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A non equilibrium approach to processing Hopkinson Bar bemntest data:
application to quasi-brittle materials

F. Delvare, J.L. Hanus, P. Bailly
Institut PRISME, ENSI de Bourges 88 Boulevard Lahitoll2BBBOURGES Cedex, FRANCE

Abstract

The aim of this paper was to describe a method of analysinghelata recorded during a Hopkinson Bar bending
test. This three-point dynamic bending test was designeteting the strength of materials under dynamic loads.
It is carried out on a specimen consisting of a beam placedvorstipports, which is subjected to an impact. The
use of Hopkinson Bar as supports makes it possible to deterthe forces and displacements at these points. An
analytical solution for the transient response of a longibsabjected to a transverse impact was used to determine
the impact force and the displacement. This procedureepfir the first few instants when the motions generated
by the impact have not yet reached the supports, and the mieahatate of the specimen is identical to that of an
unsupported beam. It is suitable for use with quasi-brittégerials for which failure occurs at the very beginning of
the test. The material strength is determined at the timaikfre, which is characterised by a sudden decrease in the
bending moment. The results of a test in which a quasi-bnitthterial was loaded up to failure are presented and
analysed as outlined above. The results obtained confirmetéeance of the present method.
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1. Introduction

Obtaining information about the dynamic behaviour of bimi¢gdmaterials such as concrete and some geomaterials
is of critical importance to be able to predict how building#l resist accidental events such as shocks. There
exist several experimental methods for investigating tleemanical behaviour of quasi-brittle materials subjetted
dynamic loads [1]. Fracture tests have been performed ositpitle slabs, where the main load involved was a
bending load, using an impact tube or blast wave methodSJ2[dther methods involve the use of Split Hopkinson
(Kolsky) Pressure Bar (SHPB) [4], [5]. Although recent adlv@s have improved the performances of test apparatuses
and the accuracy of the measurements, the SHPB method igastitularly appropriate in this context because it
can be used to apply a dynamic load to a specimen and to mdastiv¢he impact force and the impact velocity
at the impact point. However, special precautions are requivhen dealing with brittle materials because failure
of these materials occurs at very low strains. It is necggsgparticular to be able to perform highly precise time
shifting procedures to the signals measured [6]. The tessiength of quasi-brittle materialsfidirs considerably
from their compression strength. Several modified set-aps been presented for performing dynamic tensile tests
[7], spalling tests [8] and Brazilian tests [9]. Compresdiests have also been performed under confined conditions
using a pressurized cell [10] or a metal ring [11].

The dynamic three-point bending test is widely used to detez the tensile strength of materials such as quasi-
brittle materials, because it is often easier to apply thisetttensile tests. The idea of performing three-pointen
tests with Hopkinson bar has been mainly applied so far terdene the toughness of notched specimens [12], [13],
[14], [15]. Hopkinson bar tests yield more information tHaharpy tests, and the interpretation of the measurements
is simplified [15] [16]. The three-point bending test can Isedito closely analyse experimental measurements in
order to obtain as much information as possible about thewaphases of the response, including the rupture phase
in particular.

In a general manner, the procedure for processing the dynasponse of a specimen loaded at its midpoint de-
pends on the relationship between the duration of the teBhet as time up to complete failure, and the characteristic
times of the structure. These responses are usefully divide three main types, depending on the test duration.

e Quasi-static response : duration long in comparison wighsthuctural characteristic times.
The reaction of the supports is equal to the half of the imfice. In this case the stresses and strains can be
determined using a classical method. The fracture stresthea be obtained from the force or displacement
measurements. Most toughness tests designed to detehmistéss intensity factor are interpreted under the
assumption that the quasi-static state of equilibrium iglytaking the analytically determined stress field in a
notched specimen [15], [17].

e Dynamic response : duration is short or comparable to the tieeded for a wave to propagate to the specimen
ends and return back to the impact point. This makes it nacgss take the transient motion of the beam into
account.

- If the reaction of the supports is neither zero nor equdi¢dialf of the impact force, we will call this dynamic
response guasi-impulsive responsgnce duration is comparable to the time needed for a waveojpagate

to the specimen ends and return back to the impact point. rénsient response of the test specimen can be
expressed using a model with a single degree of freedom ($[IABF, [19]. To account for the inertia of the
test specimen, the Rayleigh approximation for the eigepfeacy can be used. Since the deformed structure
is assumed to be the same as that defined under static cosditi®e maximum tensile stress and the bending
moment can be expressed in terms of the displacement. Sdimaabhave developed the dynamic response of
the test specimens even further by superposing severalsfadg [21]. In the case of a notched beam with a
short time to fracture subjected to one-point bending teltslatter authors established that the beam model
is not relevant. The response of the specimen was therefodelled using finite element methods [22], [23],
where the eigenmodes were determined using a 2-D modelddyahm [24]. The maintenance of contact and
loss of contact at the supporting points has also been stedjgerimentally in [25].

- If the reaction of the supports remains equal to zero uatitglete fracture, we will call this dynamic response
an impulsive responssince duration is short compared to the time needed for a waysopagate to the
specimen ends and return back to the impact point. This sasetiin the Hopkinson Bar bending test on quasi-
brittle materials which are known to fracture at very lovasgtrlevels and with very little energy dissipation.
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e Spall response : duration comparable to or less than thsitittme through the specimen transverse sizes. In
this case, the superposition of two waves in the specimekrbss, incident compressive pulse and reflected
tensile pulse, sets material in tension and causes damedjadeto spallation [26].

The present study is concentrating on the impulsive respohspecimens of quasi-brittle materials with no
notches [27]. To be able to analyse the results properlyriecessary to perform a transient dynamic analysis on the
structure. The approach proposed in this paper for anajyei interpreting these tests takes into account the fact
that no information is transmitted back from the supporh®impact point before complete fracture occurs.

In section 2, after describing the experimental set-up aselthe specificities of the test, a theoretical modelling
procedure is presented for determining the transientielestponse of the specimen. The novel approach presented
here is applied in section 3 to an example in which an unnottchesy brick specimen was tested and the dynamic
mechanical strength is deduced. In section 4, comparisghsclassical approaches and one dimensional and two-
dimensional finite element simulations are performed. &h@sulations are used to check, on the one hand, the
validity of a one-dimensional beam modelling approach amdhe other hand, the accuracy of the proposed model.
Section 5 is the conclusion where we suggest possible fudsearch.

2. A model for dynamic bending test on quasi-brittle materids interpretation

2.1. The experimental set-up and specificities of the test

A scheme of the set-up used in the present study is shown inlFighe two output (or transmission) bars were
used to support the specimen, and the load was applied viaphé (or incident) bar. The bending test set-up and
the specimen can be seen in the photographs in Fig. 2. The stases in the bars were measured using resistance
gauges. The impact velocity was measured via photoelesiiE: The characteristics of the bars are specified in table
1.

Length of the striker Ly =1.25m

Length of the incident bar Lg = 3m

Diameter of the bars ¢ =40x10°3m
Cross-section of the bars Sg = 12.57x 104 m?
Young’s modulus Eg = 74GPa
Density pg = 2800kg n3
Uniaxial wave celerity =~ Cg =5140ms?
Impedance Zg = 18090kg s

Table 1: Characteristics of the aluminium Hopkinson bars

The characteristics of the specimen tested are specifieabla 2; the Young’s modulus was determined using
guasi-static three-point bending tests and a Poissotisab0.2 was assumed.

Length Ls=22x10?%m
Thickness a=17x10?m
Width b=65%x102m
Young’s modulus E=7GPa
Density p = 1400kg nT3

Distance between supportsL = 20x 102 m

Table 2: Characteristics of the test specimen

The velocityVe(t) and the force=(t) at the contact point between the incident bar and the testisgn were
determined using the following classical formulae [5]:

Ve(t) = —Cs é& () — & (1)) 1)



Fe(t) = -Sg Es (&i(t) + & (1)) 2)
whereg; andeg, are the incident and reflected wave known at the bar-spedimerfiace.

Bending test interpretations are feasible if it is possibleleduce the stresses and strains at fracture from the
experimental measurements (i.e., the impact force andntipadt velocity). It is therefore necessary to have an
appropriate modelling technique, in terms of both time grate, to describe the kinematics of the test specimen and
to assess the internal stresses.

A reference timeTr is introduced, and defined as thffeetive duration of the bending test. This parameter
corresponds to the time elapsing between the beginningeoiintpact and the fracture of the specimen. The force
exerted by the incident bar on the test specimen generatesjgression wave at the impact point, which propagates
through the material. The termitial response of the solivas used to denote the mechanical state induced by the
propagation of the compression waves followed by the tensaves resulting from a reflection at the opposite face of
the specimen. Since these waves propagate at the primaggisalerityCy,, the characteristic duration of this phase
can be taken to be equal to that of the wave propagation attresgidth of the solid:

a

Tr=—
T Cp

3)

With durations longer thaiit, the waves will be reflected andffitacted several times. Then it is reasonable to
assume that the motions can be studied on the scale of ttitusuand that a model for this structure can be used
for this purpose [1]. The configuration of the specimen @&l made it possible to use a beam modelling method.
Under static conditions, beam modelling gives an excebssessment of the stresses and strains when the beam is
elongated, whereas under dynamic conditions, the condititich has to be met focuses on the wavelength of the
transverse motion of the beam. A specimen can be treatedesmadnly if the following two conditions are met:

e the characteristic duration of the process under invetigés suficiently large compared to the time taken by
the wave to propagate across the width of the specimen

¢ the wavelength of these transverse displacemeisttarge enough in comparison with the radius of giration of
the cross section= +/I/S whereS is the cross-sectional area anid the second moment of the cross-sectional
area.

If the duration of the bending te$k is short in comparison with the timE: taken by the motions generated by the
impact to propagate to the specimen ends and return backpacinpoint, there will be no influence of the supports
on the fracture. In this case, we will have the same problethatsinvolving a beam with an infinite length. The
infinite length assumption is based on the fact that no in&tion is transmitted back from the supports before fracture
occurs. A minoration of the tim&c can be obtained considering that the bending waves canopéagate faster than
the primary waves:

L
T — 4
c>Cp (4)

The main characteristics of wave propagation in the spatiane specified in table 3.

Spall characteristic time Tr =72us
Radius of gyration r=49x10°3m
. L L
Support reaction characteristic timeTc > c = 85us.
p

Table 3: Wave propagation characteristics of the test spaTi

The recorded signals shown in Fig. 3 were obtained by peifgradynamic bending test on a baked clay brick.
The change in the reflected wave shape is a clear evidenghdicant physical damage occurs within a very a short
time interval (surrounded area in Fig. 3). This is the mairtipalarity of tests on quasi-brittle materials: the diwat
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of the incident pulsex 500y s), which depends on the length of the striker, easiljises for fracture to occur (these
tests could be carried out with shorter bars and a shortkegtrNo reaction was present in the transmission bars. In
other words, it was as if there were no transmission bars.

2.2. The long beam model for bending test interpretation

Dynamic tests do not consist like quasi-static tests in isimmp a known, controlled force or displacement on
a test specimen. With the SHPB set-up, the loading resuta fitynamic interactions between the test specimen
and the incident bar. The feasibility of the test dependsheneixistence of an impedance match between the bars
and the specimen tested. The relation betwéeand F. (the velocity and the force at the end of the incident bar)
determines the relation between the incident and reflecta@sv( equations (1) and (2)). In bending tests, the elastic
behaviour of the test specimens, which relatg$o Fe, determines the reflection of the incident wave and hence the
loading conditions. The model for the bending can be useéterchine the strength of the material and other intrinsic
characteristics from the experimental data.

To illustrate how an interaction between a bar and a specgerarates a load, a model was specifically developed
to deal with the case of quasi-brittle materials. The frawrwvused for this purpose will be that of a beam subjected
to an impact, which is simulated by a time-dependent poirddd@forceF¢(t) at x = 0). The simplest beam model
was introduced by Bernoulli. In this model for a beam sulgddb bending loads, the distortions resulting from
shear forces are neglected. The cross-sections are alleaesgnd perpendicular to the beam axis; the rotation of a
cross-section is therefore equal to the slope of the defdtmeam (Fig. 4). Under these assumptions, the equation of
motionw(x, t) can be written as follows, neglecting the rotary inertiaot the translation inertia :

4, 2
27\2/+4a4367\2/=0 where éb/‘sz—Sl (5)
In this equationx €]0, 5]. Since we suppose th@ik << T¢, the events occurring in the centre of the beam will not
be influenced by the supports, just as if the beam was of iafiaitgth. The x-range becomes=]0, +oo [ with the
following boundary conditions at the impact point and atféreend of the beam:
3
ZTV:(O’ t) = :TE(? and w(+o0,t) =0 (6)
The impulse response obtained when the impact force is & RirectionF(t) = §(t) was first established by Ditkine
V. and Proudnikov A. [28]. In order to make the best possilde af the experimental data, it is proposed to take a
slightly different problem: that of a long beam, where two boundary cmmditatx = 0, the displacement, and
the forceF,, are known, based on the measurements performed, and weaddegermine the other two, namely
the rotationy(0, t) and the bending momeM (0, t) (see Fig. 5). This new problem takes into account the oleserv
occurence of crack initiation and propagation under theaichpoint. It contains the previous problem as a particular
case {(0,t) = 0) butis more general since it remains valid after the onseffiost centered crack. As a consequence,
it could be used to describe the cracking behaviour of theisg. The relations at the impact point are modified by
cracking as:

ow
&(O’ t) - O >

o°w M(O, t) o*w _ Felt)

w(0, 1) = Ue(t) g—v)f(o,t)w(o’t) ; m(o’t):‘ El Wo’t)‘ZEl 7)

Ue(t) andF(t) are known (measured) functions, ap@, t) andM(0, t) are unknown functions. At the far end of the
beam, we takev(+co, t) = 0 (along with all the corresponding time derivatives).

The transient dynamic elastic response of the test speataee determined from the experimental data (the
details of the application of operational calculus are giveAppendix):

t

t
W(x,t) = fo Gi(t - 7) Qa(x 1) dr — fo (Gl(t—‘r)+G2(t—‘r))Qg(X,‘r)dT ®)
where . V(?) .- @
Gi() = | N dr :nd Go(t) = fo e dr )



1 a? x? 1 a? x?
Q1(x,t) = — cog and Qp(x,t) = — sin 10
10 = = oo 3| 2(x) = = sin( ) (10)
From which the following can be deduced:
e Rotation and bending momentxat 0
t t
_ Ve(7) 1
w(0,t) = —2a i mdr+4Ela2ﬁ Fe(7r)dr (11)
1 ! Fe(7) 2
M(0,t) = — ————dr-2Ela” Vet 12
O0=5, | e - 2E10°V) (12)

o If we take the rotation at the origin to be zero prior to thefuse process, we obtain the following relation for
the interaction imposed at the end of the incident bar betweeforce and the velocity during the elastic phase:

1 ' Fe(r) pS
Ve(t) = — ——=2_dr where n=4Elo® and 4o*="5 13
Oz Jo Wen L El 49
and the relation between the incident and reflected waves:
t 2¢&i(7) 1 1 = t—71
() = &(t) - - e erfc{ —) dr 14
W=s0- [ 0| e 2 - (14)
2 [, _ 21\
where erfct) = — e " dr denotesthe complementary error function and =|—| .
Vi Ji Zg

3. Application of the long beam model to processing experinmeal data

Analysing the results of the test requires, in a first stagletracting the incident and the reflected waves in order
to determine the velocity at the impact point (equation,(@yd then adding these two waves to determine the force
exerted at the same point (equation 2)). Since the stramsnaasured in the middle of the incident bar, a wave
transport has to be expressed in terms of time, taking thpedin into account. The two waves have to be closely
synchronised in order to accurately describe the wholeréegfe. Once the velocity and the force are known at the
impact point, rotation and bending moment are deduced frenetjuations (11) and (12).

3.1. Time shifting of the waves based on an elastic response

In practice, modelling transport time by taking only thetaiges to the specimen faces and the celerity of the
waves into account is not a ficiently accurate approach. In the case of bending testshage of the end of the
input bar can, for exemple, give rise to a lack of accuracye bést way of synchronising the waves is to simulate
the reflection of the incident wave front in order to deterenihe onset of the reflected wave measured. Although
this modelling method has already been applied to commnedssts [6], the long beam model is proposed as an
appropriate one for processing bending tests data. Duhiaditst few instants after the onset of the loading, the
behaviour of the specimen was assumed to remain elastichanelation (14) between the incident and reflected
waves could therefore be used. This relation was used tolaienthe elastic response of the specimen. From the
incident wave measurements, it was possible to computeefleeted wave corresponding to an elastic response of
the specimen and to exactly time the onset of the reflected weasured. The incident and reflected waves measured
and the reflected wave predicted by the elastic responsg tisenrelation (14), all of which were time shifted, are
given in Fig. 6.



3.2. Non dissipative behaviour

Fig. 7a and Fig. 7b give the velocities and forces obtain@thuglations (1) and (2). On the one hand, the wave
measurements recorded during the tests were used and oth#érehand, the incident wave and the reflected wave
measurements corresponding to the elastic response gi¢baren were used. It can be seen from these figures that
whent < 40us, the curves based on the measured signals (time shiftedhase based on the elastic response either
coincided or showed excellent agreement. This result cosfthe assumption that the behaviour of the beam at the
beginning of the test was purely elastic. The onset of a nwali behaviour, which was assumed to be concomitant
with the cracking process, can be seen from the separatitve @urves Tr ~ 40u S). During the elastic phase, from
(12) and taking the relation (13) into account, the bendilogmant is given by:

M(0,1) = — L O RPREPYRE (t) (15)
5 = — T = o
4a Jo r(t-1) °
which yields the maximum through-the-thickness tensiesst
_aM(@Ot) a b Fe(?) N 2
o(0,1) = 51~ 8la f(; T dr = aEa” V(1) (16)
and the maximum through-the-thickness strain rate:
dVv,
o _ o2 0Ve 17
c=aa It a7

It can be noticed that the moment and the maximum tensiless&nee proportional to the velocity at the impact point,
and not to the displacement. It is also worth noting that trersrate depends on the acceleration at the impact point
and not on the velocity. The curves giving the impact velodit as a function of time Fig. 7a can be seen to show a
quasi-linear part during the elastic phase. The strainasgeciated with this phase, which was obtained from relatio
(17) is denoted® and takes the valugf = 250s™! in the reported test. With our experimental set-up, the ritade

of the strain rate applied to quasi-brittle materials rangpically from 20s™ to 500s™.

3.3. Dissipative behaviour

When cracking occurs, the "zero rotation at the origin" ¢to no longer applies. This rotation and the residual
moment can be calculated in the case of partial fractureetffecimen by applying the measurements obtained to
relations (11) and (12). In the tests, cracks occurred uth@empact force. At > Tr = 40us, non linear phenomena
were therefore presumably present only in the central @esion of the specimen.

The information obtained about the evolution of the momeith ¥he crack opening 2, which is shown in Fig.

8, makes it possible:

¢ to detect more closely than in Fig. 7a and Fig. 7b the in@ratf the cracking process, and hence the strength
of the tested material. The elastic phase of the test wascegeghéo correspond to a straight vertical segment,
since the crack opening remains zero, whereas the momemtli®aoncrease;

¢ to define a law governing the relation between the momenttandpening of the crack.

The mechanical strength of the brick material tested in ghisly is presented in table 4. As explained above, the
dynamic values were deduced from the changes with time imtbment (Fig. 8), since in the context of elastic

_ aM : . . . . .
behaviourg = ——. The static value was obtained using a classical threetpeimding test. It can be noticed an
increase of the mechanical strength in the dynamic sitnationpared to the static one.



static dynamic

£  0.005s! 250s!
¢ 7.7MPa 33MPa

Table 4: Mechanical strength of the brick specimen

4. Discussion on the validity of the long beam model

Since the real specimen is a three-dimensional object, wst discuss the validity of a one-dimensional theory
to model accurately the short-time response of the sampglearfrimposed impact in the middle of the beam, there
is a finite time, greater thaé;, during which the smallest wavelength will not return bazktte point of application
of the impulse. The proposed long-beam model is an Eulendelli beam model which predicts an approaching
infinite wave speed for an infinitesimal wavelength. The Tsimenko beam model taking rotary inertia and shear
into account is usually considered as an improvement shnegviive speeds remain bounded. But for a given input
load, the small wavelength components have small ampbtudéth an Euler-bernouilli model, if we cannot say that,
during the studied short-time, some spurious high frequeraves will not be reflected to the impact point, we can
rather suppose that what will be reflected is negligible.é\iaeless this assumption has to be investigated.

A two-dimensional reference numerical elastic solutiomsed to check the legitimacy of using one-dimensional
beam models. The test case is that of a specimen tested toearéonp. Even if dynamic tests using Hopkinson bar
do not consist in imposing a known controlled force on a tpstsnen but results from dynamic interactions between
the test specimen and the end of the incident bar, a unit faroe (i.e.F¢(t) = t) was used. This simple loading was
only chosen because:

e it was suitable for the comparisons between explicit meshadl the finite element simulations;

¢ the finite element simulations were easier to perform thahérreal case where it could be necessary to model
the whole experimental device and not only the specimen;

e it allowed to calculate an analytical solution withff@rent classical models.

The FEM simulations were performed using the finite elemededCast3M developed at the French Atomic Energy
Commission’s Department of Mechanics and Technology (DM9). The simulations were carried out in 2-D situ-
ations, since the results obtained in 3-D simulations withrese mesh were equivalent. The meshing elements used
were quadrilaterals with 8 nodes and a quadratic interjpolatThe simulations were performed under plane strain
state assumptions. Time resolution was performed usingrtpkcit Newmark scheme. In view of the symmetry of
the problem, only half of the specimen was meshed. The meshefiaed up to convergence of the static reference
calculations. The regular meshing procedure adoptedded 7295 nodes and 2340 elements (grid 0k2Q.7). 1-D
simulations were also carried out using Euler-Bernoubirbeelements and Timoshenko beam elements meshed using
the same axial mesh discretisation procedure as above.

To check the improvement over standard approaches, thik obsained by the long beam model was also com-
pared with those predicted by a quasi-static approach, bgdeliing of the beam using a single degree of freedom
system (SDOF) or using a modal superposition method :

e uasi-static state beam model:

The stresses and strains can be written quite simply. Tlaioelbetween the force and the displacement

at the end of the incident bar is:
48E |

L3

Ue = % where ke = (18)

1Cast3M, httpywww-cast3m.cea.fr



and leads to

o(t) = a8—L|t (19)

e SDOF beam model:

The previous model can be improved by taking the inertiaddsrinto account. This model based on Rayleigh’s
method consists in approximating the beam via a single eegfrteedom (SDOF) system, assuming the shape
of the dynamically deformed beam to be similar to that of thagi+static deformed beam.

. 17
MeUe + keUe = Fe  where mezﬁ_)pSL (20)
The interaction relation imposed at the center of the beawedsn the force and the displacement is:
Ue(t) ! ft Fe(7) sin(we(t — 7)) dr  where N ke (22)
= T we(l — 7)) ar We = [—
e nb(l)e 0 e e e rne
and leads to . L Sak L
a . a .
el PO =" [|[t—-= 22
o(t) I (t o sm(wet)) mwiL2 (t o sm(wet)) (22)

e modal superposition analysis:

The motion of the beam is described in this model by supengogbration modes. The interaction relation
imposed at the center of the beam between the force and thlacksent is:

21 t )
Ue(t) = ]; o fo Fe(7) sin(w;(t - 7)) dr (23)
and leads to | ),
_aE 2j-1)7n" _ _ wjt=sin(w;t)
o) = 5 Z = i) where fj = T (24)

j=1 j

e long beam model

Taking into accounE.(t) = t in the expression (16) of the maximum stress leads to:
a

6la+nr

Since the main variable of interest is the mechanical stherwge consider the maximum stress to compare the
different models. The finite element simulations had also gikientime required to obtain a non nil reaction at
the supports¥ 300u s). As assumed in the section 2.1 the duration of analysis Wwaesen shorter than this time
(100u 9).

Results presented in Fig. 9 and in Fig.10 showed:

o(t) = t2 (25)

e a good agreement between both the finite element simulgberisrmed ( 2-D simulation and 1-D simulation
using beam elements), which shows the relevance of using-@iomensional beam model,

e no amelioration produced by the use of a Timoshenko beam Inode
e a good agreement between the long beam model predictiorthasel of the finite element simulations,

e a wrong response of the quasi-static approach what was texpas the approach by a SDOF system in a less
obvious manner a priori,

o fairly satisfactory results for the modal superpositiothwa relatively large number of modes (around thirty).
However it remains less accurate than the long beam model.

From the discussion above, it is clear that the long beam tisdemarkably accurate compared to the two-
dimensional and to classical approaches provided thairtteeresponse studied is short.
9



5. Conclusion

The approach presented in this paper can be used to intédmpnegsults of dynamic bending tests on quasi-brittle
material specimens: this was not possible with the clalssiethods available so far because failure occurs very early
at very low strain levels. The method developed specifidaliythis purpose gives accurate and reliable results. As
in all tests involving SHPB, with which fracture occurs atywéw strains, it is necessary to carefully apply accurate
time shifting methods to the wave measurements. The keyegleaf this approach is the long beam analytical model
used to simulate the transient elastic response of thedtepcimens. The limitations of the method presented here
are due to the assumptions required to obtain the analgbdation, i.e., in this case, those focusing on the dimerssio
of the specimen and the crack initiation time, which fit theussptions of the "long beam model". One of the main
results obtained here was that it is possible with this nattbadetermine accurately the instant at which cracks are
initiated and to define the mechanical strength of a matbgialrawing up a moment versus crack opening curve,
from which it should be possible in the future to predict thergy dissipated when bending failure occurs.

The range of potential applications is wider than what thislg might seem to indicate, since it could include many
geomaterials and construction components. In some of giesgions, a similar approach using a Timoshenko beam
model must be introduced because the distortions resutng shear forces are not neglectible.
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7. Appendix: flexural response of a semi-infinite beam
For the long beam model, the equation of motion is:

*w 4 0?W 4 PS
W+ [ Wzo where 4 :E (26)

The relations at the impact point are supposed to be:

M(0, t) o*w Fe(t)

El a3 %Y= 3E (27)

ow *w
W(O’ t) - Ue(t) > &(O’ t) - l//(o’ t) > W(O’ t) - =
Using the time Laplace transform, the image of the beam mdkiat vanishes at infinity has the following form:
W(x, s) = e X Vs (Rl cosg x V9) + K3 sin(a x \/5)) (28)

We then take the following operators and the correspondimg functions:

_ ~a X /S _ g axVs

Q(x,9) = cos@ex Ve , Qu(x9) = sin(@ x Vs) (29)
\s s
1 a? X2 1 . [a?¥
Qi(x 1) = — Qo(x 1) = — 30
1000 =~ oo )+ @utxt = = sinf 5 (30
The image of the response can also be written with theseifunsct

V_V(X, S) = \/E(R]_ 51 + Kz 52) (31)

After calculating the partial derivatives with respectxtand taking the boundary conditions into account, we obtain

the following expressions: L
W(0, ) = K1 = Ug(9) (32)

(0.9 =@ V8(Ko ~K) = 0.9 (33)

W

o*w M(0, 9)
Ox2

= _2a%sK, =
0,9 a“sK; =
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s —
9 W(o 9 =203 (K1 +Ky) = E(S;) (35)
from which it can be deduced that
R9-Us , Ra9=—Fo T 36
1(9=Te . Ke(9= = --T (36)
In the operational space, the motion is:
W(X, 9) = \/E(Ueﬁl + ( ~Ue+ Fe3 )] Q, where p=4Ela® (37)
182
The transient dynamic elastic response of the test spedaarebe determined from the experimental data. :
t t
w(x,t) = f Ga(t — 1) Qu(x, 7)dr — f (Gl(t 1) + Galt —T))Qz(x, ) dr (38)
0 0
where C v R
Gy = | —=2—d anthzfe—Td 39
0= | s 0= | g9 (39)
From which the following can be deduced:
e Rotation and bending momentxat 0
— in the operational form
— = o Fe(9 = o _  Fe9 Ve(9)
90,9 = a V8(Ke =K = 755 g ~ 20 VU9 = i o~ 20— ¢ (40)
M(©.9) = 2E 1a?sKz = ~2E10? sU(9) + ECNPYI Ve(9) + 22 Fe(9 (41)
2a /s 2a /s
— in the time domain C V) 1 .
0,) = -2 U dr f Fe(r)d 42
MO0 = 20 | —msdre g | el (42)
t
M(0,t) = 1 f ﬂdr—zaazve(t) (43)
2a Jo \n(t-1)
¢ If we take the rotation at the origin to be zero prior to thefuae process, we obtain:
Ka(9) = Ka(9) (44)

and the following relation for the interaction imposed a #nd of the incident bar between the force and the
velocity during the elastic phase:

— in the operational form

1
Ve(s) = Fe(9) (45)
e 77\/_ e
— in the time domain
1 ! Fe(7) 3 4 _ PS
Ve(t) = — ————dr where n=4E|I and 4o 46
O=3,J, Enh i ¢ El (46)
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and the relation between the incident and reflected waves:

— in the operational form

=5 (M) where L(s) = Fel® _ 2n /s (47)
L(s) + Zs Ve(s)
or )
s-1
& =& NI =g 1—; where t¢ = 21 (48)
VTTs+1 VTrs+1 Zs
— in the time domain
' 26i(1) 1 1 t—1
t) = &(t) - - eTferfc( —) d 49
w0=a0- [ 2| = )| o (49)
where erft) = % f e”dr denotes the complementary error function.
w Ji
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Figure 2: Photographs of the bending test set-up, brickisgec
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