
) and f3 = (−e

1
,−e

2
, e

3
) the shapes of the edges L1, L2 and

L3. Let Vε be the image of V under an homothetic transformation of
ratio ε, we denote by Sε, Siε and Liε, and the faces and edges images of
S, Si and Li (i = 1, 2, 3) under this transformation. We consider the field
U : x −→ (x · n)U0, where U0 is any vector. As this field vanishes on Sε ,
the inequality (174) applied to the domain Vε implies

∣
∣
∣
∣
∣

3∑

i=1

{∫

Siε

(x · n)F2
0 (x,−ei) .U0ds

}

+

+

3∑

i=1

{∫

Liε

(x · n)F1
0 (x, fi) .U0dl

}

+

+
3∑

i=1

{∫

Siε

(−ei · n) F
2
1 (x,−ei) .U0ds

}

+

+

∫

Sε

F
2
1 (x, n) .U0ds

∣
∣
∣
∣
< Kε3.

. (202)

Let us multiply this inequality by ε−2 and, changing variables in the inte-
grals in order to transform them into integrals on the boundary of V , we
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obtain
∣
∣
∣
∣
∣
ε

3∑

i=1

{∫

Si

(x · n)F2
0 (εx,−ei) · U0ds

}

+
3∑

i=1

{∫

Li

(x · n)F1
0 (εx, fi) · U0dl

}

+
3∑

i=1

{∫

Si

(−ei · n) F
2
1 (εx,−ei) · U0ds

}

+

∫

S

F
2
1 (εx, n) · U0ds

∣
∣
∣
∣
∣
< Kε.

As the partial functions F (·, f) are continuous, evaluating the limit as ε
tends to 0, we get

3∑

i=1

{

F
1
0 (x0, fi) .U0

∫

Li

(x · n) dl
}

+ (203)

+

3∑

i=1

{
|Si| (−ei · n) F

2
1 (x0,−ei) .U0

}
+ (204)

+ |S| F
2
1 (x0, n) .U0 = 0. (205)

This being valid for any U0, we obtain

2 |S| F
2
1 (x0, n) =

3∑

i=1

{

F
1
0 (x0, fi)

(
n · ei

)
|Li|2

}

+ (206)

+2
3∑

i=1

{
F
2
1 (x0,−ei) |Si| (n · ei)

}
. (207)

Using the geometrical relations

h = |L1| (n · e1) = |L2| (n · e2) = |L3| (n · e3) ,
2 |S|h = 2 |S1| |L1| = 2 |S2| |L2| = 2 |S3| |L3| = |L1| |L2| |L3| (208)

and Theorem 14.6, we get

F
2
1 (x0, n) = F

1
0 (x0, f1) (n · e2) (n · e3) + F

1
0 (x0, f2) (n · e3) (n · e1)+

+F
1
0 (x0, f3) (n · e1) (n · e2) +

3∑

i=1

F
2
1 (x0, ei) (n · ei)2 .

(209)
Thus we are led to define a three-tensor field C such that

F
2
1 (x0, n) = (C (x0) .n) .n = C (x0) ..n⊗ n (210)
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This tensor is not uniquely determined, as only its right-side products by
symmetric two tensors are determined. We may impose its right side sym-
metry, by setting

C (x) = 1
2F

1
0 (x, f1)⊗ (e2 ⊗ e3 + e3 ⊗ e2)+

+ 1
2F

1
0 (x, f2)⊗ (e3 ⊗ e1 + e1 ⊗ e3)+

+ 1
2F

1
0 (x, f3)⊗ (e1 ⊗ e2 + e2 ⊗ e1)+

+

3∑

i=1

{
F
2
1 (x, ei)⊗ ei ⊗ ei

}
,

(211)

or its left side symmetry, by setting

C (x) = 1
2F

1
0 (x, f1)⊗ (e2 ⊗ e3 + e3 ⊗ e2)+

− 1
2 (e2 ⊗ e3 + e3 ⊗ e2)⊗ F

1
0 (x, f1)+

+ 1
2

(
e2 ⊗ F

1
0 (x, f1)⊗ e3 + e3 ⊗ F

1
0 (x, f1)⊗ e2

)
+

+ 1
2F

1
0 (x, f2) (e3 ⊗ e1 + e1 ⊗ e3)+

− 1
2 (e3 ⊗ e1 + e1 ⊗ e3)⊗ F

1
0 (x, f2)+

+ 1
2

(
e3 ⊗ F

1
0 (x, f2)⊗ e1 + e1 ⊗ F

1
0 (x, f2)⊗ e3

)
+

+ 1
2F

1
0 (x, f3) (e1 ⊗ e2 + e2 ⊗ e1)+

− 1
2 (e1 ⊗ e2 + e2 ⊗ e1)⊗ F

1
0 (x, f3)+

+ 1
2

(
e1 ⊗ F

1
0 (x, f3)⊗ e2 + e2 ⊗ F

1
0 (x, f3)⊗ e1

)
+

+

3∑

i=1

{
F
2
1 (x, ei)⊗ ei ⊗ ei − ei ⊗ ei ⊗ F

2
1 (x, ei) + ei ⊗ F

2
1 (x, ei)⊗ ei

}
.

(212)

Remark 14.9. The tensor C will be called the double-stress tensor.

Remark 14.10. Imposing the left side symmetry of C (as done in Seppecher
(1987)) may seem complicated and artificial but the following Theorem
14.16 will show the advantage of such a choice.

The representation formula for the tensor C obtained in equation 211
allows us to prove also the following

Corollary 14.11. For a generic dihedral shape (n1, n2, τ) the edge contact
forces can be represented by

F
1
0(x, (n1, n2, τ)) = (C (x) · n1) · ν1 + (C (x) · n2) · ν2, (213)

where
ν1 = τ × n1 ν2 = −τ × n2. (214)
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Proof. Let us first consider the dihedral shapes f1 = (−e
2
,−e

3
, e

1
) , f2 =

(−e
3
,−e

1
, e

2
) and f3 = (−e

1
,−e

2
, e

3
) where {ei} is an orthonormal basis.

With simple calculations we get from 211

(C (x) .− e
2
) .− e

3
= 1

2F
1
0 (x, f1) (C (x) .− e

3
) .− e2 = 1

2F
1
0 (x, f1)

(215)
which implies 213 for dihedral shapes verifying the conditions

n1 · n2 = 0; τ · n1 = 0; τ · n2 = 0. (216)

For getting the statement for a generic dihedral shape it is enough to con-
sider the ε−families of 3−prisms with height parallel to the vector τ the
bases of which are triangles with two sides ortogonal to n1 and n2 and
having a right angle.

A first important consequence of the representation formula 211 can be
obtained by means of a very simple reasoning. Indeed we can get the follow-
ing lemma, which has been formulated already in dell’Isola and Seppecher
(1995)-(1997):

Lemma 14.12. The form of surface 2−forces compatible with van-

ishing line 1−forces. When F
1
0 is vanishing equations (210) and (211)

imply that

(C (x0) .n) .n = F
2
1 (x0, n) = (217)

=
∑3

i=1
F
2
1 (x0, ei) (n · ei)2 = (218)

=
∑3

j=1
F
2
1

(
x0, e

′
j

) (
n · e′j

)2
(219)

where {ei} and
{
e′j
}
are two generic orthonormal bases. As the found ex-

pression is valid for every orthonormal vector basis, we can conclude that if
F
1
0 is vanishing then F

2
1 does not depend on n: this is the only case in which

the 1-normal surface distributions (i.e. surface 2−forces) can be nonzero
with vanishing edge forces.

14.3 Representation theorems for contact 1−forces. Cauchy stress
tensor.

To proceed we need to apply Gauss divergence Theorem to some tensor
fields. Therefore we are guided to add some further regularity assumptions
on the considered stress state S,which for second gradient continua has the
form

{
F
2
0,F

2
1,F

1
0

}
.
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Although a careful analysis (which will be included in a forthcoming
paper) is possible, leading us to the determination of the most adapted
functional space to be chosen to ”host” considered fields, for seek of sim-
plicity and in order not to distract the reader with presently unessential
mathematical formalism, we limit ourselves to the consideration of very
regular stress states.

Hypothesis of C1 regularity.

For every given regular shape f and every dihedral shape d, the partial
functions

F
2
1 (·, f) , F

1
0 (·, d) (220)

are C1 functions.
As an obvious consequence of this assumption one easily gets that the

tensor field C defined in 14.8 is also a field of class C1.

Remark 14.13. We now can show how our hypothesis (174), which implies
but is not at all equivalent to hypothesis (138) put forward by Noll and
Virga (1990), allows us to prove the assumption III on page 21 in just
mentioned paper, and to show that the example treated in its Section 9
actually is exhaustive of all possible cases.

Indeed the following two Theorems give the general representation of
edge and surface contact forces. We prove them starting from the quasi
balance of power and under the regularity assumptions 10.1 to which we
add the last assumed hypothesis 14.3.

Theorem 14.14. Let S be the contact surface of an admissible domain V .
Let x be a regular point of an edge of S. Let (n1, n2, τ) be the tangent
dihedral shape to S at x. Then the edge force density at x depends only on
(n1, n2, τ) and is represented in terms of the second order stress tensor by

F
1
0(x, [(x, S)]) = (C (x) · n1) · ν1 + (C (x) · n2) · ν2, (221)

where we have introduced the following notations:

ν1 = τ × n1 ν2 = −τ × n2. (222)

Remark 14.15. The observed arbitrariness regarding the tensor C has no
influence on the representation formula (224) as the ”shape” tensor

n1 ⊗ ν1 + n2 ⊗ ν2 (223)

at any edge actually is a symmetric tensor.
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Theorem 14.16. At any regular point of the surface S it exists a continuous
second order tensor field T such that

F
2
0(x, [(x, S)]) = T (x) .n− divs ((C (x) .n) .Π) , (224)

where Π denotes the projector on the tangent plane to the surface S

(Π = Id− n⊗ n) . (225)

Remark 14.17. The arbitrariness in C has an influence on T . With the
choice (221), the tensor T is symmetric.

Proof. We prove at the same time both Theorems 14.14 and 14.16. Because
of Theorem 14.8, inequality (174) may be written

∣
∣
∣
∣

∫

Lr

F
1
0(x, [(x, S)]).U (x) dl +

∫

Sr

F
2
0(x, [(x, S)]).U (x) ds+

+

∫

Sr

((C (x) .n) .n) .∂U
∂n

(x) ds

∣
∣
∣
∣
< K

U
|V | .

(226)

Due to the equality
∣
∣
∣
∣

∫

V

div (∇U..C) dv

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

Sr

∇U.. (C.n) ds

∣
∣
∣
∣
, (227)

the quantity ∫

Sr

∇U.. (C.n) ds (228)

is quasi-balanced. Then there exists a scalar K ′
U such

∣
∣
∣
∣

∫

Lr

F
1
0(x, [(x, S)]).U (x) dl +

∫

Sr

F
2
0(x, [(x, S)]).U (x) ds+

+

∫

Sr

{
((C (x) .n) .n) .∂U

∂n
(x)−∇U (x) .. (C.n)

}
ds

∣
∣
∣
∣
< K

′

U
|V | .

(229)

Using now the decomposition

∇U.. (C.n) = ∂U�∂n. ((C.n) .n) +∇sU.. ((C.n) .Π)

where ∇s denotes the surface gradient on S , we get
∣
∣
∣
∣

∫

Lr

F
1
0(x, [(x, S)]).U (x) dl +

∫

Sr

F
2
0(x, [(x, S)]).U (x) ds+

+

∫

Sr

∇sU (x) .. ((C (x) .n) .Π) ds

∣
∣
∣
∣
< K

′

U
|V | .

(230)
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We apply the divergence theorem on every face of S, so obtaining

∣
∣
∣
∣

∫

Lr

F ′(x, [(x, S)]).U (x) dl +

∫

Sr

F ′(x, [(x, S)]).U (x) ds

∣
∣
∣
∣
< K ′

U
|V | , (231)

where we used the following definitions F2
0,F

2
1,F

1
0

F ′(x, [(x, S)]) := F
1
0(x, [(x, S)])− (C (x) · n1) · ν1 + (C (x) · n2) · ν2,

F ′(x, [(x, S)]) := F
2
0(x, [(x, S)]) +∇s · ((C (x) · n) ·Π) .

Because of the regularity hypotheses added in this section, F ′ and F ′ rep-
resent a stress state verifying the assumptions listed in 11. Because of
inequality 231, we may apply to them our results found in 11. Theorem
11.7 implies that F ′(x, [(x, S)]) is vanishing and Theorem ?? establishes
the existence of a continuous second order tensor field T (·) such that

F ′(x, [(x, S)]) = T (x) .n. (232)

14.4 Surface N-th order Forces

In this section we indicate how the results obtained in the previous sub-
section devoted to surface double forces can be further generalized.

Dependence of n-th order stress functions on the shape of
the contact surface. A theorem analogous to Noll Theorem.

We start with action-reaction theorem for surface N−forces and edge N −1
forces in N − th gradient continua.

Theorem 14.18. Let us consider a stress state S of grade N. At every
point x, for all plane shape n, for all dihedral shape (n, e1, e2) and for all
polihedral shape (n1, n2, ...., nk) we have

F
2
N−1 (x, n) + (−1)

N−1
F
2
N−1 (x0,−n) = 0 (233)

F
1
N−2(x, (n,−e1, e2)) + (−1)

N−2
F
1
N−2(x, (n, e1, e2)) = 0;

F
1
N−2(x, (−n, e1, e2)) + (−1)

N−2
F
1
N−2(x, (n, e1, e2)) = 0;

F
1
N−2(x, (n, e1,−e2)) + (−1)

N−2
F
1
N−2(x, (n, e1, e2)) = 0

(234)

F
0
N−3

(

x, ̂(−n1,−n2, ....,−nk)
)

+ F
0
N−3

(

x, ̂(n1, n2, ...., nk

)

= 0 (235)
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Proof. The reasoning proceeds exactly as in the case of stress states of
grade 2,with a difference: while we still consider the coordinate system
(x0, e1, e2, n) and the domain

Cε = [0, ε]× [0, ε]×
[
0, ε2

]

we use instead the vector field (where U0 is a given vector)

U : x 7→ (x3)
N−1

U0 (236)

which has as (N − 1)− th gradient the function

∇N−1U : x 7→ (N − 1)!U0⊗ n...⊗ n
︸ ︷︷ ︸

=:

(N−1)−times

(N − 1)!U0 ⊗ nN−1 (237)

The shapes of ∂Cε are prescribed shapes therefore the functions F in the
stress state S are uniformly bounded in the set

⋃

ε>0

(Cε × Φ (∂Cε)) . (238)

Considering the area or length of each face or edge, as in the previous
theorem 14.6 the inequality 169 applied to Cε implies together with the
expression 168 (all other terms in 169 in the limit are vanishing faster than
ε2)

lim
ε−→0

ε−2

∫

S+
ε

F
2
N−1 (x, n) .U0 ds+ (239)

+ lim
ε−→0

ε−2

∫

S−
ε

(−1)
N−1

F
2
N−1 (x,−n) .U0 ds = 0, (240)

where S+
ε and S−

ε denote the upper and lower faces of Cε i.e. in formulas

S+ =
{
x : x · e3 = +ε2

}
, S− = {x : x · e3 = 0}

The regularity assumptions accepted for F
2
N−1 and the arbitrariness of U0

finally imply

F
2
N−1 (x, n) + (−1)

N−1
F
2
N−1 (x0,−n) = 0.

Repeating then the construction conceived for dihedral shapes in Theorem
14.6 we easily get also 234. Finally in order to get 235 one needs to consider
the ε2−translation of the considered polihedral shape and construct the
ε−family of volumes so obtained.
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We are now able to prove that inN−th gradient continua contact surface
N− forces and edge (N − 1)-forces on any couple of contact surface which
are tangent assume the same value.

Theorem 14.19. Let us consider a N−th gradient continuum. Under reg-
ularity assumptions 10.1 and having postulated the quasi-balance of contact
actions, we have that: i) at every point x and for every regular shape f
tangent to the plane shape n we have

F
2
N−1 (x, f) = F

2
N−1 (x, n) (241)

that is F
2
1 at surface regular points depends on the shape of the contact

surface only through its normal ii) at every point x and for every regular
edge shape f tangent to the dihedral shape (n1, n2, e1) we have

F
1
N−2(x, f) = F

1
N−2(x, (n1, n2, e1)). (242)

that is F1
N−2 at edge points depends on the shape of the contact surface only

through the tangent dihedral shape; iii) at every point x and for every wedge
shape f tangent to the nondegenerate Polihedral Wedge Shape (n1, ..., nk) we
have

F
0
N−3(x, f) = F

0
N−3(x,

̂(n1, ..., nk)). (243)

that is F
0
N−3 at wedge points depends on the shape of the contact surface

only through the tangent polihedral shape.

Proof. The proof of 241 is very close to that we have given for the Theorem
12.5. The ε−family to be considered is exactly the same: the only difference
to be adopted in the demonstration consists in the need of using as test
function in the quasi-balance of power the vector field

U : x −→ (x · n0)
N−1

U0 (244)

where n0 denotes the normal to S at x0 and U0 is a generic vector. On
the other hand slightly different constructions are needed to prove 242 and
243: these constructions require the ε−translation of a neighborhood of the
contact surface keeping fixed the tangent dihedral or polihedral shape.

14.5 A Representation Theorem for surface (N − 1)−forces gen-
eralizing the Cauchy tetrahedron Theorem.

Celebrated Cauchy tetrahedron argument deserves to be admired. It
allows us to prove also for N − th gradient continua a representation theo-
rem for contact (N − 1)-forces in terms of a tensor of order N + 1. Indeed
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N−force surface density (which has been seen to depend only on the tan-
gent planar shape to the contact surface) can be obtained by calculating a
vector-valued polynomial function having grade exactly N.

Theorem 14.20. Let B a body occupying in one of its configurations the
domain D. Let us consider a physically admissible stress state S of grade
N. Let us assume the regularity assumptions 10.1. If quasi balance of power
holds then there exists a continuous tensor field CN of order N + 1 such
that, at any point xh ∈ D and for any plane shape n,

F
2
N−1 (xh, n) = (CN (xh).n)....).n

︸ ︷︷ ︸

N times

(245)

Proof. We adapt the Cauchy tetrahedron construction. We consider the
point x0 and the three unit vectors (e1, e2, e3). We define the tetrahedron
V as follows i) its face S opposed to the vertex in x0 is normal to the unit
vector n; ii) its edges

Li = x0xi = liei (i = 1, 2, 3) (246)

are such that xi ∈ S; iii) its height H parallel to n has length h: if we call
xh the second endpoint of the segment H we have

H = x0xh; xh − x0 = hn. (247)

It is easy to check that: i) the equation of the plane πS orthogonal to n and
passing through the point xh is given by

(x− xh) · n = 0 (248)

ii) as S ⊂ πS and xi ∈ S then

(x0+ liei−xh) ·n = 0 ⇒ −h+ liei ·n = 0 ⇒ h = liei ·n ⇒ h

ei · n
= li (249)

iii) the edges of the tetrahedron V lying in the plane πS are

−−→x1x2 = l2e2 − l1e1 = h
(

e2
e2·n

− e1
e1·n

)

−−→x2x3 = l3e3 − l2e2 = h
(

e3
e3·n

− e2
e2·n

)

−−→x3x1 = l1e1 − l3e3 = h
(

e1
e1·n

− e3
e3·n

)
(250)

iv) the triangles S3, S1 and S2 having a vertex in x0 and respectively x1x2

, x2x3, x3x1 as side opposed to x0 have as outward pointing unit normals
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respectively the vectors

n3 =
e2 × e1
|e2 × e1|

, n1 =
e3 × e2
|e3 × e2|

, n2 =
e1 × e3
|e1 × e3|

; (251)

It is important to establish the relationship between the reciprocal basis
(
ej
)
of the introduced basis (ei) and the three normals (nj) . Using the

notation v := e1 · (e2 × e3) we have:

ve1 = e2 × e3; ve2 = e3 × e1; ve3 = e1 × e2; −nj =
ej

|ej | (252)

v) the areas of the faces S, S3, S1 and S2 can be easily calculated. We can
verify some simple relationships:

2 |S| = −−→x1x2 ×−−→x1x3 · n = h2

(
e2

e2 · n
− e1

e1 · n

)

×
(

− e1
e1 · n

+
e3

e3 · n

)

· n =

= h2

(
e2

e2 · n
×
(

− e1
e1 · n

+
e3

e3 · n

)

− e1
e1 · n

×
(

e3
e3 · n

))

· n =

= h2

(− (e2 × e1) · n
(e2 · n) (e1 · n)

+
(e2 × e3) · n

(e2 · n) (e3 · n)
+

− (e1 × e3) · n
(e1 · n) (e3 · n)

)

=

= h2v

(
e3 · n

(e2 · n) (e1 · n)
+

e1 · n
(e2 · n) (e3 · n)

+
e2 · n

(e1 · n) (e3 · n)

)

=

=
h2v

(e3 · n) (e2 · n) (e1 · n)

(
3∑

i=1

(
ei · n

)
(ei · n)

)

=
h2 (e1 · (e2 × e3))

(e3 · n) (e2 · n) (e1 · n)
(253)

2 |S| = vh2

(e2 · n) (e1 · n) (e3 · n)
(254)

2 |S3| = (l2e2 × l1e1) · n3 = h2

(
e2

e2 · n
× e1

e1 · n

)

· n3 (255)

= h2 |e2 × e1|
(e2 · n) (e1 · n)

=
h2v

∣
∣e3
∣
∣

(e2 · n) (e1 · n)
(256)

2 |S1| =
vh2

∣
∣e1
∣
∣

(e2 · n) (e3 · n)
; 2 |S2| =

vh2
∣
∣e2
∣
∣

(e1 · n) (e3 · n)
(257)

so that we have

|S| = |Si|
(ei · n) |ei|

; (i = 1, 2, 3) (258)
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vi) the shapes of the edges L1, L2 and L3 are respectively f1 := (n2, n3, e1)
, f2 := (n3, n1, e2) and f3 := (n1, n2, e3). Let V ε be the image of V under
an homothetic transformation of ratio ε and center xh, we denote by Lε and
Sε (with eventually suitable subscripts) the images of all edges and surfaces
previously introduced. We will use now the quasi-balance of contact power
for the fixed (it does not vary with ε!) test field

U : x −→ ((x− xh) · n)N−1
U0 (259)

where U0 is a generic vector and for the varying family of domains V ε, its
contact surface, having the edges and wedges we have just described. The
equation 168 applied to state the quasi-balance of power for a physically
admissible stress state S in the domain Vε becomes

|PU (S, Vε)| :=
∣
∣
∣
∣
∣

∫

Sε
r

F
2
0 · U +

∫

Lε
r

F
1
0 · U +

N−1∑

k=1

∫

Sε
r

F
2
k ·
(
∇kU

)

⊥
+ (260)

+

N−2∑

k=1

∫

Lε
r

F
1
k ·
(
∇kU

)

⊥
+

N−3∑

k=0

∫

Wε
S

F
0
k · ∇kU

∣
∣
∣
∣
∣
≤ KUε

3 (261)

where with the symbols Sε
r , Lε

r and Wε
S we have denoted respectively the

set of regular surface points, regular edges points and wedges belonging to
the contact surface of the domain Vε.We now start by remarking that the
field U vanishes on the surface Sε together with all its derivatives up to the
order N − 2.Indeed:

∇kU =
(N − 1)!

(N − 1− k)!
((x− xh) · n)N−1−k

U0 ⊗ nk

(
∇kU

)

⊥
=

(N − 1)!

(N − 1− k)!
((x− xh) · n)N−1−k

U0 ⊗ (n− (n · ei) ei)k

We now consider one by one all the addends in 275 in which the previous
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equalities have been replaced

∣
∣
∣
∣
∣

∫

Sε
r

F
2
0 · U

∣
∣
∣
∣
∣
= (262)

=

∣
∣
∣
∣
∣

3∑

i=1

∫

Sε
i

F
2
0 · ((x− xh) · n)N−1

U0

∣
∣
∣
∣
∣
≤ K2

0 ‖U0‖ ε2εN−1 (263)

(∀k < N − 1)








∣
∣
∣

∫

Sε
r
F
2
k ·
(
∇kU

)

⊥

∣
∣
∣ =

=

∣
∣
∣
∣

3∑

i=1

∫

Sε
i

F
2
k · (N−1)!

(N−1−k)! ((x− xh) · n)N−1−k
U0 (n · ni)

k

∣
∣
∣
∣

≤ K2
k ‖U0‖ ε2εN−1−k








(264)
∣
∣
∣
∣
∣

∫

Sε
r

F
2
N−1 ·

(
∇N−1U

)

⊥

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

3∑

i=1

∫

Sε
i

F
2
N−1 · (N − 1)!U0 (n · ni)

N−1
(265)

+

∫

Sε

F
2
N−1 · (N − 1)!U0 ≤ K2

N−1 ‖U0‖ ε2 (266)

∣
∣
∣
∣
∣

∫

Lε
r

F
1
0 · U

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

3∑

i=1

∫

Lε
i

F
1
0 · ((x− xh) · n)N−1

U0

∣
∣
∣
∣
∣
≤ K1

0 ‖U0‖ ε1εN−1 (267)

(∀k < N − 2)

(∣
∣
∣
∣
∣

∫

Lε
r

F
1
k ·
(
∇kU

)

⊥

∣
∣
∣
∣
∣
= (268)

=

∣
∣
∣
∣

3∑

i=1

∫

Lε
i

F
1
k ·
(

(N−1)!
(N−1−k)! ((x− xh) · n)N−1−k

U0 ⊗ (n− (n · ei) ei)k
)
∣
∣
∣
∣
≤

≤ K1
k ‖U0‖ ε1εN−1−k





(269)
∣
∣
∣
∣
∣

∫

Lε
r

F
1
N−2 ·

(
∇N−2U

)

⊥

∣
∣
∣
∣
∣
= (270)

=

∣
∣
∣
∣
∣

3∑

i=1

∫

Lε
i

F
1
N−2 ·

((

(N − 1)! ((x− xh) · n)U0 ⊗ (n− (n · ei) ei)N−2
))
∣
∣
∣
∣
∣

≤ K1
N−2 ‖U0‖ ε2 (271)

(∀k ≤ N − 3)







∣
∣
∣

∫

Wε
S

F
0
k · ∇kU

∣
∣
∣ =

∣
∣
∣F

0
k(x0, [(x0, S

ε)]) ·
(

(N−1)!((x−xh)·n)
N−1−k

N−1−k!

)

U0 ⊗ nk
∣
∣
∣ ≤

≤ K0
0 ‖U0‖ εN−1−k







(272)
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We now simply multiply both terms in 261 (in which we have replaced 259)
times ε−2. Then we take into account all inequality listed from 262 to 272
and we remark that the shapes on every face and edge of the boundary ∂V ε

are spatially constants and, together with wedge shapes, also independent
of ε. We are thus able to calculate the limit for ε tending to zero and finally
get (remark that having already treated the case N = 2, we can consider
N ≥ 3)

lim
ε→0

ε−2

(
3∑

i=1

∫

Sε
i

F
2
N−1 · (N − 1)!U0 (n · ni)

N−1
+ (273)

+

∫

Sε

F
2
N−1 · (N − 1)!U0+ (274)

+

3∑

i=1

∫

Lε
i

F
1
N−2 ·

((

(N − 1)! ((x− xh) · n)U0 ⊗ (n− (n · ei) ei)N−2
))

+

(275)

+ F
0
N−3(xh − εhn, [(xh − εhn, Sε)]) ·

(

(N − 1)! (εh)
2

2!

)

U0 ⊗ nN−3

)

= 0

(276)

Before starting to calculate the indicated limit we remark that the set of
shapes

⋃
Φ(∂V ε) is a prescribed set of shapes, so that all the continuous

functions F are equi-uniformly bounded. The previous equality, where we
have now explicitly indicated the argument of the functions F and once we
apply the first mean value theorem for integration, becomes

lim
ε→0

ε−2

(
3∑

i=1

|Sε
i |F2

N−1(x
ε
i , ni) · (N − 1)!U0 (n · ni)

N−1

+ |Sε|F2
N−1(xε, n) · (N − 1)!U0 +

+

3∑

i=1

(
∫

Lε
i

((x− xh) · n)
)

F
1
N−2 (x̃

ε
i , fi)

·
((

(N − 1)!U0 ⊗ (n− (n · ei) ei)N−2
))

+ (277)

+ F
0
N−3(xh − εhn, ̂(n1, n2, n3)) ·

(

(N − 1)! (εh)
2

2!

)

U0 ⊗ nN−3

)

= 0

where xε
i ∈ Sε

i , xε ∈ Sε, x̃ε
i ∈ Lε

i . We now calculate the integral
∫

Lε
i

((x− xh) · n) =
1

2
(−ei · n) ε2l2i (278)
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and, as the following limit is finite

lim
ε→0

ε−2 |Sε| = vh2

2 (e2 · n) (e1 · n) (e3 · n)
, (279)

we factorize |Sε| in equality 277, to get

lim
ε→0

(
3∑

i=1

|Sε
i | |Sε|−1

F
2
N−1(x

ε
i , ni) · (N − 1)!U0 (n · ni)

N−1
+

+F
2
N−1(xε, n) · (N − 1)!U0+ (280)

+
3∑

i=1

(
1

2
(−ei · n) ε2l2i

)

|Sε|−1
F
1
N−2 (x̃

ε
i , fi) · (281)

·
(

(N − 1)!U0 ⊗ (n− (n · ei) ei)N−2
)

+ (282)

+F
0
N−3(xh − εhn, ̂(n1, n2, n3))· (283)

·
(

(N − 1)! (εh)
2

2!

)

|Sε|−1 (
U0 ⊗ nN−3

)

)

= 0

To proceed we need i) to use the following formulas (i = 1, 2, 3)

(ei · n)
∣
∣ei
∣
∣ = |Si| |S|−1

= |Sε
i | |Sε|−1

;
h

(ei · n)
= li (284)

ε2l2i |Sε|−1
= l2i |S|

−1
= v−1

(

2 (e2 · n) (e1 · n) (e3 · n)
(ei · n)2

)

(285)

|Sε|−1
(εh)

2
= h2 |Sε|−1

ε2 = 2v−1 (e2 · n) (e1 · n) (e3 · n) (286)

which are implied by 254 and 258, ii) to simplify the nonvanishing factor
(N − 1)! and iii) to use simple algebra. We get:

lim
ε→0

(
3∑

i=1

(ei · n)
∣
∣ei
∣
∣F

2
N−1(x

ε
i , ni) · U0 (n · ni)

N−1
+

+F
2
N−1(xε, n) · U0 (287)

+
3∑

i=1

(
−v−1

) (e2 · n) (e1 · n) (e3 · n)
(ei · n)

F
1
N−2 (x̃

ε
i , fi) · (288)

·
(

U0 ⊗ (n− (n · ei) ei)N−2
)

+ (289)

+F
0
N−3(xh − εhn, ̂(n1, n2, n3))· (290)

·v−1 (e2 · n) (e1 · n) (e3 · n)
(
U0 ⊗ nN−3

))
= 0
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It is now possible to calculate the limit and factorize the arbitrary vector
U0

(
3∑

i=1

(ei · n)
∣
∣ei
∣
∣F

2
N−1(xh, ni) (n · ni)

N−1
+ F

2
N−1(xh, n) +

+

3∑

i=1

(
−v−1

) (e2 · n) (e1 · n) (e3 · n)
(ei · n)

F
1
N−2 (xh, fi) · (n− (n · ei) ei)N−2

+

(291)

+v−1 (e2 · n) (e1 · n) (e3 · n) F0
N−3(xh, ̂(n1, n2, n3)) · nN−3

)

.U0 = 0

As the last equality holds for every nonvanishing vector U0 it implies

3∑

i=1

(ei · n)
∣
∣ei
∣
∣F

2
N−1(xh, ni) (n · ni)

N−1
+ F

2
N−1(xh, n)+

+
3∑

i=1

(
−v−1

) (e2 · n) (e1 · n) (e3 · n)
(ei · n)

F
1
N−2 (xh, fi) · (n− (n · ei) ei)N−2

+

(292)

+v−1 (e2 · n) (e1 · n) (e3 · n)F0
N−3(xh, ̂(n1, n2, n3)) · nN−3 = 0

The formula which we have just obtained generalizes equation 209. As the
following implication holds

(∀ (ei)) ((ei · ej = δij) ⇒ (∀i) (ni = −ei) ∧ (v = 1)) (293)

then 292, together with theorem 14.18 obviously implies that there exists
a tensor of order N which allows for the representation of surface contact
(N − 1)−forces given in formula 245.

Remark 14.21. When re-considering the flow of the demonstration of the
previous theorem the reader will be persuaded that the tetrahedron argu-
ment can be used to get an alternative proof of Theorems 13.6 and 13.4.

The theorem which we have just proven leads us to define a tensor field
CN of order N + 1 such that

F
2
N−1 (xh, n) = (CN (xh).n)....).n

︸ ︷︷ ︸

N times

= CN (x0) · nN (294)

This tensor is not uniquely determined, as only its right-side products by
symmetric (N + 1) − th order tensors are determined. We may impose its
right side symmetry and by using 292 we can easily prove the following
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Lemma 14.22. The only tensor field CN verifying the equation 294 and
completely symmetric with respect its last N indices has the following form

CN (x) =

3∑

i=1

(

F
2
N−1(x, ni)⊗ (ni)

N−2
)

⊗ 1

2

(
ei ⊗ ei + ei ⊗ ei

)
+ (295)

+
3∑

i=1

F
1
N−2 (x, fi)⊥ ⊗

(
v−1

) 1

2
(ei+1 ⊗ ei+2 + ei+2 ⊗ ei+1)+ (296)

−F
0
N−3(x,

̂(n1, n2, n3))⊗ v−1Š (297)

where we have introduced the third order tensor S as follows (σ ({1, 2, 3})
denotes the set of all permutations in the set {1, 2, 3})

∑

π∈σ({1,2,3})

eπ(1) ⊗ eπ(2) ⊗ eπ(3) =: 6Š (298)

The previous Lemma allows us to state the following

Proposition 14.23. Given a physically admissible stress state S of grade
N. The tensor field CN the existence of which has been proven in the previous
Theorem 14.20 allows for the representation of the highest order nonvan-
ishing contact actions in S

F
2
N−1,F

1
N−2,F

0
N−3 (299)

This representation is exactly the one given in equations 101,102 and 103.

14.6 Representation theorem for contact k−forces with k < N.

To proceed we will need to apply Gauss divergence Theorem to a se-
quence of tensor fields defined by recursively applying the previously pre-
sented tetrahedron argument. Indeed these tensor fields will be considered
as arguments of the functionals introduced by formulas 105.

Therefore we are naturally induced to add some further regularity as-
sumptions on the considered physically admissible stress state S of grade N.
In the present work we limit ourselves to the consideration of very regular
stress states.

Hypothesis of CK+1 regularity.

For every given regular shape f the partial functions

F
2
K (·, f) ∈ S (300)
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are CK+1 functions.
As an obvious consequence of this assumption one easily gets that the

tensor field CN defined in 14.20 is a field of class CN .
We can now easily prove the following

Proposition 14.24. Let us consider a physically admissible stress state S

of grade N. The stress state
ˆ

S :=
{

F̂

}

defined by

F̂
2
J := F

2
J − F(∂B, {0, ...0, CN} , J)

F̂
1
J := F

1
J − F(∂∂B, {0, ...0, CN} , J)

F̂
0
J := F

0
J − F(∂∂∂B, {0, ...0, CN} , J)

(301)

is physically admissible, verifies the Hypothesis 14.6 and is a stress state of
grade not greater than N − 1.

Proof. The demonstration is obtained by remarking that because of 14.23

the definition 301 has all vanishing the actions
{

F̂
2
N−1, F̂

1
N−2, F̂

0
N−3

}

.Therefore

the stress state
ˆ

S cannot have a grade greater than N − 1. Then the defini-

tion itself of the functional F assures that
ˆ

S verifies the regularity condition
14.6. Finally a simple integration by parts argument allows us to conclude

that
ˆ

S is physically admissible.

Definition 14.25. It is possible to apply recursively the tetrahedron argu-
ment and the previous proposition to defined the set of tensors CK where
1 < k ≤ N.

Remark 14.26. Because of Hypothesis 14.6 the tensor fields CK have all
the k − th order derivatives and these derivatives are continuous.

With a simple recursive argument it is then possible to prove the follow-
ing

Theorem 14.27. Existence of Generalized Cauchy Stress Tensors.

Given a physically admissible stress state S =
{
F
2
J ,F

1
J ,F

0
J

}
of grade N. Then

the following representation formula holds

F
2
J = F(∂B, {C2, C3..., CN} , J)

F
1
J = F(∂∂B, {C2, C3..., CN} , J)

F
0
J = F(∂∂∂B, {C2, C3..., CN} , J)

(302)
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In other words: for every physically admissible stress state of grade N there
exists a N − tuple of stress tensors which allow for the representation of all
admissible contact actions.

15 Conclusions

In this work it is proven, for the class of N − th gradient continua, that
the approach à la Cauchy and the approach à la d’Alembert are absolutely
equivalent.

There are several aspects of the studied theory which deserve further
investigations. We list here few of them.

1. It is needed to study contact actions on contact surfaces in which
there are present curves of discontinuity of Gaussian curvature or its
derivatives.

2. Cauchy tetrahedron argument needs to be extended to Cosserat-type
continua, where further kinematical descriptors, in addition to place-
ment, are introduced.

3. The weakest regularity assumptions for introduced fields which allow
for a Cauchy type representation theorem need to be found.

4. More singular types of wedge shapes need to be introduced and studied
as parts of admissible Cauchy cuts.
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des milieux continus. Première partie. Théorie du second
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