Jaeger's graphs and compatible linear partitions

Jean-Luc Fouquet, Henri Thuillier, Jean-Marie Vanherpe, Adam Pawel Wojda

To cite this version:

Jean-Luc Fouquet, Henri Thuillier, Jean-Marie Vanherpe, Adam Pawel Wojda. Jaeger's graphs and compatible linear partitions. 2011. hal-00601554

HAL Id: hal-00601554

https://hal.science/hal-00601554

Preprint submitted on 19 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Jaeger's graphs and compatible linear partitions

J-L. Fouquet ${ }^{\text {a }}$, H. Thuillier ${ }^{\text {a }}$, J-M. Vanherpe ${ }^{\text {a }}$, A.P. Wojda ${ }^{\text {b,1 }}$
${ }^{a}$ L.I.F.O., Faculté des Sciences, B.P. 6759
Université d'Orléans, 45067 Orléans Cedex 2, FR
${ }^{b}$ Wydzial Matematyki Stosowanej Zaklad Matematyki Dyskretnej
A.G.H., Al. Mickiewicza 30, 30-059 Kraków, PL

Abstract

A strong matching C in a graph G is a matching C such that there is no edge of $E(G)$ connecting any two edges of C. A cubic graph G is a Jaeger's graph if it contains a perfect matching which is a union of two disjoint strong matchings. We survey here some known results about this family and we give some new results. We define the operation of (L, U)-extension and we show that the family of Jaeger's graphs is generated from some small Jaeger's graphs by using this operation. A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and $l a(G)$ is the minimum number of linear forests in a linear partition. It is well known that $l a(G)=2$ for any cubic graph G. For a linear partition $L=\left(L_{B}, L_{R}\right)$ of G and for each vertex v we define $e_{L}(v)$ as the edge incident to v which is an end edge of a maximal path in L_{B} or L_{R}. We shall say that two linear partitions $L=\left(L_{B}, L_{R}\right)$ and $L^{\prime}=\left(L_{B}^{\prime}, L_{R}^{\prime}\right)$ are compatible whenever $e_{L}(v) \neq e_{L^{\prime}}(v)$ for each vertex v. We show that every Jaeger's graph has two compatible linear partitions and we give some sthrenthening to the conjecture: Every cubic graph has two compatible linear partitions.

Keywords: cubic graphs, linear partition, linear forest, strong matching

1. Introduction.

For any undirected graph G, we denote by $V(G)$ the set of its vertices and by $E(G)$ the set of its edges. A linear forest is a graph in which each component is a chordless path.

[^0]The linear arboricity of an undirected graph G is defined as the minimum number of linear forests needed to partition the set $E(G)$. The linear arboricity was introduced by Harary [9] and is denoted by la(G). In this paper we consider cubic graphs, that is to say finite simple 3 -regular graphs.

It was shown by Akiyama, Exoo and Harary [1] that $l a(G)=2$ when G is a cubic graph. A partition L of $E(G)$ into two linear forests L_{B} and L_{R} is called a linear partition and we shall denote this linear partition by $L=\left(L_{B}, L_{R}\right)$. We say that every path of L_{B} and every path of L_{R} is an unicoloured path (for instance, a Blue path or a Red path). For $c \in\{B, R\}$, we shall denote by $E\left(L_{c}\right)$ the set of edges of L_{c}, by $l\left(L_{c}\right)$ the length of a longest path in L_{c}. A linear partition $L=\left(L_{B}, L_{R}\right)$ is said to be odd whenever each path of $L_{B} \cup L_{R}$ has odd length and semi-odd whenever each path of L_{B} (or each path of L_{R}) has odd length.
A strong matching C in a graph G is a matching C such that there is no edge of $E(G)$ connecting any two edges of C. A perfect matching that is union of two disjoint strong matchings is said to be a Jaeger's matching.

Definition 1.1. A cubic graph G is a Jaeger's graph if it contains a Jaeger's matching.
In his thesis [10] Jaeger called these cubic graphs equitable and pointed out that the above 2-colouring of their vertices leads to a balanced colouring as defined by Bondy [4].

Proposition 1.2. [10] Every Jaeger's graph is 3-edge colourable.

In a previous paper [7] we used some tools that we called associated partition and associated linear construction that we shall use again in the following sections.
Let M be a matching transversal of the odd cycles of a cubic graph G. Since $G \backslash M$ is bipartite, we can colour the vertices of G in two colours Blue and Red accordingly to the bipartition of $G \backslash M$. Let M_{B} (respectively M_{R}) be the set of edges of M such that their two end vertices are Blue vertices (respectively Red vertices). An edge of G is said to be mixed when one end is Blue while the other is Red. Hence, the edges of $G \backslash M$ are mixed while M is partitioned into three sets (some of them, possibly empty) $M=M_{B}+M_{R}+M^{\prime}$ where M^{\prime} is the subset of mixed edges of M. Note that M_{B} and
M_{R} induce strong matchings in G. We shall say that a partition of M in $M_{B}+M_{R}+M^{\prime}$ is an associated partition.

Lemma 1.3. [7] A cubic graph is 3-edge colourable graph if and only if there is a partition of its vertex set into two sets, Blue and Red and a perfect matching M such that every edge in $G-M$ is mixed.

Proof For the sake of completeness we give again the proof.
Let G be a cubic 3-edge colourable graph. Any colour of a 3-edge colouring of G induces a perfect matching M, and the two others colours induce a graph in which each component is an even cycle. Let us colour the vertices of these cycles in Blue and Red alternately. Hence every edge lying on these cycles is mixed.
Conversely, assume that G has a perfect matching M and a partition of its vertex set into Blue and Red such that every edge in $G-M$ is mixed. Let us consider the 2-factor of G obtained by deleting M. Since every edge outside M is mixed, this 2-factor is even, that is G is 3-edge colourable.

Remark 1.4. Under conditions of Lemma 1.3 we certainly have the same number of Blue vertices and Red vertices, since every edge of the 2-factor $G-M$ is mixed. When considering $M=M_{B}+M_{R}+M^{\prime}$ we have $\left|M_{B}\right|=\left|M_{R}\right|$ since every mixed edge of M uses a vertex in each colour.

Assume that G is a 3 -edge colourable cubic graph with a perfect matching M given as in Lemma 1.3 by a 3-edge colouring, and let $M=M_{B}+M_{R}+M^{\prime}$ an associated partition. Let us fix an arbitrary orientation to the cycles of $G \backslash M$. To each vertex v of $V(G)$ we can associate an edge $o(v)$ of $E(G) \backslash M$ such that v is the origin of $o(v)$ with respect to the chosen orientation of the cycle through v. It will be convenient to denote by $s(v)$ (successor of v) the end of $o(v)$ in that orientation and by $p(v)$ its predecessor. We can colour $o(v)$ in Blue or Red accordingly to the colour of $v . M_{B}$ being coloured with Blue and M_{R} with Red, we get hence a larger set $C L_{B}$ of edges coloured with Blue (and a set $C L_{R}$ of edges coloured with Red). It is easily seen that the $C L_{B}$ and $C L_{R}$ are linearforests where each maximal unicoloured path has length 1 or 3 . Moreover each edge of $M_{B} \cup M_{R}$ is the central edge of a path of length 3. At this point, the only edges which are
not coloured are the edges of M^{\prime} and we do not know how we can assign a colour to these edges in order to get a linear partition of $E(G)$. We used this construction in [7] that we have called the associated linear construction to the partition $M=M_{B}+M_{R}+M^{\prime}$.

Remark 1.5. The fact that a Jaeger's graph is a cubic 3-edge colourable graph is an easy consequence of Lemma 1.3

Indeed, if G is a Jaeger's graph and M is a perfect matching of G union of two disjoint strong matchings M_{B} and M_{R}, then let us colour with Blue the vertices which are end vertices of edges in M_{B} and Red those which are end vertices of edges in M_{R}. Since M_{B} and M_{R} are strong matchings the remaining edges are mixed. Hence, by Lemma 1.3, G is 3-edge colourable.

In order to give here a first illustration of the usefulness of the associated linear construction we give a proof of an old result.

Theorem 1.6. [2] [13] A cubic graph G has a linear partition $L=\left(L_{B}, L_{R}\right)$ such that each path has length 3 if and only if G is a Jaeger's graph.

Proof : Suppose that G has a linear partition $L=\left(L_{B}, L_{R}\right)$ such that each path has length 3. Let C_{B} (respectively C_{R}) be the set of the middle edges of the paths of L_{B} (respectively L_{R}). It is an easy task to check that C_{B} and C_{R} are strong matchings and $\left|C_{B}\right|=\left|C_{R}\right|$. Moreover $M=C_{B} \cup C_{R}$ is a perfect matching and G is a Jaeger's graph. Conversely, let us suppose that G is a Jaeger's graph and let $M=M_{B}+M_{R}$ be an associated partition. Since M^{\prime} is empty, by using the associated linear construction above, we have coloured every edge of G and each unicoloured path has length 3.

Finally, the following result shows that Jaeger's graphs play a pivotal role in the family of cubic 3-edge colourable graphs.

Theorem 1.7. [8] Let G be a cubic graph. Then G can be factored into two odd linear forests $L=\left(L_{B}, L_{R}\right)$ such that
i) Each path in L_{B} has odd length at most 3
ii) Each path in L_{R} has odd length at least 3.
if and only if $\chi^{\prime}(G)=3$.

2. Some classes of Jaeger's graphs.

We can construct a Jaeger's graph starting from any cubic 3-edge colourable graph. Indeed, consider a perfect matching M of G together with a bipartition of its vertex set in Blue and Red induced by a 3-edge colouring of G given by Lemma 1.3. If there are no mixed edge, we are done since G itself is a Jaeger's graph. Otherwise for any mixed edge apply the transformation depicted in figure 1 on the Blue vertices. Every such Blue vertex is transformed into a new triangle containing a new Blue edge while the mixed edge is transformed into a Red edge. The resulting graph is a Jaeger's graph.

Figure 1: Triangle Extension

The square G^{2} of a graph G has $V\left(G^{2}\right)=V(G)$ with u, v adjacent in G^{2} whenever there exists a path of length at most 2 joining them in G.

Proposition 2.1. [2] If G is a cubic graph such that G^{2} is 4-chromatic then G is a Jaeger's graph.

A cubic planar graph is a multi-k-gon [5] (with $3 \leq k \leq 5$) if all of its faces have length multiple of k. Since Jaeger [10] has shown that a multi-k-gon G with $k=3,4$ has a square G^{2} which is 4-chromatic, the following result is a consequence of Proposition 2.1.

Proposition 2.2. [2] If G is a multi-k-gon with $k=3,4$ then G is a Jaeger's graph.

When G is a cubic graph having a 2 -factor of C_{4} 's, we consider the auxiliary 2-regular graph G^{\prime} defined as follows : every C_{4} of this 2-factor is replaced with its complementary graph (which is a $2 K_{2}$). In a previous paper we have proved the following.

Theorem 2.3. [8] Let G be a connected cubic graph having a 2-factor of squares, say \mathcal{F} and let p be the number of cycles of the auxiliary 2 -regular graph G^{\prime}. Then there are 2^{p-1} Jaeger's matchings which intersect \mathcal{F}.

Since by Theorem 2.3 every cubic graph having a 2-factor of squares has at least one Jaeger's matching, we have:

Corollary 2.4. [8] A cubic graph having a 2 -factor of squares is a Jaeger's graph.

By Shaefer's result [12], we know that it is NP-complete to recognize a Jaeger's graph. Assume that G is a Jaeger's graph, is it difficult to find a perfect matching union of two disjoint strong matchings? We do not have a general answer, but we can derive from the proof of Theorem 2.3 (see [8]) a simple linear time algorithm for finding a Jaeger's matching in a connected cubic graph which have a 2 -factor of squares.

Corollary 2.5. [8] If G is a cubic graph with a 2 -factor of squares then we can construct in $O(n)$ time a perfect matching union of two disjoint strong matchings with the same size.

It can be noticed that every cubic graph with a perfect matching M can be transformed into a Jaeger's graph by using the transformation (square extension) depicted in figure 2 on each edge of M. Indeed, the resulting graph has a 2 -factor of squares and we can apply Theorem 2.3

Figure 2: Square Extension

To conclude this section we note that we have studied in [6] a family of cubic graphs having a large number of perfect matchings (and containing the flower snarks). The subfamily of the 3 -edge colourable graphs of this family contains some Jaegers's graphs that we have totally characterized, and we proved that such a graph on at least 12 vertices has exactly 6 Jaeger's matchings.

3. Compatible partitions

Let $L=\left(L_{B}, L_{R}\right)$ be a linear partition of G. For each vertex v we can define $e_{L}(v)$ as the edge incident to v which is an end edge of a maximal path in L_{B} or L_{R}. We shall say that two linear partitions $L=\left(L_{B}, L_{R}\right)$ and $L^{\prime}=\left(L_{B}^{\prime}, L_{R}^{\prime}\right)$ are compatible whenever $e_{L}(v) \neq e_{L^{\prime}}(v)$ for each vertex v. The qualifying adjective "compatible" refers to the notion of compatible Euler's tours introduced by Kotzig [11] (see Bondy [3] for an introduction to this question). In 1991, the first author, J.-L. Fouquet, remarked that a Jaeger's graph can be provided with two compatible linear partitions and he conjectured:

Conjecture 3.1. Every cubic graph has two compatible linear partitions.
We do not solve this conjecture but we shall give some results strengthening it.
Definition 3.2. Let α and β be any two distinct colours of a 3 -edge colouring of a cubic 3-edge colourable graph G. In the following $S M_{G}(\alpha, \beta)$ will denote a strong matching of G intersecting every $\alpha \beta$-cycle (when such a strong matching exists).

Some results of the following subsections are consequences of the two following theorems.
Theorem 3.3. [8] Let G be a 3-edge coloured cubic graph and let α and β be any two distinct colours of $E(G)$. Then there exists a strong matching $\operatorname{SM}_{G}(\alpha, \beta)$ intersecting every cycle of $\Phi(\alpha, \beta)$.

We derive from Theorem 3.3 a result on unicoloured transversals of the 2-factors induced by any 3 edge-colouring of cubic graph with chromatic index 3 .

Theorem 3.4. [8] Let G be a cubic 3-edge colourable graph and let Φ be a 3-edge colouring of G. Let α and β be any two distinct colours of Φ and let γ be the third colour. Then there exists a set F_{α} of α-edges intersecting every cycle of $\Phi(\alpha, \beta)$ such that the set F_{α} together with the γ-edges has no cycle.
3.1. Compatible partitions and associated linear construction

For cubic 3-edge colourable graphs we obtain the following result.
Theorem 3.5. Let G be a cubic 3 -edge colourable graph with an associated partition $M=M_{B}+M_{R}+M^{\prime}$. Assume that, we can colour the edges of M^{\prime} in Blue and Red in
such a way that, for each associated linear construction, the whole colouring of $E(G)$ so obtained is a linear partition. Then G has two compatible linear partitions.

Proof An associated linear construction is obtained in fixing an arbitrary orientation to the cycles of $G \backslash M$. To each vertex v of $V(G)$ we associate an edge $o(v)$ of $E(G) \backslash M$ such that v is the origin of $o(v)$ with respect to the chosen orientation of the cycle through v. We colour $o(v)$ in Blue or Red accordingly to the colour of v.
We give a colour to each edge of M^{\prime}, accordingly to some rule depending on the class of graphs we are studying. When the edge of M^{\prime} incident to some vertex v is coloured in Blue or Red, v is transformed into a vertex of degree 2 in one of the two colours (say Blue) and a vertex of degree 1 in the other (Red). Since the whole colouring of $E(G)$ leads to a linear partition $L=\left(L_{B}, L_{R}\right)$, the edge incident to v of this last colour is hence the edge $e_{L}(v)$.
On each cycle of $G \backslash M$ we can give now the opposite orientation. In the associated linear construction, the colours of the edges of the cycles incident to each vertex are exchanged. Since, with the same colouring of M^{\prime}, we have supposed that the whole colouring of $E(G)$ leads to a linear partition $L^{\prime}=\left(L_{B}^{\prime}, L_{R}^{\prime}\right)$, the above vertex v remains a vertex of degree 2 in the Blue colour. Hence the Red edge incident to $v e_{L^{\prime}}(v)$ is distinct from $e_{L}(v)$. Since $e_{L}(v) \neq e_{L^{\prime}}(v)$ for each vertex v, the two linear partitions L and L^{\prime} so obtained are compatible.

Corollary 3.6. Let G be a Jaeger's graph then G has two compatible linear partitions in which every path has length 3.

Proof In that case, we have a perfect matching $M=M_{B}+M_{R}$ and any associated linear construction is a linear partition in which every path has length 3.

Theorem 3.7. Let G be cubic 3 -edge colourable graph and an associated partition $M_{B}+$ $M_{R}+M^{\prime}$. Assume that M^{\prime} can be partitioned into two strong matchings M_{B}^{\prime} and M_{R}^{\prime}. Then there is an odd linear partition of $E(G)$ every maximal path of which has length $1,3,5$ or 7 .

Proof : Let $C L_{B}$ and $C L_{R}$ be the linear-forests of the associated linear construction. Recall that each maximal path of $C L_{B}$ (respectively $C L_{R}$) has length 1 or 3 and is unicoloured with Blue (respectively unicoloured with Red). Let $L_{B}=C L_{B} \cup M_{B}^{\prime}$ and $L_{R}=C L_{R} \cup M_{R}^{\prime}$, in addition $M=M_{B}+M_{R}+M^{\prime}$ and B denotes the set of Blue vertices of G and R its set of Red vertices.
We now prove that the components of L_{B} and L_{R} are odd paths of length at most 7. We only have to consider components that contain an edge of M^{\prime}. Without loss of generality, let C be a component of L_{B} which contains an edge of M_{B}^{\prime}.

Claim 1. Let br be an edge of M_{B}^{\prime} such that $b \in B \cap C$ and $r \in R \cap C$ and let $r^{\prime}=s(b)$. Then the unique neighbour of r^{\prime} in C is b.

Proof of Claim Since $G \backslash M$ contains only mixed edges r^{\prime} is a Red vertex. Observe that $o\left(r^{\prime}\right)$ is a Red edge while the edge of M incident to r^{\prime} in G, say e, cannot belong to M_{B}^{\prime} since M_{B}^{\prime} is a strong matching. Moreover, e having a Red end must belong either to M_{R} or to M_{R}^{\prime}, consequently e belongs to L_{R}. Thus, among the three edges incident to r^{\prime}, only $o(b)$ belongs to C and the result follows.

Let $b_{1} r_{1}$ be an edge of $C \cap M_{B}^{\prime}\left(b_{1} \in B, r_{1} \in R\right)$. Let us set $r_{2}=s\left(b_{1}\right)$. We know by the above Claim that r_{2} is a pendant vertex in C.
Let $b_{2}=p\left(r_{1}\right)$ and $r_{3}=p\left(b_{2}\right)$, obviously $b_{2} \in B, r_{3} \in R, b_{2} r_{1}$ is a Blue edge and $r_{3} b_{2}$ is a Red one. Consider in G the edge of M incident to b_{2}, say $e . M_{B}^{\prime}$ being a strong matching, the edge e cannot belong to M_{B}^{\prime}. Moreover, the edge e has a Blue end, namely b_{2}, and thus cannot belong to M_{R}. If e belongs to M_{R}^{\prime} we are done since e is a Red edge and the component C is reduced to the path of length $3 r_{2} b_{1} r_{1} b_{2}$.
Assume in the following that e belongs to M_{B}. From now on e will be denoted $b_{2} b_{3}$ $\left(b_{3} \in B\right)$ and $s\left(b_{3}\right)$ will be denoted r_{4}, we have $r_{4} \in R$. Let e^{\prime} be the edge of M incident to r_{4} in. Since r_{4} is a Red end of e^{\prime}, e^{\prime} cannot belong to M_{B}. If e^{\prime} is a member of $M_{R} \cup M_{R}^{\prime}$ we are done since e^{\prime} and $o\left(r_{4}\right)$ both belong to L_{R} and C is reduced to a path of length 5 , namely $r_{2} b_{1} r_{1} b_{2} b_{3} r_{4}$.

Suppose now that $e^{\prime} \in M_{B}^{\prime}$. Let us denote e^{\prime} as $r_{4} b_{4}\left(b_{4} \in B\right)$ and $s\left(b_{4}\right)$ as r_{5}. But now, by the above Claim b_{4} is the unique neighbour of r_{5} in C and thus $C=$ $\left\{r_{2}, b_{1}, r_{1}, b_{2}, b_{3}, r_{4}, b_{4}, r_{5}\right\}$ induces a path of length 7.

As a corollary of Theorems 3.5 and 3.7 we obtain:

Corollary 3.8. Let G be cubic 3 -edge colourable graph and an associated partition $M_{B}+M_{R}+M^{\prime}$. Assume that M^{\prime} can be partitioned into two strong matchings M_{B}^{\prime} and $M_{R}^{\prime} . G$ has two compatible linear partitions in which every path has length $1,3,5$ or 7 .

Proof In proof of Theorem 3.7 we have coloured the edges of M_{B}^{\prime} in Blue and those of M_{R}^{\prime} in Red and we have shown that the associated linear construction together with this colouring of M^{\prime} leads to a linear partition with each path of length $1,3,5$ or 7. Applying Theorem 3.5 above leads to the result.

3.2. Compatible partitions in hamiltonian cubic graphs

As a corollary of Theorem 3.3, we shall show now that cubic hamiltonian graphs satisfy Conjecture 3.1. In fact, a stronger result is obtained since the two compatible partitions are odd.

Theorem 3.9. Let G be a cubic hamiltonian graph, then G has two compatible odd linear partitions.

Proof Let $C=a_{0}, a_{1} \ldots a_{n-1}$ be a hamiltonian cycle of G. This hamiltonian cycle induces a 3-edge colouring $\Phi: E(G) \longrightarrow\{\alpha, \beta, \gamma\}$. Let us colour every edge $a_{i} a_{i+1}$ of C with α when $i \equiv 0(2)$ and with β otherwise, while the remaining perfect matching is coloured with γ. From Theorem 3.3 we know that there is a strong matching F intersecting every bicoloured cycle of $\Phi(\beta, \gamma)$. We choose F minimal for the inclusion (that is F intersects each cycle of $\Phi(\beta, \gamma)$ in exactly one edge). Let M_{α} be the set of α-coloured edges. Since F is a strong matching intersecting every bicoloured cycle of $\Phi(\beta, \gamma)$, we can construct an odd linear partition $L^{\prime}=\left(L_{B}^{\prime}, L_{R}^{\prime}\right)$:

$$
\begin{aligned}
& L_{R}^{\prime}=M_{\alpha} \cup F \\
& L_{B}^{\prime}=E(G)-L_{R}^{\prime}
\end{aligned}
$$

For each vertex v, the edge $e_{L^{\prime}}(v)$ is coloured with α excepted when v is an end vertex of an edge of F. In that case $e_{L^{\prime}}(v)$ coloured with γ when v is an end vertex of the edge of $F \cap C$ and with β when v is an end vertex of an edge of $F \backslash C$.

Case 1: F contains some edges of C
Hence the edges of $F \cap C$ are coloured with $\beta . F \cap C$ is a strong matching intersecting the 2 -factor made of the unique cycle C leading to the following odd linear partition $L=\left(L_{B}, L_{R}\right):$

$$
\begin{aligned}
& L_{B}=C-F \\
& L_{R}=E(G)-L_{B}
\end{aligned}
$$

For each vertex $v, e_{L}(v)$ is coloured with γ excepted when v is an end vertex of the edge of $F \cap C$. In that case we have $e_{L}(v)$ coloured with β.

We can check that $e_{L}(v) \neq e_{L^{\prime}}(v)$ for each vertex v, since the colours of these edges are distinct. Hence, the two odd partitions L and L^{\prime} are compatible.

Case 2: Each edge of F is coloured with γ and there is an edge $a_{i} a_{i+1}$ (i odd) of C coloured with β which is not incident to an edge of F.

Let $L=\left(L_{B}, L_{R}\right)$ be the following odd linear partition:

$$
\begin{aligned}
& L_{B}=C-a_{i} a_{i+1} \\
& L_{R}=E(G)-L_{B}
\end{aligned}
$$

For each vertex $v, e_{L}(v)$ is coloured with γ excepted when v is a_{i} or a_{i+1}. In that case $e_{L}(v)$ is coloured with α.
For each vertex $v, e_{L^{\prime}}(v)$ is coloured with α unless when v is an end vertex of an edge of F. In that case $e_{L^{\prime}}(v)$ is coloured with β when v is an end vertex of an edge of F.

We can check that $e_{L}(v) \neq e_{L^{\prime}}(v)$ for each vertex v, since the colours of these edges are distinct. Hence, the two odd partitions L and L^{\prime} are compatible.

Case 3: Each edge of F is coloured with γ and each edge of C coloured with β is incident to an edge of F.

Without loss of generality assume that a_{2} is incident to F. Edge $a_{3} a_{4}$ being incident to F, we must have a_{4} incident to F. Going through C, we get that $a_{2}, a_{4}, \ldots a_{2 k}, \ldots a_{0}$ must be incident to F. The remaining edges coloured with γ are edges joining vertices of C with odd index. It is an easy task to see that this set K of edges is a strong matching. The perfect matching coloured with γ is the union of two strong disjoint matchings F
and K with the same size. Hence G is a Jaeger's graph . Theorem 3.6 implies that we have two compatible odd linear partitions.

3.3. Compatible odd linear partitions

The results of Theorem 3.9 and Theorem 3.5 leads us to a strengthening of Conjecture 3.1 .

Conjecture 3.10. Let G be a cubic 3-edge colourable graph then we can find two compatible odd linear partitions.

As a partial result we have:
Theorem 3.11. Let G be a cubic 3 -edge colourable graph then we can find three odd linear partitions L, L^{\prime} and $L^{\prime \prime}$ such that for each vertex v

$$
\left|\left\{e_{L}(v), e_{L^{\prime}}(v), e_{L^{\prime \prime}}(v)\right\}\right| \geq 2
$$

Proof Let us consider a 3 -edge colouring $\Phi: E(G) \longrightarrow\{\alpha, \beta, \gamma\}$. Let us denote by M_{γ} the perfect matching consisting of the γ-coloured edges. Theorem 3.4 implies that there exists a set F_{α} of α-coloured edges intersecting every cycle of $\Phi(\alpha, \beta)$ such that $F_{\alpha} \cup M_{\gamma}$ is acyclic. In that way, we obtain an odd linear partition $L=\left(L_{1}, L_{2}\right)$

$$
\begin{aligned}
& L_{1}=F_{\alpha} \cup M_{\gamma} \\
& L_{2}=E(G)-L_{1}
\end{aligned}
$$

For each vertex v we have $e_{L}(v)$ coloured with γ excepted for the vertices which are the end vertices of an edge of F_{α}. In that case $e_{L}(v)$ is coloured with β.

Let us consider the perfect matching M_{β}, the bicoloured cycles of $\Phi(\alpha, \gamma)$ and a matching F_{γ} obtained by Theorem 3.4. Hence, we get an odd linear partition $L^{\prime}=\left(L_{1}^{\prime}, L_{2}^{\prime}\right)$ such that for every vertex v the edge $e_{L^{\prime}}(v)$ is coloured either with β (when the vertex v is an end vertex of an edge of F_{γ}) or with α. Finally we obtain a third odd linear partition $L^{\prime \prime}=\left(L_{1}^{\prime \prime}, L_{2}^{\prime \prime}\right)$ from the perfect matching M_{α}, the bicoloured cycles of $\Phi(\beta, \gamma)$ and a matching F_{β}, such that the edges $e_{L^{\prime \prime}}(v)$ are coloured α or $\gamma(\gamma$ when the considered vertices are the end vertices of an edge of F_{β}).

The three sets F_{α}, F_{β} and F_{γ} being obviously pairwise disjoint, it is a routine matter to see that for each vertex v two edges in $\left\{e_{L}(v), e_{L^{\prime}}(v), e_{L^{\prime \prime}}(v)\right\}$, at least, have distinct colours. These two edges are thus distinct and we get the result.

4. Generation of Jaeger's graphs

Let G be a Jaeger's graph and let $L=\left(L_{B}, L_{R}\right)$ be a linear partition every path of which has length 3 . Assume that $U=\{a, b, c, d\}$ is a set of 4 vertices such that a and d are internal vertices in L_{B} while b and c are internal vertices in L_{R}.

Let us consider the linear forest L_{R} and the edges of L_{R} incident to the vertices of $U=\{a, b, c, d\}$. We notice that, without loss of generality, there are six distinct cases (by exchanging the role of a for that of d or/and the role of b for that of c). See figure 3 .

Figure 3: Six distinct cases

Analogous situations appear for the linear forest L_{B} (by exchanging $\{a, d\}$ for $\{b, c\}$).
Definition 4.1. Let G be a Jaeger's graph and let $L=\left(L_{B}, L_{R}\right)$ be a linear partition every path of which has length 3 . Assume that $U=\{a, b, c, d\}$ is a set of 4 vertices such that a and d are internal vertices in L_{B} while b and c are internal vertices in L_{R}. A (L, U)-extension of G is a cubic simple graph G^{\prime} obtained from G in the following way.

1) The set U is splitted into two sets $U_{R}=\left\{a_{R}, b_{R}, c_{R}, d_{R}\right\}$ and $U_{B}=\left\{a_{B}, b_{B}, c_{B}, d_{B}\right\}$ (that is $\left.V\left(G^{\prime}\right)=V G\right) \backslash U \cup\left(U_{R} \cup U_{B}\right)$).
2) For $x, y \in V(G) \backslash U$, if $x y \in E(G)$ then $x y \in E\left(G^{\prime}\right)$.
3) For $x \in V(G) \backslash U$ and $y \in U$ if $x y \in E\left(L_{B}\right)$ then $x y_{B} \in E\left(G^{\prime}\right)$ and if $x y \in E\left(L_{R}\right)$ then $x y_{R} \in E\left(G^{\prime}\right)$.
4) For $x, y \in U$ if $x y \in E\left(L_{B}\right)$ then $x_{B} y_{B} \in E\left(G^{\prime}\right)$ and if $x y \in E\left(L_{R}\right)$ then $x_{R} y_{R} \in E\left(G^{\prime}\right)$.
5) The remaining edges of G^{\prime} are the edges of two paths of length 3 on the sets U_{R} and U_{B}, respectively, such that the obtained graph G^{\prime} is cubic (see figures 4 and $5)$.

Figure 4: Addition of a path of length 3 on U_{R}

Figure 5: Example of (L, U)-extension

It is clear that the added path on U_{R} (respectively U_{B}) can be added to L_{B} (respectively $\left.L_{R}\right)$ in order to obtain a linear partition of G^{\prime} each path of which has length 3.

Note that the graph G^{\prime} is not uniquely defined, namely if the subgraph induced on U in L_{R} (respectively, in L_{B}) is a stable set or has exactly one edge connecting the vertices of degree 2 in L_{R} (respectively, in L_{B}).

So, by Theorem 1.6 we have the following Proposition.

Proposition 4.2. Let G be a Jaeger's graph and let $L=\left(L_{B}, L_{R}\right)$ be a linear partition of G each path of which has length 3. Let $U=\{a, b, c, d\}$ be a set of 4 vertices of G such that a and d are internal vertices in L_{B} while b and c are internal vertices in L_{R}. Then any (L, U)-extension of G on U is a Jaeger's graph.

Definition 4.3. Let G be a Jaeger's graph and let $L=\left(L_{B}, L_{R}\right)$ be a linear partition for which every path has length 3 . Assume that $P \in L_{B}$ and $Q \in L_{R}$ where $P=$ $\left\{a_{1}, b_{1}, c_{1}, d_{1}\right\}$ and $Q=\left\{a_{2}, b_{2}, c_{2}, d_{2}\right\}$ are vertex disjoint paths in G. A $P Q$-reduction of G on P and Q is a cubic simple graph G^{\prime} obtained from G by deleting the edges of P and Q and identifying the internal vertices of P with the end vertices of Q and the internal vertices of Q with the end vertices of P.

Note that the $P Q$-reduction of G has a linear partition each path of which has length 3 . Hence we have the following.

Proposition 4.4. Let G be a Jaeger's graph and let $L=\left(L_{B}, L_{R}\right)$ be a linear partition of G every path of which has length 3. Assume that $P \in L_{B}$ and $Q \in L_{R}$ are vertex disjoint paths in G. Then the $P Q$-reduction of G on P and Q is a Jaeger's graph.

We get immediately from Propositions 4.2 and 4.4

Theorem 4.5. Every Jaeger's graph on $n \geq 20$ vertices is obtained from a Jaeger's graph on 16 vertices by a sequence of (L, U)-extensions.

Proof Assume that G is a Jaeger's graph on n vertices with $n \geq 20$. Let $L=$ $\left(L_{B}, L_{R}\right)$ be a linear partition each of whose paths have length 3 . Since each path of L is incident to at most 4 distinct paths, as soon as $n \geq 20$ we are sure to find a path in $P \in L_{B}$ and a path $Q \in L_{R}$ such that $V(P) \cap V(Q)=\emptyset$. By a $P Q$-reduction on these two paths we get a Jaeger's graph on $n-4$ vertices (Proposition 4.4). The proof is complete.
[1] J. Akiyama, G. Exoo and F. Harary, "Covering and Packing in graphs III", Cyclic and Acyclic Invariant, Math. Slovaca, 30, (1980), 405-417.
[2] J.C. Bermond, J.L. Fouquet, M. Habib, B. Peroche, "On linear k-arboricity", Discrete Math, 52, (1984), 123-132.
[3] J. A. Bondy, 'Basic graph theory: Paths and circuits" in Handbook of Combinatorics Volume 1, 1995 North Holland.
[4] J. A. Bondy, "Balanced colourings and the Four Color Conjecture", Proc. of the Am. Math. Soc., 33(2), 1972, 241-244.
[5] J.L. Fouquet and J.L. Jolivet, "Strong edge-coloring of cubic planar graphs", Progress in Graph Theory (Eds. J.A. Bondy and U.S.R. Murty) Academic Press (1984) 247-264.
[6] J-L Fouquet, H Thuillier, and J-M Vanherpe, "On a sub-class of cubic graphs containing the flower snarks". Discussiones Mathematicae Graph Theory 30(2), (2010), 289-314.
[7] J-L Fouquet, H Thuillier, J-M Vanherpe, and A.P Wojda, "On isomorphic linear partitions in cubic graphs", Discrete Mathematics 309(22), 2009, 6425-6433. Proceedings of the $5^{\text {th }}$ Crakow Conference on Graph Theory USTRON'06.
[8] J-L Fouquet, H Thuillier, J-M Vanherpe, and A.P Wojda, "On odd and semi odd linear partitions in cubic graphs", Discussiones Mathematicae Graph Theory 29(2), (2009), 275-292.
[9] F. Harary, "Covering and Packing in graphs I", Ann. New York Acad. Sci., 175, (1970), 198-205.
[10] F. Jaeger, 'Etude de quelques invariants et problèmes d'existence en théorie de graphes", Thèse d'Etat, IMAG Grenoble, 1976.
[11] A. Kotzig, "Moves without forbidden transitions", Mat.-Fyz. Časopis 18, 76-80 (1968) MR 39\#4038.
[12] T.J. Schaefer, "The complexity of satisfiability problems", Proc 10th Ann. Symp. on Theory of Computing, (1978), 216-226.
[13] N. Wormald, Problem 13, Ars Combinatoria 23A, (1987), 332-334.

[^0]: ${ }^{1}$ The research of APW was partially sponsored by polish Ministry of Science and Higher Education. Preprint submitted to Elsevier

 June 18, 2011

