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Abstract

We use an improved version of the standard effective mass approximation model to describe quantum effects in nanometric
semiconductor Quantum Dots (QDs). This allows analytic computation of relevant quantities to a very large extent.
We obtain, as a function of the QD radius, in precise domains of validity, the QD excitonic ground state energy and its
Stark and Lamb shifts. Finally, the Purcell effect in QDs is shown to lead to potential QD-LASER emitting in the range
of visible light.
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1. Introduction

As semiconducting Quantum Dots (QDs) display stan-
dard atomic physics properties, they may be thought as
giant artificial atoms, with adjustable quantized energy
spectra through their sizes and shapes. They are of inter-
est in a wide range of research areas [1–5]. In such struc-
tures, Quantum Size Effects (QSE) are characterized by a
blue-shift in the semiconductor optical spectrum, due to
the increase of the charge carrier confinement energy. Re-
sults on QSE in low-dimensional semiconductor structures
and modern approaches to this problem are discussed in
[6, 7]. In this paper, the QD problem is dealt within a
modified effective mass approximation (EMA) model, to
which a pseudo-potential is added (cf. section 2). This
partially removes the over-estimation of the electron-hole
pair confinement energy for small QDs, and allows the an-
alytic determination of the Kayanuma function η(λ) [8].

The physics of QDs, particularly in regard to the QD
interaction with an external field, is very attractive. It
gives rise to quantum-confinement Stark effects (QCSE)
[9, 10], which manifest themselves through a red-shift of
exciton photoluminescence [11]. In section 3, we use the
EMA model to obtain analytic criterions on the QD radius
and the applied electric field amplitude, as a result of the
interplay between electron-hole Coulomb interaction and
an additional polarization energy [12]. When the electro-
magnetic field is quantized, an energy level Lamb shift
occurs [13, 14]. While it is a continual subject of research
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[15, 16], it seems to be unknown for QDs. In section 4, we
use the EMA framework to uncover an observable nega-
tive Lamb shift for the electron-hole pair ground state, in
judiciously chosen QDs. In section 5, the Purcell effect, a
test bed for many applications [17–19], is studied for QDs.
A condition for its occurrence, despite the action of unfa-
vorable Rabi oscillations, is derived. This opens the way
for a visible light QD-LASER, driven by a Purcell effect.

2. Quantum Size Effects

In a standard EMA model, an electron and a hole, of
effective massesm∗

e,h, behave as free particles in a spherical
infinite potential well V (re,h). Their Coulomb interaction

− e2

κreh
is treated by a variational procedure. To handle the

interplay between confinement energy (scaling as ∝ R−2),
and Coulomb potential (scaling as∝ R−1), two regimes are
singled out by the values of the ratio of the QD radius R to
the bulk Mott-Wannier exciton Bohr radius a∗ [8]. Here,
as far as Stark, Lamb or Purcell effects are concerned,
the so-called weak field limit, by which the charge carriers
cannot overstep the real confining potential by tunneling,
is assumed.

In a strong confinement regime, where R . 2a∗, the
electron-hole relative motion is affected by the infinite po-
tential well, such that the electron-hole pair stays quasi-
uncorrelated. To exhibit the excitonic behavior of the
electron-hole pair, both electron and hole, individually
confined and being in their ground state, the following
trial function φ(re, rh) ∝ e−

σ
2

reh
a∗ , of parameter σ, is to be

used. The electron-hole pair ground state energyEstrong
eh =

Eeh − 1.786 e2

κR
− 0.248E∗, given in [8], is retrieved up to
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Table 1: Comparison of η(λ) values from computational results of

[8] and theoretical results given by equation η(λ) = 0.208
(1+λ)2

λ
.

λ 1 3 5
ηcomp(λ) 0.73 1.1 1.4
ηtheo(λ) 0.83 1.1 1.5

relative error ≈14% <1% ≈7%

Figure 1: Electron-hole pair ground state energy as a function of the
QD radius computed for a confining infinite potential well with (––)
or without (—) the presence of the pseudo-potential W (re,h) and for
a confining finite potential step of height V0 ≈ 1eV (– · –) [20] and
compared to experimental results for CdS microcrystallites [21].
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2 order, µ being the electron-hole pair reduced mass,

Eeh = π2

2µR2 its ground state confinement energy, and E∗

the excitonic Rydberg energy.
In the weak confinement regime, where R & 4a∗, the

exciton behaves as a quasi-particle of mass M = m∗
e +m∗

h.
Then, the leading contribution to its ground state en-

ergy is −E∗, while its total translational motion is π2

2MR2 .
To improve the accuracy of the exciton ground state en-

ergy −E∗ + π2

2MR2 , a phenomenological function η(λ) of

the mass ratio λ =
m∗

h

m∗

e
was introduced in [8]. The ex-

citon is thought as a rigid sphere of radius η(λ)a∗, and
its center-of-mass cannot reach the infinite potential well
boundary unless the electron-hole relative motion under-
goes a strong deformation [8]. Thus, adding a ground state
plane wave in the center-of-mass coordinates to the trial
function φ(re, rh), we obtain, up to (a

∗

R
)3 order, Eweak

eh =

−E∗ + π2

6µR2 + π2

2M(R−η(λ)a∗)2 , where η(λ) = 0.208 (1+λ)2

λ
.

η(λ) satisfies the electron-hole exchange symmetry, and
table 1 shows good agreement with computational results.

However, Eweak
eh has a further kinetic energy term π2

6µR2

in the relative coordinates [8]. As the virial theorem should
be satisfied in these coordinates, this energy is already
contained in the Rydberg energy. To remove this contri-
bution, we propose to add the pseudo-potential W (reh) =

− 32π2

9 E∗ r2eh
R2 e

−2
reh
a∗ .1 This pseudo-potential also decreases

the exciton energy by ≈ −19.9E∗ in the strong confine-
ment regime. Figure 1 shows that the excitonic energy

1W (reh) should be attractive at distances ≈ a∗ to promote exci-
tonic state with typical size around a∗, repulsive at short distances
to penalize small size excitonic states, and exponentially small at
large distances.

Figure 2: Stark shift for electron-hole pair as a function of the QD
radius, when Ed = 12.5kV.cm−1, only including the Coulomb in-
teraction (Γeh ≈ −0.163) up to the zeroth (—) or to the first (– –)
order, only including the polarization energy (Γeh ≈ −0.042) up to
the first order (– · –), and including both the Coulomb interaction
and the polarization energy (Γeh ≈ −0.205) up to to the first order
(– ··–), in comparison with results (+) from [9].
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computed with W (reh) shows a better fit to experimental
results for 2R . a∗. The divergence for very small QD size
still persists as a consequence of the infinite potential well
assumption [20]. To improve predictive results in this re-
gion, energy expansions may be carried out to a few more
orders. But, computations become so involved that the
relevance of such an approach can be questioned.

3. Quantum-confinement Stark effects

An electric field Ed, is applied along the z-axis of a
cartesian coordinates system with its origin at the QD
center. Even if the EMA model does not fully describe
the QD behavior in the absence of electric field, it can be
still used to study QCSE in the weak field limit but should
include the dipolar interaction Weh(reh) = Ed · deh, deh

being the exciton dipole moment. The quantity eEdR,
where Ed = |Ed|, is treated as a perturbation. Following
[22], we use here the trial function φ(re, rh), describing the
electric field free electron-hole pair, but with electric field

interaction factors e∓
σe,h
2 ze,h of parameters σe,h, to account

for the spherical shape deformation along Ed.
The Stark shift is determined, up to R

a∗ order, as

∆E
strong
Stark = −ΓMe2E2

dR
4
{

1 + Γeh
R
a∗

}

, where Γ ≈ 0.018
and Γeh depends on the semiconductor. The first contri-
bution is the sum of the Stark shifts undergone by the
electron and hole ground states. The second contribution
expresses the remnant of electron-hole pair states as exci-
ton bound states. As the inside semiconducting QD dielec-
tric constant ε is larger than the outside insulating matrix
one, the polarization energy P (re, rh) introduced in [23]
is also considered, and its relative role vs. the Coulomb
potential explored. Explicit analytical expressions for any
Stark effect quantity, pertaining either to the polarization
energy or to its combined effect with Coulomb potential,
are given in [12], and successfully confronted with compu-
tational data [10].

For CdS0.12Se0.88 microcrystals, the strong confine-
ment regime and the weak field limit condition are fulfilled
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for Ed ≈ 12.5kV.cm−1 and R . 30Å, if Coulomb interac-
tion and polarization energy are taken to account. When
the polarization energy is considered alone, the strong con-
finement regime is no longer valid, because σ ≤ 0. For
R . 30Å, figure 2 shows that the Stark shift, computed
up to the zeroth order, is underestimated. The results be-
come much more accurate, when first order terms are in-
cluded, and seem efficient enough for describing QCSE in
spherical semiconductor QDs. As soon as R & 30Å, our re-
sults diverge from experimental data, as expected. When
Coulomb interaction and polarization energy are included
in the strong confinement regime, the weak field limit is no
longer valid for QD radii 30Å . R . 50Å. Thus, a future
work may focus on conciliating strong confinement regime
and strong field limit. The case of the weak confinement
regime is much more difficult to study, even in the weak
field limit.

4. Lamb shift

The Lamb effect comes from the effect of a quantized
electromagnetic field on the motion of a quantum particle
of mass m∗ and charge qe in a potential U(r). Two popu-
lar methods to compute the resulting energy level shift are:
the Bethe approach, which is a stationary second-order
perturbation approach applied to a Pauli-Fierz Hamilto-
nian in the Coulomb gauge [13], and the Welton approach,
which attributes the Lamb shift to particle position fluctu-
ations [14]. They both lead to the same expression for the

Lamb shift of a particle state |n〉, ∆En = α
3π

q2

m∗2 log
(

m∗

κ

)

〈n|∇2U(r)|n〉, where α is the fine-structure constant, and
κ a IR cut-off, identified with 〈|Em − En|〉 [13, 14].

For a particle of mass m∗ and charge ±e, confined by
the infinite spherical potential well V (r) of a spherical QD,
the Lamb shift of a level Eln turns out to be negative

∆Eln = −
16α

3π

−λ∗2

R2
Eln log

(

R

R∗
min

)

. (1)

Here −λ∗ is the particle reduced Compton wavelength and

R∗
min = π

2

√

7
3
−λ∗ is a QD radius lower bound, dictated by

our non-relativistic assumption: for R ≤ R∗
min, the particle

confinement energy is of the order of its rest energy.
For a confined electron, its ground state undergoes a

Lamb shift ∆ELamb
01 ≈ −4.85 10−3µeV, for R = 1nm. As

|∆ELamb
01 | decreases with R, it is unfortunately not observ-

able in QDs of realistic radii. This is not so for an interac-
tive electron-hole pair in a spherical semiconducting QDs,
at least in the strong confinement regime.

The Lamb shift of the exciton ground state is made
of four contributions. The first two contributions are due
to the confinement infinite potential well V (re,h), given
by equations (1), with m∗

e,h. The second is due to the
Coulomb potential, and has the form of the Lamb shift
observed in real atoms. Finally, the third comes from the
pseudo-potential W (reh).

Figure 3: Lamb shift undergone by the electron (––), the hole (– ·–)
and the exciton (—), when the exciton occupies its ground state in
the strong confinement regime for CdS0.12Se0.88 microcrystallites.
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Table 2: Lamb shift undergone by the exciton ground state in the
strong confinement regime in CdS0.12Se0.88 or InAs microcrystals
a. for R = 10Å and b. for R = 30Å, and c. in the weak confinement
regime.

Semiconductor CdS0.12Se0.88
InAs

heavy hole light hole

a. ∆E
strong

Lamb (meV) -2,05.10−5 -9,49.10−3 -3,69.10−6

b. ∆E
strong

Lamb (meV) -2,11.10−6 -1,48.10−4 -5,94.10−4

c. ∆Eweak
Lamb (meV) 7,25.10−6 2,69.10−10 9,07.10−8

In the strong confinement regime, the Lamb shift un-
dergone by the electron-hole pair ground state is evaluated,
up to ( R

a∗ )
2 order, as ∆E

strong
Lamb = ∆Estrong

e + ∆E
strong
h ,

where
∆E

strong
e,h

Eeh
= −16α

3πε

−λ ∗2
e,h

R2 log
(

R

R
e,h
min

)[

1−
{

0.619µ
m∗

e,h
+ 2.111

π2

}

R
a∗

+
{

0.699µ
m∗

e,h
− 1.470

π2 + 8
3

}

( R
a∗ )

2
]

, −λ∗
e,h being the electron and

hole reduced Compton wavelengths and R
e,h
min being min-

imal radii in the semiconductor QD. As R ≥ R
e,h
min, this

energy shift is negative. To the best of our knowledge,
this is an outstanding new property, since in real atoms,
the Lamb shift is always positive. Figure 3 suggests the
possibility of measuring this Lamb shift in semiconduct-
ing QDs of realistic radii. Table 2.a and b confirms this,
particularly in InAs microcrystallites. Orders of magni-
tude involved are equivalent to those observed in hydrogen
atom, and agree with experimental results, for which rel-
ative energy shifts, identified as Lamb shifts, smaller than
100µeV are measured [24, 25].

In the weak confinement regime, the Lamb shift of the
exciton ground state, up to (a

∗

R
)2 order, is ∆Eweak

Lamb =

∆Eweak
e + ∆Eweak

h , where
∆Eweak

e,h

E∗ = 8α
3πε

−λ ∗2
e,h

a∗2 log
(

m∗

e,h

κ∗

e,h

)

.

It is independent of the QD radius, and reveals the exci-
tonic quasi-particle properties of the electron-hole pair in
this regime. In the limit of infinite hole mass λ ≫ 1, only
the electronic term ∆Eweak

e contributes, so that the Lamb
shift undergone by the ground state of an hydrogen-like
atom is retrieved. Following this analogy, the IR cut-offs
should be both taken as κ∗

e,h ≈ 19.8E∗ [26]. Table 2.c sug-
gests that the Lamb shift in the weak confinement regime
is not observable at the moment.
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5. Purcell effect

A two-level quantum atom, built from two states |n〉
and |m〉 of a quantum charged particle, of respective en-
ergies En < Em, is fit into an electromagnetic cavity of
quality factor Q, resonant at a frequency ω close to the
Bohr frequency ωm

n
= Em − En. It interacts with a sin-

gle dynamical confined electromagnetic cavity mode, also
named quasi-mode, characterized by its effective volume
Vmode, and with a continuum of other external electro-
magnetic modes. In the electric dipole approximation and
in a weak coupling regime, assuming that the two-level
quantum system-confined mode coupling is treated as a
perturbation to the confined mode-continuum coupling,
the spontaneous emission rate of the radiative transition
|m〉 → |n〉 is Am

n
= 2|〈m|d|n〉|2 Q

Vmode
, d being the particle

electric dipole moment. It is given by the Fermi golden
rule applied to the Jaynes-Cummings Hamiltonian [27].
From the definition Am

n
= Fm

n

0Am

n
and from the sponta-

neous emission rate 0Am

n
=

(ωm

n
)3

3π |〈m|d|n〉|2 in absence of
electromagnetic cavity [28], the spontaneous emission rate

is enhanced by the Purcell factor Fm

n
= 3Q

4π2

(λm

n
)3

Vmode
, where

λm

n
is the wavelength associated to ωm

n
.

If the emitted photon escapes the two-level quantum
system and the electromagnetic cavity, without being re-
absorbed, the confined mode-continuum coupling domi-
nates. As the Purcell effect competes with the adverse
working of Rabi oscillations [29], a sufficient condition for
the validity of the weak coupling is τm

n
Ωm

n
≪ 1. Here,

τm
n

= Q
ωm

n

is defined as the photon relaxation time and

Ωm

n
=

√

ω
2Vmode

|〈m|d|n〉| the Rabi frequency. As τm
n
Ωm

n

scales as ∝ Q, this imposes an upper bound on Q. The
higher Q is, the smaller is the resonance disagreement
|ω − ωm

n
|, which is responsible for the Rabi oscillations

evanescence. Therefore, Rabi oscillations can be sustained
in the cavity, inhibiting the Purcell effect [30].

In practice, the effective cavity mode volume Vmode

is experimentally measured. A review of electromagnetic
cavities of quality factor Q ≥ 2000, characterized by an ef-
fective volume Vmode ≈ β(λm

n
)3, β being of order unity, is

given in [31]. For such cavities, the Purcell factor becomes
independent from the radiative transition, and F = 3Q

20π2

if β = 5. Then, to observe the Purcell effect, the quality
factor should be larger than the lower bound Qmin ≈ 66,
which is the case in common electromagnetic cavities.

In a semiconductor QD, as the Purcell effect concerns
radiative transitions between any two QD eigenstates, the
confined hole is assumed to be in its ground state. Accord-
ing to section 2, electron tunneling should be discarded,
and only electronic radiative transitions involving energy
levels lower than the maximum amplitude of the real fi-
nite potential step should be considered. These consider-
ations should be valid in the strong confinement regime.
Spontaneous emission rates with or without electromag-
netic cavity are analytically computed between two con-
fined electron states of energies Eln < El′n′ as 0Al′n′m′

lnm =

Figure 4: Diagram of states and transitions in the three-level red
QD LASER. The pumping is realized between a lowest level |010〉 of
the spherical QD spectrum (the ground state level) and a level |090〉
(the excited state) higher than the highest level |180〉 of the LASER
transition (the intermediate state).

180

090

Γ

Γ′

Pump

010

LASER
γ

Table 3: Table of wavelengths and spontaneous emission rates of the
three-level QD red LASER presented at 4 in comparison with the
LASER transition of He-Ne LASER.

LASER Transition
wavelength 0Al′n′m′

lnm
(nm) (MHz)

QD LASER
|090〉→ |180〉 6.02 103 401
|180〉→ |010〉 755 0.617

He-Ne LASER 632 ≈ 50

64
√
εα

3

[

2π
λl′n′

ln

]3

(I ll
′

nn′)2Jmm′

ll′ R2 and Al′n′m′

lnm = F 0Al′n′m′

lnm . Here,

I ll
′

nn′ and Jmm′

ll′ are exactly computable integrals. Since
0Al′n′m′

lnm ∝ R−4, spontaneous emission rates are large for
small QDs, illustrating a typical quantum behavior.

In the strong confinement regime, we discuss now the
possibility of exploiting Purcell effect to produce red-light
LASER emission at 755nm from InAs-spherical QDs of
radius R = 25nm [32]. Figure 4 describes the lasing mech-
anism, and table 3 collects required numerical data. Spon-
taneous emission is the only relevant phenomena: stimu-
lated emission and absorption should be discarded, and
non-radiative effects should be omitted.

Assuming that the decay |090〉 → |180〉, of relaxation
rate Γ′, is faster than the decay |180〉 → |010〉 of relaxation
rate Γ: the intermediate state is metastable and Γ′ ≫ Γ.
In a stationary regime with weak pumping ω ≪ Γ′, the
population inversion holds only for ω ≥ Γ. This implies
that Γ′ ≫ Γ, which means that the excited state is almost
empty, and the intermediate state is the most populated.
As Γ′ ≥ 0A090

180 ≈ 401MHz and Γ = A180
010 ≈ 9.38QkHz, the

assumptions for having a red-light three-level LASER are
met, if F ≈ 100, i.e. if Q ≈ 6500, and if ω is of the order of
80MHz. In particular, the condition for obtaining the Pur-
cell effect is met τ180010Ω

180
010 ≈ 6, 3.10−3. Table 3 suggests

that spontaneous emission rates are of the same order of
magnitude than those of the He-Ne LASER. So, the Pur-
cell effect coupled to the QDs artificially tailored spectrum
leads to the possibility of producing visible light LASER
emission. However, even in the strong confinement regime,
this result is to be considered with care since electron-hole
Coulomb interaction is not yet included.

6. Conclusion

In this paper, a novel approach to some interesting
properties of spherical semiconducting QDs is presented.
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It is based on an improved EMA classical model with an
added effective pseudo-potential. This allows extensive an-
alytic calculations of physical quantities yielding consider-
ably better agreement with numerical or/and measured
data for Quantum Size Effects and Quantum Confinement
Stark Effects. Using this model, the Lamb shift in spher-
ical semiconductor QDs is computed. It turns out to be
negative and in principle observable, at least in the strong
confinement regime. Finally our study also demonstrates
the utility of the Purcell effect, predicted for atoms, for
QD-LASER emission in the visible. These wide ranging
theoretical results are encouraging for further investigation
of QDs structure, based on this improved EMA model.
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