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A non equilibrium approach to processing Hopkinson Bar bending test data:
application to quasi-brittle materials

F. Delvare, J.L. Hanus, P. Bailly

Institut PRISME, ENSI de Bourges 88 Boulevard Lahitolle, 18020 BOURGES Cedex, FRANCE

Abstract

The aim of this paper was to describe a method of analysing thetest data recorded during a Hopkinson Bar bending
test. This three-point dynamic bending test was designed for testing the strength of materials under dynamic loads.
It is carried out on a specimen consisting of a beam placed on two supports, which is subjected to an impact. The
use of Hopkinson Bar as supports makes it possible to determine the forces and displacements at these points. An
analytical solution for the transient response of a long beam subjected to a transverse impact was used to determine
the impact force and the displacement. This procedure applies for the first few instants when the motions generated
by the impact have not yet reached the supports, and the mechanical state of the specimen is identical to that of an
unsupported beam. It is suitable for use with quasi-brittlematerials for which failure occurs at the very beginning of
the test. The material strength is determined at the time of failure, which is characterised by a sudden decrease in the
bending moment. The results of a test in which a quasi-brittle material was loaded up to failure are presented and
analysed as outlined above. The results obtained confirm therelevance of the present method.
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1. Introduction

Obtaining information about the dynamic behaviour of building materials such as concrete and some geomaterials
is of critical importance to be able to predict how buildingswill resist accidental events such as shocks. There
exist several experimental methods for investigating the mechanical behaviour of quasi-brittle materials subjectedto
dynamic loads [1]. Fracture tests have been performed on quasi-brittle slabs, where the main load involved was a
bending load, using an impact tube or blast wave methods [2] [3]. Other methods involve the use of Split Hopkinson
(Kolsky) Pressure Bar (SHPB) [4], [5]. Although recent advances have improved the performances of test apparatuses
and the accuracy of the measurements, the SHPB method is still particularly appropriate in this context because it
can be used to apply a dynamic load to a specimen and to measureboth the impact force and the impact velocity
at the impact point. However, special precautions are required when dealing with brittle materials because failure
of these materials occurs at very low strains. It is necessary in particular to be able to perform highly precise time
shifting procedures to the signals measured [6]. The tensile strength of quasi-brittle materials differs considerably
from their compression strength. Several modified set-ups have been presented for performing dynamic tensile tests
[7], spalling tests [8] and Brazilian tests [9]. Compression tests have also been performed under confined conditions
using a pressurized cell [10] or a metal ring [11].

The dynamic three-point bending test is widely used to determine the tensile strength of materials such as quasi-
brittle materials, because it is often easier to apply than direct tensile tests. The idea of performing three-point bending
tests with Hopkinson bar has been mainly applied so far to determine the toughness of notched specimens [12], [13],
[14], [15]. Hopkinson bar tests yield more information thanCharpy tests, and the interpretation of the measurements
is simplified [15] [16]. The three-point bending test can be used to closely analyse experimental measurements in
order to obtain as much information as possible about the various phases of the response, including the rupture phase
in particular.

In a general manner, the procedure for processing the dynamic response of a specimen loaded at its midpoint de-
pends on the relationship between the duration of the test, defined as time up to complete failure, and the characteristic
times of the structure. These responses are usefully divided into three main types, depending on the test duration.

• Quasi-static response : duration long in comparison with the structural characteristic times.
The reaction of the supports is equal to the half of the impactforce. In this case the stresses and strains can be
determined using a classical method. The fracture stress can then be obtained from the force or displacement
measurements. Most toughness tests designed to determine the stress intensity factor are interpreted under the
assumption that the quasi-static state of equilibrium is valid, taking the analytically determined stress field in a
notched specimen [15], [17].

• Dynamic response : duration is short or comparable to the time needed for a wave to propagate to the specimen
ends and return back to the impact point. This makes it necessary to take the transient motion of the beam into
account.

- If the reaction of the supports is neither zero nor equal to the half of the impact force, we will call this dynamic
response aquasi-impulsive responsesince duration is comparable to the time needed for a wave to propagate
to the specimen ends and return back to the impact point. The transient response of the test specimen can be
expressed using a model with a single degree of freedom (SDOF) [18], [19]. To account for the inertia of the
test specimen, the Rayleigh approximation for the eigenfrequency can be used. Since the deformed structure
is assumed to be the same as that defined under static conditions, the maximum tensile stress and the bending
moment can be expressed in terms of the displacement. Some authors have developed the dynamic response of
the test specimens even further by superposing several modes [20], [21]. In the case of a notched beam with a
short time to fracture subjected to one-point bending tests, the latter authors established that the beam model
is not relevant. The response of the specimen was therefore modelled using finite element methods [22], [23],
where the eigenmodes were determined using a 2-D model for the beam [24]. The maintenance of contact and
loss of contact at the supporting points has also been studied experimentally in [25].

- If the reaction of the supports remains equal to zero until complete fracture, we will call this dynamic response
an impulsive responsesince duration is short compared to the time needed for a waveto propagate to the
specimen ends and return back to the impact point. This case is met in the Hopkinson Bar bending test on quasi-
brittle materials which are known to fracture at very low strain levels and with very little energy dissipation.
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• Spall response : duration comparable to or less than the transit time through the specimen transverse sizes. In
this case, the superposition of two waves in the specimen thickness, incident compressive pulse and reflected
tensile pulse, sets material in tension and causes damage leading to spallation [26].

The present study is concentrating on the impulsive response of specimens of quasi-brittle materials with no
notches [27]. To be able to analyse the results properly, it is necessary to perform a transient dynamic analysis on the
structure. The approach proposed in this paper for analysing and interpreting these tests takes into account the fact
that no information is transmitted back from the support to the impact point before complete fracture occurs.

In section 2, after describing the experimental set-up usedand the specificities of the test, a theoretical modelling
procedure is presented for determining the transient elastic response of the specimen. The novel approach presented
here is applied in section 3 to an example in which an unnotched clay brick specimen was tested and the dynamic
mechanical strength is deduced. In section 4, comparisons with classical approaches and one dimensional and two-
dimensional finite element simulations are performed. These simulations are used to check, on the one hand, the
validity of a one-dimensional beam modelling approach and,on the other hand, the accuracy of the proposed model.
Section 5 is the conclusion where we suggest possible futureresearch.

2. A model for dynamic bending test on quasi-brittle materials interpretation

2.1. The experimental set-up and specificities of the test

A scheme of the set-up used in the present study is shown in Fig. 1. The two output (or transmission) bars were
used to support the specimen, and the load was applied via theinput (or incident) bar. The bending test set-up and
the specimen can be seen in the photographs in Fig. 2. The strain waves in the bars were measured using resistance
gauges. The impact velocity was measured via photoelectriccells. The characteristics of the bars are specified in table
1.

Length of the striker LI = 1.25m
Length of the incident bar LB = 3m
Diameter of the bars φB = 40× 10−3 m
Cross-section of the bars SB = 12.57× 10−4 m2

Young’s modulus EB = 74GPa
Density ρB = 2800kg m−3

Uniaxial wave celerity CB = 5140m s−1

Impedance ZB = 18090kg s−1

Table 1: Characteristics of the aluminium Hopkinson bars

The characteristics of the specimen tested are specified in table 2; the Young’s modulus was determined using
quasi-static three-point bending tests and a Poisson’s ratio of 0.2 was assumed.

Length Ls = 22× 10−2 m
Thickness a = 1.7× 10−2 m
Width b = 6.5× 10−2 m
Young’s modulus E = 7GPa
Density ρ = 1400kg m−3

Distance between supportsL = 20× 10−2 m

Table 2: Characteristics of the test specimen

The velocityVe(t) and the forceFe(t) at the contact point between the incident bar and the test specimen were
determined using the following classical formulae [5]:

Ve(t) = −CB (εi(t) − εr (t)) (1)
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Fe(t) = −SB EB (εi(t) + εr (t)) (2)

whereεi andεr are the incident and reflected wave known at the bar-specimeninterface.

Bending test interpretations are feasible if it is possibleto deduce the stresses and strains at fracture from the
experimental measurements (i.e., the impact force and the impact velocity). It is therefore necessary to have an
appropriate modelling technique, in terms of both time and space, to describe the kinematics of the test specimen and
to assess the internal stresses.

A reference timeTR is introduced, and defined as the effective duration of the bending test. This parameter
corresponds to the time elapsing between the beginning of the impact and the fracture of the specimen. The force
exerted by the incident bar on the test specimen generates a compression wave at the impact point, which propagates
through the material. The terminitial response of the solidwas used to denote the mechanical state induced by the
propagation of the compression waves followed by the tension waves resulting from a reflection at the opposite face of
the specimen. Since these waves propagate at the primary waves’celerityCp, the characteristic duration of this phase
can be taken to be equal to that of the wave propagation acrossthe width of the solid:

TT =
a

Cp
(3)

With durations longer thanTT , the waves will be reflected and diffracted several times. Then it is reasonable to
assume that the motions can be studied on the scale of the structure, and that a model for this structure can be used
for this purpose [1]. The configuration of the specimen (table 2) made it possible to use a beam modelling method.
Under static conditions, beam modelling gives an excellentassessment of the stresses and strains when the beam is
elongated, whereas under dynamic conditions, the condition which has to be met focuses on the wavelength of the
transverse motion of the beam. A specimen can be treated as a beam only if the following two conditions are met:

• the characteristic duration of the process under investigation is sufficiently large compared to the time taken by
the wave to propagate across the width of the specimen

• the wavelength of these transverse displacementsλ is large enough in comparison with the radius of giration of
the cross sectionr =

√
I/S whereS is the cross-sectional area andI is the second moment of the cross-sectional

area.

If the duration of the bending testTR is short in comparison with the timeTC taken by the motions generated by the
impact to propagate to the specimen ends and return back to impact point, there will be no influence of the supports
on the fracture. In this case, we will have the same problem asthat involving a beam with an infinite length. The
infinite length assumption is based on the fact that no information is transmitted back from the supports before fracture
occurs. A minoration of the timeTC can be obtained considering that the bending waves cannot propagate faster than
the primary waves:

TC >
L

Cp
(4)

The main characteristics of wave propagation in the specimen are specified in table 3.

Spall characteristic time TT = 7.2µs
Radius of gyration r = 4.9× 10−3 m

Support reaction characteristic timeTC >
L

Cp
= 85µs.

Table 3: Wave propagation characteristics of the test specimen

The recorded signals shown in Fig. 3 were obtained by performing a dynamic bending test on a baked clay brick.
The change in the reflected wave shape is a clear evidence thatsignificant physical damage occurs within a very a short
time interval (surrounded area in Fig. 3). This is the main particularity of tests on quasi-brittle materials: the duration
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of the incident pulse (≈ 500µ s), which depends on the length of the striker, easily suffices for fracture to occur (these
tests could be carried out with shorter bars and a shorter striker). No reaction was present in the transmission bars. In
other words, it was as if there were no transmission bars.

2.2. The long beam model for bending test interpretation
Dynamic tests do not consist like quasi-static tests in imposing a known, controlled force or displacement on

a test specimen. With the SHPB set-up, the loading results from dynamic interactions between the test specimen
and the incident bar. The feasibility of the test depends on the existence of an impedance match between the bars
and the specimen tested. The relation betweenVe andFe (the velocity and the force at the end of the incident bar)
determines the relation between the incident and reflected waves ( equations (1) and (2)). In bending tests, the elastic
behaviour of the test specimens, which relatesVe to Fe, determines the reflection of the incident wave and hence the
loading conditions. The model for the bending can be used to determine the strength of the material and other intrinsic
characteristics from the experimental data.

To illustrate how an interaction between a bar and a specimengenerates a load, a model was specifically developed
to deal with the case of quasi-brittle materials. The framework used for this purpose will be that of a beam subjected
to an impact, which is simulated by a time-dependent point force (forceFe(t) at x = 0). The simplest beam model
was introduced by Bernoulli. In this model for a beam subjected to bending loads, the distortions resulting from
shear forces are neglected. The cross-sections are always plane and perpendicular to the beam axis; the rotation of a
cross-section is therefore equal to the slope of the deformed beam (Fig. 4). Under these assumptions, the equation of
motionw(x, t) can be written as follows, neglecting the rotary inertia but not the translation inertia :

∂4w
∂x4
+ 4α4 ∂

2w
∂t2
= 0 where 4α4 =

ρS
E I

(5)

In this equationx ∈ ]0, L
2 ]. Since we suppose thatTR << TC, the events occurring in the centre of the beam will not

be influenced by the supports, just as if the beam was of infinite length. The x-range becomesx ∈ ] 0, +∞ [ with the
following boundary conditions at the impact point and at thefar end of the beam:

∂w
∂x

(0, t) = 0 ,
∂3w
∂x3

(0, t) =
Fe(t)
2 E I

and w(+∞, t) = 0 (6)

The impulse response obtained when the impact force is a Dirac functionFe(t) = δ(t) was first established by Ditkine
V. and Proudnikov A. [28]. In order to make the best possible use of the experimental data, it is proposed to take a
slightly different problem: that of a long beam, where two boundary conditions atx = 0, the displacementUe and
the forceFe, are known, based on the measurements performed, and we haveto determine the other two, namely
the rotationψ(0, t) and the bending momentM(0, t) (see Fig. 5). This new problem takes into account the observed
occurence of crack initiation and propagation under the impact point. It contains the previous problem as a particular
case (ψ(0, t) = 0) but is more general since it remains valid after the onset of a first centered crack. As a consequence,
it could be used to describe the cracking behaviour of the specimen. The relations at the impact point are modified by
cracking as:

w(0, t) = Ue(t) ,
∂w
∂x

(0, t) = ψ(0, t) ,
∂2w
∂x2

(0, t) = −
M(0, t)

E I
,

∂3w
∂x3

(0, t) =
Fe(t)
2 E I

(7)

Ue(t) andFe(t) are known (measured) functions, andψ(0, t) andM(0, t) are unknown functions. At the far end of the
beam, we takew(+∞, t) = 0 (along with all the corresponding time derivatives).

The transient dynamic elastic response of the test specimencan be determined from the experimental data (the
details of the application of operational calculus are given in Appendix):

w(x, t) =
∫ t

0
G1(t − τ) Ω1(x, τ) dτ −

∫ t

0

(

G1(t − τ) +G2(t − τ)
)

Ω2(x, τ) dτ (8)

where

G1(t) =
∫ t

0

Ve(τ)
√
π (t − τ)

dτ and G2(t) =
∫ t

0

Fe(τ)
4 E I α3

dτ (9)

5



Ω1(x, t) =
1
√
π t

cos

(

α2 x2

2 t

)

and Ω2(x, t) =
1
√
π t

sin

(

α2 x2

2 t

)

(10)

From which the following can be deduced:

• Rotation and bending moment atx = 0

ψ(0, t) = −2α
∫ t

0

Ve(τ)
√
π (t − τ)

dτ +
1

4 E I α2

∫ t

0
Fe(τ) dτ (11)

M(0, t) =
1

2α

∫ t

0

Fe(τ)
√
π (t − τ)

dτ − 2 E I α2 Ve(t) (12)

• If we take the rotation at the origin to be zero prior to the fracture process, we obtain the following relation for
the interaction imposed at the end of the incident bar between the force and the velocity during the elastic phase:

Ve(t) =
1

2η

∫ t

0

Fe(τ)
√
π (t − τ)

dτ where η = 4 E I α3 and 4α4 =
ρS
E I

(13)

and the relation between the incident and reflected waves:

εr (t) = εi(t) −
∫ t

0

2εi(τ)
√
τ f

















1
√
π (t − τ)

−
1
√
τ f

e
t−τ
τ f er f c

(

√

t − τ
τ f

)

















dτ (14)

where er f c(t) =
2
√
π

∫ ∞

t
e−τ

2
dτ denotes the complementary error function andτ f =

(

2η
ZB

)2

.

3. Application of the long beam model to processing experimental data

Analysing the results of the test requires, in a first stage, subtracting the incident and the reflected waves in order
to determine the velocity at the impact point (equation (1)), and then adding these two waves to determine the force
exerted at the same point (equation 2)). Since the strains are measured in the middle of the incident bar, a wave
transport has to be expressed in terms of time, taking the dispersion into account. The two waves have to be closely
synchronised in order to accurately describe the whole testrange. Once the velocity and the force are known at the
impact point, rotation and bending moment are deduced from the equations (11) and (12).

3.1. Time shifting of the waves based on an elastic response

In practice, modelling transport time by taking only the distances to the specimen faces and the celerity of the
waves into account is not a sufficiently accurate approach. In the case of bending tests, theshape of the end of the
input bar can, for exemple, give rise to a lack of accuracy. The best way of synchronising the waves is to simulate
the reflection of the incident wave front in order to determine the onset of the reflected wave measured. Although
this modelling method has already been applied to compression tests [6], the long beam model is proposed as an
appropriate one for processing bending tests data. During the first few instants after the onset of the loading, the
behaviour of the specimen was assumed to remain elastic, andthe relation (14) between the incident and reflected
waves could therefore be used. This relation was used to simulate the elastic response of the specimen. From the
incident wave measurements, it was possible to compute the reflected wave corresponding to an elastic response of
the specimen and to exactly time the onset of the reflected wave measured. The incident and reflected waves measured
and the reflected wave predicted by the elastic response using the relation (14), all of which were time shifted, are
given in Fig. 6.
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3.2. Non dissipative behaviour

Fig. 7a and Fig. 7b give the velocities and forces obtained using relations (1) and (2). On the one hand, the wave
measurements recorded during the tests were used and on the other hand, the incident wave and the reflected wave
measurements corresponding to the elastic response of the specimen were used. It can be seen from these figures that
whent < 40µs, the curves based on the measured signals (time shifted) andthose based on the elastic response either
coincided or showed excellent agreement. This result confirms the assumption that the behaviour of the beam at the
beginning of the test was purely elastic. The onset of a non linear behaviour, which was assumed to be concomitant
with the cracking process, can be seen from the separation ofthe curves (TR ≈ 40µ s). During the elastic phase, from
(12) and taking the relation (13) into account, the bending moment is given by:

M(0, t) =
1

4α

∫ t

0

Fe(τ)
√
π (t − τ)

dτ = 2 E I α2 Ve(t) (15)

which yields the maximum through-the-thickness tensile stress:

σ(0, t) =
a M(0, t)

2 I
=

a
8 I α

∫ t

0

Fe(τ)
√
π (t − τ)

dτ = a Eα2 Ve(t) (16)

and the maximum through-the-thickness strain rate:

ε̇ = aα2 dVe

dt
(17)

It can be noticed that the moment and the maximum tensile stress are proportional to the velocity at the impact point,
and not to the displacement. It is also worth noting that the strain rate depends on the acceleration at the impact point
and not on the velocity. The curves giving the impact velocity Ve as a function of time Fig. 7a can be seen to show a
quasi-linear part during the elastic phase. The strain rateassociated with this phase, which was obtained from relation
(17) is denoted ˙εc and takes the value ˙εc = 250s−1 in the reported test. With our experimental set-up, the magnitude
of the strain rate applied to quasi-brittle materials ranges typically from 20s−1 to 500s−1.

3.3. Dissipative behaviour

When cracking occurs, the "zero rotation at the origin" condition no longer applies. This rotation and the residual
moment can be calculated in the case of partial fracture of the specimen by applying the measurements obtained to
relations (11) and (12). In the tests, cracks occurred underthe impact force. Att > TR ≈ 40µs, non linear phenomena
were therefore presumably present only in the central crosssection of the specimen.

The information obtained about the evolution of the moment with the crack opening 2ψ, which is shown in Fig.
8, makes it possible:

• to detect more closely than in Fig. 7a and Fig. 7b the initiation of the cracking process, and hence the strength
of the tested material. The elastic phase of the test was expected to correspond to a straight vertical segment,
since the crack opening remains zero, whereas the moment is on the increase;

• to define a law governing the relation between the moment and the opening of the crack.

The mechanical strength of the brick material tested in thisstudy is presented in table 4. As explained above, the
dynamic values were deduced from the changes with time in themoment (Fig. 8), since in the context of elastic

behaviour,σ =
a M
2 I

. The static value was obtained using a classical three-point bending test. It can be noticed an

increase of the mechanical strength in the dynamic situation compared to the static one.
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static dynamic

ε̇c 0.005s−1 250s−1

σe 7.7 MPa 33MPa

Table 4: Mechanical strength of the brick specimen

4. Discussion on the validity of the long beam model

Since the real specimen is a three-dimensional object, we must discuss the validity of a one-dimensional theory
to model accurately the short-time response of the sample. For an imposed impact in the middle of the beam, there
is a finite time, greater thanLCp

, during which the smallest wavelength will not return back to the point of application
of the impulse. The proposed long-beam model is an Euler-Bernouilli beam model which predicts an approaching
infinite wave speed for an infinitesimal wavelength. The Timoshenko beam model taking rotary inertia and shear
into account is usually considered as an improvement since the wave speeds remain bounded. But for a given input
load, the small wavelength components have small amplitudes. With an Euler-bernouilli model, if we cannot say that,
during the studied short-time, some spurious high frequency waves will not be reflected to the impact point, we can
rather suppose that what will be reflected is negligible. Nevertheless this assumption has to be investigated.

A two-dimensional reference numerical elastic solution isused to check the legitimacy of using one-dimensional
beam models. The test case is that of a specimen tested to a force ramp. Even if dynamic tests using Hopkinson bar
do not consist in imposing a known controlled force on a test specimen but results from dynamic interactions between
the test specimen and the end of the incident bar, a unit forceramp (i.e.Fe(t) = t) was used. This simple loading was
only chosen because:

• it was suitable for the comparisons between explicit methods and the finite element simulations;

• the finite element simulations were easier to perform than inthe real case where it could be necessary to model
the whole experimental device and not only the specimen;

• it allowed to calculate an analytical solution with different classical models.

The FEM simulations were performed using the finite element code Cast3M1 developed at the French Atomic Energy
Commission’s Department of Mechanics and Technology (DMT)[29]. The simulations were carried out in 2-D situ-
ations, since the results obtained in 3-D simulations with coarse mesh were equivalent. The meshing elements used
were quadrilaterals with 8 nodes and a quadratic interpolation. The simulations were performed under plane strain
state assumptions. Time resolution was performed using theimplicit Newmark scheme. In view of the symmetry of
the problem, only half of the specimen was meshed. The mesh was refined up to convergence of the static reference
calculations. The regular meshing procedure adopted included 7295 nodes and 2340 elements (grid of 20× 117). 1-D
simulations were also carried out using Euler-Bernoulli beam elements and Timoshenko beam elements meshed using
the same axial mesh discretisation procedure as above.

To check the improvement over standard approaches, the result obtained by the long beam model was also com-
pared with those predicted by a quasi-static approach, by a modelling of the beam using a single degree of freedom
system (SDOF) or using a modal superposition method :

• quasi-static state beam model:

The stresses and strains can be written quite simply. The relation between the force and the displacement
at the end of the incident bar is:

Ue =
Fe

ke
where ke =

48E I
L3

(18)

1Cast3M, http://www-cast3m.cea.fr
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and leads to

σ(t) =
a L t
8 I

(19)

• SDOF beam model:

The previous model can be improved by taking the inertial forces into account. This model based on Rayleigh’s
method consists in approximating the beam via a single degree of freedom (SDOF) system, assuming the shape
of the dynamically deformed beam to be similar to that of the quasi-static deformed beam.

me Üe + ke Ue = Fe where me =
17
35

ρS L (20)

The interaction relation imposed at the center of the beam between the force and the displacement is:

Ue(t) =
1

meωe

∫ t

0
Fe(τ) sin(ωe(t − τ)) dτ where ωe =

√

ke

me
(21)

and leads to

σ(t) =
a L
8 I

(

t −
1
ωe

sin(ωe t)

)

=
6a E

meω2
e L2

(

t −
1
ωe

sin(ωe t)

)

(22)

• modal superposition analysis:

The motion of the beam is described in this model by superposing vibration modes. The interaction relation
imposed at the center of the beam between the force and the displacement is:

Ue(t) =
∞
∑

j=1

1
mj ω j

∫ t

0
Fe(τ) sin(ω j(t − τ)) dτ (23)

and leads to

σ(t) =
a E
2

n
∑

j=1

(2 j − 1)2 π2

L2
f j(t) where f j =

ω j t − sin(ω j t)

mj ω
3
j

(24)

• long beam model

Taking into accountFe(t) = t in the expression (16) of the maximum stress leads to:

σ(t) =
a

6 I α
√
π

t
3
2 (25)

Since the main variable of interest is the mechanical strength, we consider the maximum stress to compare the
different models. The finite element simulations had also given the time required to obtain a non nil reaction at
the supports (≈ 300µ s). As assumed in the section 2.1 the duration of analysis was choosen shorter than this time
(100µ s).
Results presented in Fig. 9 and in Fig.10 showed:

• a good agreement between both the finite element simulationsperformed ( 2-D simulation and 1-D simulation
using beam elements), which shows the relevance of using a one-dimensional beam model,

• no amelioration produced by the use of a Timoshenko beam model,

• a good agreement between the long beam model predictions andthose of the finite element simulations,

• a wrong response of the quasi-static approach what was expected as the approach by a SDOF system in a less
obvious manner a priori,

• fairly satisfactory results for the modal superposition with a relatively large number of modes (around thirty).
However it remains less accurate than the long beam model.

From the discussion above, it is clear that the long beam model is remarkably accurate compared to the two-
dimensional and to classical approaches provided that the time response studied is short.
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5. Conclusion

The approach presented in this paper can be used to interpretthe results of dynamic bending tests on quasi-brittle
material specimens: this was not possible with the classical methods available so far because failure occurs very early,
at very low strain levels. The method developed specificallyfor this purpose gives accurate and reliable results. As
in all tests involving SHPB, with which fracture occurs at very low strains, it is necessary to carefully apply accurate
time shifting methods to the wave measurements. The key element of this approach is the long beam analytical model
used to simulate the transient elastic response of the tested specimens. The limitations of the method presented here
are due to the assumptions required to obtain the analyticalsolution, i.e., in this case, those focusing on the dimensions
of the specimen and the crack initiation time, which fit the assumptions of the "long beam model". One of the main
results obtained here was that it is possible with this method to determine accurately the instant at which cracks are
initiated and to define the mechanical strength of a materialby drawing up a moment versus crack opening curve,
from which it should be possible in the future to predict the energy dissipated when bending failure occurs.
The range of potential applications is wider than what this study might seem to indicate, since it could include many
geomaterials and construction components. In some of thesesituations, a similar approach using a Timoshenko beam
model must be introduced because the distortions resultingfrom shear forces are not neglectible.
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7. Appendix: flexural response of a semi-infinite beam

For the long beam model, the equation of motion is:

∂4w
∂x4
+ 4α4 ∂

2w
∂t2
= 0 where 4α4 =

ρS
E I

(26)

The relations at the impact point are supposed to be:

w(0, t) = Ue(t) ,
∂w
∂x

(0, t) = ψ(0, t) ,
∂2w
∂x2

(0, t) = −
M(0, t)

E I
,

∂3w
∂x3

(0, t) =
Fe(t)
2 E I

(27)

Using the time Laplace transform, the image of the beam motion that vanishes at infinity has the following form:

w(x, s) = e−α x
√

s
(

K1 cos(α x
√

s) + K2 sin(α x
√

s)
)

(28)

We then take the following operators and the corresponding time functions:

Ω1(x, s) =
e−α x

√
s

√
s

cos(α x
√

s) , Ω2(x, s) =
e−α x

√
s

√
s

sin(α x
√

s) (29)

Ω1(x, t) =
1
√
π t

cos

(

α2 x2

2 t

)

, Ω2(x, t) =
1
√
π t

sin

(

α2 x2

2 t

)

(30)

The image of the response can also be written with these functions:

w(x, s) =
√

s(K1Ω1 + K2Ω2) (31)

After calculating the partial derivatives with respect tox and taking the boundary conditions into account, we obtain
the following expressions:

w(0, s) = K1 = Ue(s) (32)

∂w
∂x

(0, s) = α
√

s(K2 − K1) = ψ(0, s) (33)

∂2w
∂x2

(0, s) = −2α2 sK2 =
M(0, s)

E I
(34)
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∂3w
∂x3

(0, s) = 2α3 s
3
2 (K1 + K2) =

Fe(s)
2 E I

(35)

from which it can be deduced that

K1(s) = Ue , K2(s) =
Fe

4 E I α3 s
3
2

− Ue (36)

In the operational space, the motion is:

w(x, s) =
√

s













UeΩ1 +

(

− Ue +
Fe

η s
3
2

)













Ω2 where η = 4 E I α3 (37)

The transient dynamic elastic response of the test specimencan be determined from the experimental data. :

w(x, t) =
∫ t

0
G1(t − τ) Ω1(x, τ) dτ −

∫ t

0

(

G1(t − τ) +G2(t − τ)
)

Ω2(x, τ) dτ (38)

where

G1(t) =
∫ t

0

Ve(τ)
√
π (t − τ)

dτ and G2(t) =
∫ t

0

Fe(τ)
4 E I α3

dτ (39)

From which the following can be deduced:

• Rotation and bending moment atx = 0

– in the operational form

ψ(0, s) = α
√

s(K2 − K1) =
Fe(s)

4 E I α2 s
− 2α

√
sUe(s) =

Fe(s)
4 E I α2 s

− 2α
Ve(s)
√

s
(40)

M(0, s) = 2 E I α2 sK2 = −2 E I α2 sUe(s) +
Fe(s)

2α
√

s
= −2 E I α2 Ve(s) +

Fe(s)

2α
√

s
(41)

– in the time domain

ψ(0, t) = −2α
∫ t

0

Ve(τ)
√
π (t − τ)

dτ +
1

4 E I α2

∫ t

0
Fe(τ) dτ (42)

M(0, t) =
1

2α

∫ t

0

Fe(τ)
√
π (t − τ)

dτ − 2 E I α2 Ve(t) (43)

• If we take the rotation at the origin to be zero prior to the fracture process, we obtain:

K1(s) = K2(s) (44)

and the following relation for the interaction imposed at the end of the incident bar between the force and the
velocity during the elastic phase:

– in the operational form

Ve(s) =
1

2η
√

s
Fe(s) (45)

– in the time domain

Ve(t) =
1

2η

∫ t

0

Fe(τ)
√
π (t − τ)

dτ where η = 4 E I α3 and 4α4 =
ρS
E I

(46)
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and the relation between the incident and reflected waves:

– in the operational form

εr = εi













L(s) − ZB

L(s) + ZB













where L(s) =
Fe(s)

Ve(s)
= 2η

√
s (47)

or

εr = εi

( √
τ f s− 1
√
τ f s+ 1

)

= εi

(

1−
2

√
τ f s+ 1

)

where τ f =

(

2η
ZB

)2

(48)

– in the time domain

εr (t) = εi(t) −
∫ t

0

2εi(τ)
√
τ f

















1
√
π (t − τ)

−
1
√
τ f

e
t−τ
τ f er f c

(

√

t − τ
τ f

)

















dτ (49)

where er f c(t) =
2
√
π

∫ ∞

t
e−τ

2
dτ denotes the complementary error function.
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Figure 1: Bending test set-up involving the use of Hopkinsonbar.
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Figure 2: Photographs of the bending test set-up, brick specimen
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23


