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Abstract

A strong matching C in a graph G is a matching C such that there is no edge of E(G)

connecting any two edges of C. A cubic graph G is a Jaeger's graph if it contains a

perfect matching which is a union of two disjoint strong matchings. We survey here some

known results about this family and we give some new results. We de�ne the operation

of (L,U)-extension and we show that the family of Jaeger's graphs is generated from

some small Jaeger's graphs by using this operation. A linear forest is a graph whose

connected components are chordless paths. A linear partition of a graph G is a partition

of its edge set into linear forests and la(G) is the minimum number of linear forests in

a linear partition. It is well known that la(G) = 2 for any cubic graph G. For a linear

partition L = (LB , LR) of G and for each vertex v we de�ne eL(v) as the edge incident

to v which is an end edge of a maximal path in LB or LR. We shall say that two linear

partitions L = (LB , LR) and L′ = (L′
B , L

′
R) are compatible whenever eL(v) 6= eL′(v) for

each vertex v. We show that every Jaeger's graph has two compatible linear partitions

and we give some sthrenthening to the conjecture: Every cubic graph has two compatible

linear partitions.

Keywords: cubic graphs, linear partition, linear forest, strong matching

1. Introduction.

For any undirected graph G, we denote by V (G) the set of its vertices and by E(G) the

set of its edges. A linear forest is a graph in which each component is a chordless path.

1The research of APW was partially sponsored by polish Ministry of Science and Higher Education.
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The linear arboricity of an undirected graph G is de�ned as the minimum number of

linear forests needed to partition the set E(G). The linear arboricity was introduced by

Harary [9] and is denoted by la(G). In this paper we consider cubic graphs, that is to

say �nite simple 3-regular graphs.

It was shown by Akiyama, Exoo and Harary [1] that la(G) = 2 when G is a cubic graph.

A partition L of E(G) into two linear forests LB and LR is called a linear partition and

we shall denote this linear partition by L = (LB , LR) . We say that every path of LB

and every path of LR is an unicoloured path (for instance, a Blue path or a Red path).

For c ∈ {B,R} , we shall denote by E(Lc) the set of edges of Lc, by l(Lc) the length of

a longest path in Lc. A linear partition L = (LB , LR) is said to be odd whenever each

path of LB ∪ LR has odd length and semi-odd whenever each path of LB (or each path

of LR) has odd length.

A strong matching C in a graph G is a matching C such that there is no edge of E(G)

connecting any two edges of C. A perfect matching that is union of two disjoint strong

matchings is said to be a Jaeger's matching.

De�nition 1.1. A cubic graph G is a Jaeger's graph if it contains a Jaeger's matching.

In his thesis [10] Jaeger called these cubic graphs equitable and pointed out that the

above 2-colouring of their vertices leads to a balanced colouring as de�ned by Bondy [4].

Proposition 1.2. [10] Every Jaeger's graph is 3-edge colourable.

In a previous paper [7] we used some tools that we called associated partition and asso-

ciated linear construction that we shall use again in the following sections.

Let M be a matching transversal of the odd cycles of a cubic graph G. Since G \ M

is bipartite, we can colour the vertices of G in two colours Blue and Red accordingly

to the bipartition of G \ M . Let MB (respectively MR) be the set of edges of M such

that their two end vertices are Blue vertices (respectively Red vertices). An edge of G

is said to be mixed when one end is Blue while the other is Red. Hence, the edges of

G \M are mixed while M is partitioned into three sets (some of them, possibly empty)

M = MB +MR +M ′ where M ′ is the subset of mixed edges of M . Note that MB and
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MR induce strong matchings in G. We shall say that a partition of M in MB +MR+M ′

is an associated partition.

Lemma 1.3. [7] A cubic graph is 3-edge colourable graph if and only if there is a partition

of its vertex set into two sets, Blue and Red and a perfect matching M such that every

edge in G−M is mixed.

Proof For the sake of completeness we give again the proof.

Let G be a cubic 3-edge colourable graph. Any colour of a 3-edge colouring of G induces a

perfect matching M , and the two others colours induce a graph in which each component

is an even cycle. Let us colour the vertices of these cycles in Blue and Red alternately.

Hence every edge lying on these cycles is mixed.

Conversely, assume that G has a perfect matching M and a partition of its vertex set

into Blue and Red such that every edge in G−M is mixed. Let us consider the 2-factor

of G obtained by deleting M . Since every edge outside M is mixed, this 2-factor is even,

that is G is 3-edge colourable. �

Remark 1.4. Under conditions of Lemma 1.3 we certainly have the same number of

Blue vertices and Red vertices, since every edge of the 2-factor G−M is mixed. When

considering M = MB + MR + M ′ we have |MB | = |MR| since every mixed edge of M

uses a vertex in each colour.

Assume that G is a 3-edge colourable cubic graph with a perfect matching M given as in

Lemma 1.3 by a 3-edge colouring, and let M = MB +MR +M ′ an associated partition.

Let us �x an arbitrary orientation to the cycles of G \M . To each vertex v of V (G) we

can associate an edge o(v) of E(G) \M such that v is the origin of o(v) with respect

to the chosen orientation of the cycle through v. It will be convenient to denote by s(v)

( successor of v) the end of o(v) in that orientation and by p(v) its predecessor. We can

colour o(v) in Blue or Red accordingly to the colour of v. MB being coloured with Blue

and MR with Red, we get hence a larger set CLB of edges coloured with Blue (and a set

CLR of edges coloured with Red). It is easily seen that the CLB and CLR are linear-

forests where each maximal unicoloured path has length 1 or 3. Moreover each edge of

MB∪MR is the central edge of a path of length 3. At this point, the only edges which are
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not coloured are the edges of M ′ and we do not know how we can assign a colour to these

edges in order to get a linear partition of E(G). We used this construction in [7] that we

have called the associated linear construction to the partition M = MB +MR +M ′.

Remark 1.5. The fact that a Jaeger's graph is a cubic 3-edge colourable graph is an

easy consequence of Lemma 1.3

Indeed, if G is a Jaeger's graph and M is a perfect matching of G union of two disjoint

strong matchings MB and MR, then let us colour with Blue the vertices which are end

vertices of edges in MB and Red those which are end vertices of edges in MR. Since MB

and MR are strong matchings the remaining edges are mixed. Hence, by Lemma 1.3, G

is 3-edge colourable.

In order to give here a �rst illustration of the usefulness of the associated linear construc-

tion we give a proof of an old result.

Theorem 1.6. [2] [13] A cubic graph G has a linear partition L = (LB , LR) such that

each path has length 3 if and only if G is a Jaeger's graph.

Proof : Suppose that G has a linear partition L = (LB , LR) such that each path has

length 3. Let CB (respectively CR) be the set of the middle edges of the paths of LB

(respectively LR). It is an easy task to check that CB and CR are strong matchings and

|CB | = |CR|. Moreover M = CB ∪ CR is a perfect matching and G is a Jaeger's graph.

Conversely, let us suppose that G is a Jaeger's graph and let M = MB +MR be an as-

sociated partition. Since M ′ is empty, by using the associated linear construction above,

we have coloured every edge of G and each unicoloured path has length 3. �

Finally, the following result shows that Jaeger's graphs play a pivotal role in the family

of cubic 3-edge colourable graphs.

Theorem 1.7. [8] Let G be a cubic graph. Then G can be factored into two odd linear

forests L = (LB , LR) such that

i) Each path in LB has odd length at most 3

ii) Each path in LR has odd length at least 3.

if and only if χ′(G) = 3.
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2. Some classes of Jaeger's graphs.

We can construct a Jaeger's graph starting from any cubic 3-edge colourable graph.

Indeed, consider a perfect matching M of G together with a bipartition of its vertex set

in Blue and Red induced by a 3-edge colouring of G given by Lemma 1.3. If there are

no mixed edge, we are done since G itself is a Jaeger's graph. Otherwise for any mixed

edge apply the transformation depicted in �gure 1 on the Blue vertices. Every such Blue

vertex is transformed into a new triangle containing a new Blue edge while the mixed

edge is transformed into a Red edge. The resulting graph is a Jaeger's graph.

Red edge

Mixed edge

Blue vertex

Red vertex

Blue edge

Figure 1: Triangle Extension

The square G2 of a graph G has V (G2) = V (G) with u, v adjacent in G2 whenever there

exists a path of length at most 2 joining them in G.

Proposition 2.1. [2] If G is a cubic graph such that G2 is 4-chromatic then G is a

Jaeger's graph.

A cubic planar graph is a multi-k-gon [5] (with 3 ≤ k ≤ 5) if all of its faces have length

multiple of k. Since Jaeger [10] has shown that a multi-k-gon G with k = 3, 4 has a

square G2 which is 4-chromatic, the following result is a consequence of Proposition 2.1.

Proposition 2.2. [2] If G is a multi-k-gon with k = 3, 4 then G is a Jaeger's graph.

When G is a cubic graph having a 2-factor of C4's, we consider the auxiliary 2-regular

graph G′ de�ned as follows : every C4 of this 2-factor is replaced with its complementary

graph (which is a 2K2). In a previous paper we have proved the following.
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Theorem 2.3. [8] Let G be a connected cubic graph having a 2-factor of squares, say

F and let p be the number of cycles of the auxiliary 2-regular graph G′. Then there are

2p−1 Jaeger's matchings which intersect F .

Since by Theorem 2.3 every cubic graph having a 2-factor of squares has at least one

Jaeger's matching, we have:

Corollary 2.4. [8] A cubic graph having a 2-factor of squares is a Jaeger's graph.

By Shaefer's result [12], we know that it is NP-complete to recognize a Jaeger's graph.

Assume that G is a Jaeger's graph, is it di�cult to �nd a perfect matching union of two

disjoint strong matchings? We do not have a general answer, but we can derive from

the proof of Theorem 2.3 (see [8]) a simple linear time algorithm for �nding a Jaeger's

matching in a connected cubic graph which have a 2-factor of squares.

Corollary 2.5. [8] If G is a cubic graph with a 2-factor of squares then we can construct

in O(n) time a perfect matching union of two disjoint strong matchings with the same

size.

It can be noticed that every cubic graph with a perfect matching M can be transformed

into a Jaeger's graph by using the transformation (square extension) depicted in �gure

2 on each edge of M . Indeed, the resulting graph has a 2-factor of squares and we can

apply Theorem 2.3

Figure 2: Square Extension

To conclude this section we note that we have studied in [6] a family of cubic graphs

having a large number of perfect matchings (and containing the �ower snarks). The sub-

family of the 3-edge colourable graphs of this family contains some Jaegers's graphs that

we have totally characterized, and we proved that such a graph on at least 12 vertices

has exactly 6 Jaeger's matchings.
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3. Compatible partitions

Let L = (LB , LR) be a linear partition of G. For each vertex v we can de�ne eL(v)

as the edge incident to v which is an end edge of a maximal path in LB or LR. We

shall say that two linear partitions L = (LB , LR) and L′ = (L′
B , L

′
R) are compatible

whenever eL(v) 6= eL′(v) for each vertex v. The qualifying adjective �compatible� refers

to the notion of compatible Euler's tours introduced by Kotzig [11] (see Bondy [3] for an

introduction to this question). In 1991, the �rst author, J.-L. Fouquet, remarked that a

Jaeger's graph can be provided with two compatible linear partitions and he conjectured:

Conjecture 3.1. Every cubic graph has two compatible linear partitions.

We do not solve this conjecture but we shall give some results strengthening it.

De�nition 3.2. Let α and β be any two distinct colours of a 3-edge colouring of a cubic

3-edge colourable graph G. In the following SMG(α, β) will denote a strong matching

of G intersecting every αβ-cycle (when such a strong matching exists).

Some results of the following subsections are consequences of the two following theorems.

Theorem 3.3. [8] Let G be a 3-edge coloured cubic graph and let α and β be any two

distinct colours of E(G). Then there exists a strong matching SMG(α, β) intersecting

every cycle of Φ(α, β).

We derive from Theorem 3.3 a result on unicoloured transversals of the 2-factors

induced by any 3 edge-colouring of cubic graph with chromatic index 3.

Theorem 3.4. [8] Let G be a cubic 3-edge colourable graph and let Φ be a 3-edge

colouring of G. Let α and β be any two distinct colours of Φ and let γ be the third

colour. Then there exists a set Fα of α-edges intersecting every cycle of Φ(α, β) such

that the set Fα together with the γ-edges has no cycle.

3.1. Compatible partitions and associated linear construction

For cubic 3-edge colourable graphs we obtain the following result.

Theorem 3.5. Let G be a cubic 3-edge colourable graph with an associated partition

M = MB +MR +M ′. Assume that, we can colour the edges of M ′ in Blue and Red in
7



such a way that, for each associated linear construction, the whole colouring of E(G) so

obtained is a linear partition. Then G has two compatible linear partitions.

Proof An associated linear construction is obtained in �xing an arbitrary orientation

to the cycles of G\M . To each vertex v of V (G) we associate an edge o(v) of E(G)\M

such that v is the origin of o(v) with respect to the chosen orientation of the cycle through

v. We colour o(v) in Blue or Red accordingly to the colour of v.

We give a colour to each edge of M ′, accordingly to some rule depending on the class of

graphs we are studying. When the edge of M ′ incident to some vertex v is coloured in

Blue or Red, v is transformed into a vertex of degree 2 in one of the two colours (say

Blue) and a vertex of degree 1 in the other (Red). Since the whole colouring of E(G)

leads to a linear partition L = (LB , LR) , the edge incident to v of this last colour is

hence the edge eL(v).

On each cycle of G\M we can give now the opposite orientation. In the associated linear

construction, the colours of the edges of the cycles incident to each vertex are exchanged.

Since, with the same colouring ofM ′, we have supposed that the whole colouring of E(G)

leads to a linear partition L′ = (L′
B , L

′
R), the above vertex v remains a vertex of degree

2 in the Blue colour. Hence the Red edge incident to v eL′(v) is distinct from eL(v).

Since eL(v) 6= eL′(v) for each vertex v, the two linear partitions L and L′ so obtained

are compatible. �

Corollary 3.6. Let G be a Jaeger's graph then G has two compatible linear partitions

in which every path has length 3.

Proof In that case, we have a perfect matching M = MB + MR and any associated

linear construction is a linear partition in which every path has length 3. �

Theorem 3.7. Let G be cubic 3-edge colourable graph and an associated partition MB+

MR +M ′. Assume that M ′ can be partitioned into two strong matchings M ′
B and M ′

R.

Then there is an odd linear partition of E(G) every maximal path of which has length

1, 3, 5 or 7.
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Proof : Let CLB and CLR be the linear-forests of the associated linear construction.

Recall that each maximal path of CLB (respectively CLR) has length 1 or 3 and is

unicoloured with Blue (respectively unicoloured with Red). Let LB = CLB ∪M ′
B and

LR = CLR ∪ M ′
R, in addition M = MB + MR + M ′ and B denotes the set of Blue

vertices of G and R its set of Red vertices.

We now prove that the components of LB and LR are odd paths of length at most 7. We

only have to consider components that contain an edge of M ′. Without loss of generality,

let C be a component of LB which contains an edge of M ′
B .

Claim 1. Let br be an edge of M ′
B such that b ∈ B ∩C and r ∈ R∩C and let r′ = s(b).

Then the unique neighbour of r′ in C is b.

Proof of Claim Since G\M contains only mixed edges r′ is a Red vertex. Observe

that o(r′) is a Red edge while the edge of M incident to r′ in G, say e, cannot belong to

M ′
B since M ′

B is a strong matching. Moreover, e having a Red end must belong either

to MR or to M ′
R, consequently e belongs to LR. Thus, among the three edges incident

to r′, only o(b) belongs to C and the result follows. �

Let b1r1 be an edge of C ∩M ′
B (b1 ∈ B, r1 ∈ R). Let us set r2 = s(b1). We know by the

above Claim that r2 is a pendant vertex in C.

Let b2 = p(r1) and r3 = p(b2), obviously b2 ∈ B, r3 ∈ R, b2r1 is a Blue edge and r3b2

is a Red one. Consider in G the edge of M incident to b2, say e. M ′
B being a strong

matching, the edge e cannot belong to M ′
B . Moreover, the edge e has a Blue end, namely

b2, and thus cannot belong to MR. If e belongs to M ′
R we are done since e is a Red edge

and the component C is reduced to the path of length 3 r2b1r1b2.

Assume in the following that e belongs to MB . From now on e will be denoted b2b3

(b3 ∈ B) and s(b3) will be denoted r4, we have r4 ∈ R. Let e′ be the edge of M incident

to r4 in. Since r4 is a Red end of e′, e′ cannot belong to MB . If e′ is a member of

MR ∪M ′
R we are done since e′ and o(r4) both belong to LR and C is reduced to a path

of length 5, namely r2b1r1b2b3r4.

Suppose now that e′ ∈ M ′
B . Let us denote e′ as r4b4 (b4 ∈ B) and s(b4) as r5.

But now, by the above Claim b4 is the unique neighbour of r5 in C and thus C =

{r2, b1, r1, b2, b3, r4, b4, r5} induces a path of length 7. �
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As a corollary of Theorems 3.5 and 3.7 we obtain:

Corollary 3.8. Let G be cubic 3-edge colourable graph and an associated partition

MB +MR +M ′. Assume that M ′ can be partitioned into two strong matchings M ′
B and

M ′
R. G has two compatible linear partitions in which every path has length 1, 3, 5 or 7.

Proof In proof of Theorem 3.7 we have coloured the edges of M ′
B in Blue and those of

M ′
R in Red and we have shown that the associated linear construction together with this

colouring of M ′ leads to a linear partition with each path of length 1, 3, 5 or 7. Applying

Theorem 3.5 above leads to the result. �

3.2. Compatible partitions in hamiltonian cubic graphs

As a corollary of Theorem 3.3, we shall show now that cubic hamiltonian graphs

satisfy Conjecture 3.1. In fact, a stronger result is obtained since the two compatible

partitions are odd.

Theorem 3.9. Let G be a cubic hamiltonian graph, then G has two compatible odd linear

partitions.

Proof Let C = a0, a1 . . . an−1 be a hamiltonian cycle of G. This hamiltonian cycle

induces a 3-edge colouring Φ : E(G) −→ {α, β, γ}. Let us colour every edge aiai+1 of

C with α when i ≡ 0(2) and with β otherwise, while the remaining perfect matching

is coloured with γ. From Theorem 3.3 we know that there is a strong matching F

intersecting every bicoloured cycle of Φ(β, γ). We choose F minimal for the inclusion

(that is F intersects each cycle of Φ(β, γ) in exactly one edge). Let Mα be the set of

α-coloured edges. Since F is a strong matching intersecting every bicoloured cycle of

Φ(β, γ), we can construct an odd linear partition L′ = (L′
B , L

′
R) :

L′
R = Mα ∪ F

L′
B = E(G)− L′

R

For each vertex v, the edge eL′(v) is coloured with α excepted when v is an end vertex

of an edge of F . In that case eL′(v) coloured with γ when v is an end vertex of the edge

of F ∩ C and with β when v is an end vertex of an edge of F \ C.
10



Case 1 : F contains some edges of C

Hence the edges of F ∩ C are coloured with β. F ∩ C is a strong matching intersecting

the 2-factor made of the unique cycle C leading to the following odd linear partition

L = (LB , LR) :

LB = C − F

LR = E(G)− LB

For each vertex v, eL(v) is coloured with γ excepted when v is an end vertex of the edge

of F ∩ C. In that case we have eL(v) coloured with β.

We can check that eL(v) 6= eL′(v) for each vertex v, since the colours of these edges are

distinct. Hence, the two odd partitions L and L′ are compatible.

Case 2 : Each edge of F is coloured with γ and there is an edge aiai+1 (i odd) of C

coloured with β which is not incident to an edge of F .

Let L = (LB , LR) be the following odd linear partition:

LB = C − aiai+1

LR = E(G)− LB

For each vertex v, eL(v) is coloured with γ excepted when v is ai or ai+1. In that

case eL(v) is coloured with α.

For each vertex v, eL′(v) is coloured with α unless when v is an end vertex of an edge of

F . In that case eL′(v) is coloured with β when v is an end vertex of an edge of F .

We can check that eL(v) 6= eL′(v) for each vertex v, since the colours of these edges are

distinct. Hence, the two odd partitions L and L′ are compatible.

Case 3 : Each edge of F is coloured with γ and each edge of C coloured with β is incident

to an edge of F .

Without loss of generality assume that a2 is incident to F . Edge a3a4 being incident to

F , we must have a4 incident to F . Going through C, we get that a2, a4, . . . a2k, . . . a0

must be incident to F . The remaining edges coloured with γ are edges joining vertices of

C with odd index. It is an easy task to see that this set K of edges is a strong matching.

The perfect matching coloured with γ is the union of two strong disjoint matchings F
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and K with the same size. Hence G is a Jaeger's graph . Theorem 3.6 implies that we

have two compatible odd linear partitions. �

3.3. Compatible odd linear partitions

The results of Theorem 3.9 and Theorem 3.5 leads us to a strengthening of Conjecture

3.1.

Conjecture 3.10. Let G be a cubic 3-edge colourable graph then we can �nd two

compatible odd linear partitions.

As a partial result we have:

Theorem 3.11. Let G be a cubic 3-edge colourable graph then we can �nd three odd

linear partitions L, L′ and L′′ such that for each vertex v

|{eL(v), eL′(v), eL′′(v)}| ≥ 2

Proof Let us consider a 3-edge colouring Φ : E(G) −→ {α, β, γ}. Let us denote by Mγ

the perfect matching consisting of the γ-coloured edges. Theorem 3.4 implies that there

exists a set Fα of α-coloured edges intersecting every cycle of Φ(α, β) such that Fα ∪Mγ

is acyclic. In that way, we obtain an odd linear partition L = (L1, L2)

L1 = Fα ∪Mγ

L2 = E(G)− L1

For each vertex v we have eL(v) coloured with γ excepted for the vertices which are the

end vertices of an edge of Fα. In that case eL(v) is coloured with β.

Let us consider the perfect matching Mβ , the bicoloured cycles of Φ(α, γ) and a matching

Fγ obtained by Theorem 3.4. Hence, we get an odd linear partition L′ = (L′
1, L

′
2) such

that for every vertex v the edge eL′(v) is coloured either with β (when the vertex v is an

end vertex of an edge of Fγ) or with α. Finally we obtain a third odd linear partition

L′′ = (L′′
1 , L

′′
2) from the perfect matching Mα, the bicoloured cycles of Φ(β, γ) and a

matching Fβ , such that the edges eL′′(v) are coloured α or γ (γ when the considered

vertices are the end vertices of an edge of Fβ).
12



The three sets Fα, Fβ and Fγ being obviously pairwise disjoint, it is a routine matter

to see that for each vertex v two edges in {eL(v), eL′(v), eL′′(v)}, at least, have distinct

colours. These two edges are thus distinct and we get the result.

�

4. Generation of Jaeger's graphs

Let G be a Jaeger's graph and let L = (LB , LR) be a linear partition every path of

which has length 3. Assume that U = {a, b, c, d} is a set of 4 vertices such that a and d

are internal vertices in LB while b and c are internal vertices in LR.

Let us consider the linear forest LR and the edges of LR incident to the vertices of

U = {a, b, c, d}. We notice that, without loss of generality, there are six distinct cases

(by exchanging the role of a for that of d or/and the role of b for that of c). See �gure 3.

b

a a a a a a

b b b b b

c c c c c c

d d d d d d

Figure 3: Six distinct cases

Analogous situations appear for the linear forest LB (by exchanging {a, d} for {b, c}).

De�nition 4.1. Let G be a Jaeger's graph and let L = (LB , LR) be a linear partition

every path of which has length 3. Assume that U = {a, b, c, d} is a set of 4 vertices such

that a and d are internal vertices in LB while b and c are internal vertices in LR. A

(L,U)-extension of G is a cubic simple graph G′ obtained from G in the following way.

1) The set U is splitted into two sets UR = {aR, bR, cR, dR} and UB = {aB , bB , cB , dB}

(that is V (G′) = V G) \ U ∪ (UR ∪ UB)).

2) For x, y ∈ V (G) \ U , if xy ∈ E(G) then xy ∈ E(G′).

3) For x ∈ V (G)\U and y ∈ U if xy ∈ E(LB) then xyB ∈ E(G′) and if xy ∈ E(LR)

then xyR ∈ E(G′).
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4) For x, y ∈ U if xy ∈ E(LB) then xByB ∈ E(G′) and if xy ∈ E(LR) then

xRyR ∈ E(G′).

5) The remaining edges of G′ are the edges of two paths of length 3 on the sets UR

and UB , respectively, such that the obtained graph G′ is cubic (see �gures 4 and

5).

a a a a a

b

a

b

c

d

c

b

d

b

d d

b

c c c

c

dd

R

R

R R R R R R

R

R

RR

RR

R

RRR

R

R

R

R

R
b

R

Figure 4: Addition of a path of length 3 on UR

L RL B

b

a

c

d

G G’

a R

bR

c R

dR

b

c

d
B

B

B

a B

Figure 5: Example of (L, U)-extension

It is clear that the added path on UR (respectively UB) can be added to LB (respectively

LR) in order to obtain a linear partition of G′ each path of which has length 3.

Note that the graph G′ is not uniquely de�ned, namely if the subgraph induced on U in

LR (respectively, in LB) is a stable set or has exactly one edge connecting the vertices

of degree 2 in LR (respectively, in LB).

So, by Theorem 1.6 we have the following Proposition.
14



Proposition 4.2. Let G be a Jaeger's graph and let L = (LB , LR) be a linear partition

of G each path of which has length 3. Let U = {a, b, c, d} be a set of 4 vertices of G such

that a and d are internal vertices in LB while b and c are internal vertices in LR. Then

any (L,U)−extension of G on U is a Jaeger's graph.

De�nition 4.3. Let G be a Jaeger's graph and let L = (LB , LR) be a linear partition

for which every path has length 3. Assume that P ∈ LB and Q ∈ LR where P =

{a1, b1, c1, d1} and Q = {a2, b2, c2, d2} are vertex disjoint paths in G. A PQ-reduction

of G on P and Q is a cubic simple graph G′ obtained from G by deleting the edges of

P and Q and identifying the internal vertices of P with the end vertices of Q and the

internal vertices of Q with the end vertices of P .

Note that the PQ-reduction of G has a linear partition each path of which has length 3.

Hence we have the following.

Proposition 4.4. Let G be a Jaeger's graph and let L = (LB , LR) be a linear partition

of G every path of which has length 3. Assume that P ∈ LB and Q ∈ LR are vertex

disjoint paths in G. Then the PQ-reduction of G on P and Q is a Jaeger's graph. �

We get immediately from Propositions 4.2 and 4.4

Theorem 4.5. Every Jaeger's graph on n ≥ 20 vertices is obtained from a Jaeger's

graph on 16 vertices by a sequence of (L,U)−extensions.

Proof Assume that G is a Jaeger's graph on n vertices with n ≥ 20. Let L =

(LB , LR) be a linear partition each of whose paths have length 3. Since each path of L

is incident to at most 4 distinct paths, as soon as n ≥ 20 we are sure to �nd a path in

P ∈ LB and a path Q ∈ LR such that V (P ) ∩ V (Q) = ∅. By a PQ-reduction on these

two paths we get a Jaeger's graph on n − 4 vertices (Proposition 4.4). The proof is

complete. �
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