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Abstract

In this paper, an iterative method for solving the Cauchybfgm in linear elasticity is introduced. This problem c@tsiin
recovering missing data (displacements and forces) on gmarte of a domain boundary from the knowledge of overspekifie
data (displacements and forces) on the remaining parts. alfogithm reads as a least square fitting of the given datiy, avi
regularization term whosefect fades as the iterations go on. So the algorithm convéogbe solution of the Cauchy problem.
Numerical simulations using the finite element method hggttlthe algorithm’s fiiciency, accuracy, robustness to noisy data as
well as its ability to deblur noisy data.
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1. Introduction namely known as a Cauchy problem and is a data completion
problem. In order to solve Cauchy problems for elliptic equa
Inverse problems arise in many engineering fields such as fd{ons, many regularization methods have been introduckd. T
instance in thermal sciences, electrostatics, solid anifie- ~ references[1,5,8,9, 11,12, 14, 20, 21, 23, 25, 26] propibse d
chanics. Kubo [24] has defined inverse problems in Oppa,sitioferentlmethods of solving the Cauchy problem for the Laplace
to direct problems. Direct problems are problems for whight €duation. References [2, 3, 13, 22, 23, 27, 28, 29, 30, 31, 32,
geometry of the domain, the equilibrium equations, the tens 33. 34, 35, 36, 37, 38, 40, 41] deal with the Cauchy problem in
tutive equations, the boundary conditions on the whole Heun linear elasticity. These methods can be classified as Tixhon
ary of the domain and the initial conditions are all givenr Fo tyPe methods [15, 22, 27, 29, 33, 34, 35, 38, 39, 40, 41],
Kubo, inverse problems can be characterized by the lack of &uasi-reversibility type methods [5, 21, 25, iterativethuels
least one of these pieces of information. According to tes d  [1, 2, 3, 8,9, 11,12, 13, 14, 15, 20, 23, 26, 28, 32, 36, 37],...
inition, many mechanical problems, for example, identtfara Quasi reversibility methods and Tikhonov regularizatiogtim
of material parameters, identification of unknown bouretari 0ds present the advantage of leading to well posed probiems a
(such as contact zones, cavities or cracks), identificasion t€r modifying the equilibrium equations. Some iterativetime
residual stresses, identification of initial boundary dtiads, ~ ©ds are based on the use of a sequence of well-posed problems
identification of inaccessible boundary conditions can dwe-c @nd others on the minimization of an energy-like functional
sidered as inverse problems. Some examples arising fram fraNumerical algorithms are implemented usin@efient numeri-
ture mechanics can be found in [6] and some relating to elass@l methods, such as the finite element method (FEM) [1, 2, 3,
ticity problems in [4]. In a mathematical sense, direct prob 2 8, 9, 11, 13, 27, 38], the boundary element method (BEM)
lems can be considered as well-posed problems. In lineascas [12, 14, 20, 22, 26, 23, 28, 29, 30, 31, 32, 33, 36, 37, 40, 41],
these problems have a unique solution which is stable (@onti the finite diference method [21] or meshless methods [34, 35].
ously dependent on the data). Conversely, inverse proldeens SOMe papers present comparisons betwegerent numerical
generally ill-posed problems in the Hadamard sense [1fgesi Methods [10, 31, 37].
existence or uniqueness or continuous dependence on the d4 Previous works [8, 9, 12] a somewhatfférent resolution
of their solutions may not be ensured. approach was first introduced in [8] for the Cauchy problem
This paper examines an inverse boundary value problem-in Iin""SSOCiated.With the Laplace equation. This approach reduce
ear elasticity. It consists in recovering missing datalffltis-  the resolution of the Cauchy problem to the resolution of a
placement and traction vectoase unknowjion some part of Séquence of optimization problems under equality comgsai
the boundary of a domain from overspecified data (both disThe functional is composed of two terms. At each step of the
placement and traction vectors are given) on the other parfésolution, the first term gives the gap between the optirral e
In this case, the equilibrium equations, the constitutijgae ~ €Ment and the overspecified boundary data (relaxation term)
tions, the domain and its boundary are known. This problem i$h€ second one the gap between the optimal element and the
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previous optimal element (regularization term). The eifypal Itis assumed that both the displacement vector and thédnact
constraints are the equilibrium equations. So, at eachastep vector are given or known on the part of bound&gybut no
optimal element is obtained which is an exact solution to thecondition is prescribed on the remaining part

equilibrium equations and is nearer to the overspecified dat

than the previous optimal element calculated. In the case of u(x) = ¢* x €Ty (5)
compatible data, it was also proved that the sequence ageser p(¥) = y* x €Ty

and its limit is the solution to the Cauchy problem. The addi-
tional regularization term tends to zero as iterationsioomet It

is the reason why this method is called the evanescent regul
ization method.

In this paper, this inverse technique is extended to the Bauc L(u)=0 xeO
problem in linear elasticity. The next section is devoteth® d

formulation of the Cauchy problem in linear elasticity. The u(x) = ¢d xeTq 6)
third section describes the iterative inverse method aed th p() = ¢ x€Tq

fourth section is devoted to its numerical implementatisimg
the finite element method. In the fifth section, several nicaér
simulations are presented.

whereg® andy are prescribed vector functions. The Lamé (or
avier) system (4) and the boundary conditions (5) lead o th
ormulation of the Cauchy problem in linear elasticity:

This problem is dficult to solve, since it is ill-posed. When
it admits a solution, its solution is unique [40], but it isduin
to be very sensitive [17] to small perturbations on boundary
conditions (5).
2. The Cauchy problem in linear elasticity

Let us consider a linear elastic material which occupies ar8. The evanescent regularization method
open sef2 in R? or R®, with a smooth boundarly, assuming
that the boundary is divided in two paitg andI'y, wherel'y U ) )
I'y =T andl’y N T, = @. The subscriptl denotes the data and rium equation (4):
the _s_ub_scripu den_otes the u_nknowns. With no body force, the H(Q) = |v satisfyingL (v) = 0in Q)
equilibrium equations are given by:

Let us introduce the spad#(Q2) of solutions of the equilib-

Next, let us denotél (') the space composed of couples of re-

99 =0 XeQ (1)  strictions onI” of elementsv in H() and of their associated
X tractionsp(v). An equivalent formulation of problem (6) reads:
wherec; is the Cauchystress tensor. This tensor énergy
conjugatedo theinfinitesimalstrain tensok;; by the following { Find U = (u, p) € H(I') suchas: e
constitutive equations: U=®%onTy
Tij = 2 gij + A bij ek (2)  where®? =(¢9, y9).

he problem (7) is also ill-posed even if it admits a unique so
ution. So then an iterative regularizing method is introei
to solve it. This method is a generalization of the inversbte

whereA andu are the Lamé constants. These are related t
Young’s modulu€ and Poisson’s ratie as:

1= vE nique introduced by Cimetiere et al [8, 9] to solve the Cauch
AQ+v)(1-2v) problem for the Laplace equation. It can be considered as an
E iterative Tikhonov-type method. Givem> 0 andU® e H(I")
n= m the iterative algorithm reads:
Thelinear strain tensor conponentg, as function of the dis- Find U**! € H(I') such as :
placement gradientsre given by: JKUM) < JK(V) VYV € H(I) with (8)
1,00 du Ky = |V - o +c|v - U]
5 =3 (5% * ) ®) ; t '
o ] ] ~ where the norms are defined by:
By substituting Hooke’s law (2) into the governing equation
(1), the Lamé equations are obtained: ||V||2 _ f 2 ds+ 1 f o ds
E &u E 82u; e E* Jr,
L@, = ' ~=0 @

T + — - - =
2(1+ V) 6X] 2(1+ V)(l 2V) 6)(| 6XJ ”V”i:fvz ds+éfp2ds
T T

At a pointx € T', n(x) the outward unit normal vector is de- . ) . , .
In this iterative process, the equilibrium equation (4)aken

fined as well as the traction vectpfx) whose components are

defined by: into account exactly since at each step the search for the
' optimal element is performed in spakKI'). The functional
pi(X) = pi(U(X)) = aij(u(x)) nj(x) xeTl is composed of two terms which playfléirent roles. The



first one acts only oy and represents the gap betweenh being the discretization parameter standing for the elémen
the optimal element and the overspecified boundary data. Hize, leading t; nodes andh elements on the boundary, and
relaxes the overspecified data which can be possibly blloyed m nodes inside the domain. L&t be the space of continuous
measurement noises (relaxation term). The second onermacts piecewise linear functions with respect to the mesh, anddet
the whole boundary and not only on the boundafy, where  defineVy(I') and W, (') as the space of continuous piecewise
the boundary conditions are to be completed. This term is &near functions and the space of piecewise constant fomsti
regularization term and controls the distance between ¢ine n on the boundary. Traces of functions belonginy/t¢Q) span
optimal element and the previous optimal element. This ternthe spacé&/y(I'), whereas the associated traction vectors belong
tends to zero as iterations go on. to the spac®\i,(I') of piecewise constant functions. Definibg

So, at each step the optimal element obtained is an exaendP as the 2 vectors standing respectively for tha Bodal
solution of the equilibrium equation (4) and is near to thevalues ofu and the 2 discrete values op on the boundary,
overspecified dat®? =(¢¢ , y%). This unique optimal element andU* the 2n-vector of internal nodal values aof the discrete

U**1 is characterized by: equilibrium equations read as:
Ut @ V) +c(UR— UK V) =0 VvV € H(D) (9) Ai Ay |(U)_(0
< >Fd < >F Aei Aele U - —BP (11)

THEOREM: Convergence of the sequence

Let ®@ be compatible data associated with the compatibléfi is the stifness matrix corresponding to the Dirichlet problem
pair U € H(I). Then the sequence produced by the iterativeand thus is invertible. Expressing the internal unknownsn
scheme (8) strongly convergesds' on Ty and weakly toU,  terms of the boundary onés, i.e performing a condensation,

onT. equation (11) reduces to:
AL AT -
The proof of this theorem is based on the following lemma. (Aee = AeiAj"Ag)U + BP =0 (12)
The matrix form of (12) reads:
LEMMA:
For alln € N, the sequencel¥) corresponding of optimal U
elements verifies: |A B ]( P )= 0 (13)
n _ .
||Un+1 _ Ue”i + Z ”Uk+1 _ Uk”i + The f_lnlte element method_leads to the _deflnltlon of the follow
— ing discrete compatible pairs space which reads:

AN k+1 d||? 0 2 (10)
s - = - 2n 2n
p ;:04 Just - @l = [Ju® - Udl; (U,P) e R?" x R™ such that} w4

Hi(T) = { En(U,P) = AU + BP=0

whereU, is the solution of Cauchy problem (6) add = Uelr,. hereEx d i ing"R R2"
The proof of the lemma and consequently those of the theo"-Vz,?re h denotes a linear operator mappin onto

rem is similar to that established for the algorithm introeld
in [8] to solve the Cauchy problem associated with the Lagplac
equation. This proof is valid for att > 0. Thec value only

. . . th . .
influences the convergence rate of the algorithm. 4.2. Discretization of thék + 1)" iteration

Given nowc > 0 and U, P¥) € Hy(I), iteration K + 1) of

. . ) o the discretized iterative algorithm reads as follows:
4. Theimplementation using the Finite Element M ethod

: _ _ _ N Find U1, P“1) € R™ x R?" such that :
The implementation of the inverse method using the finite JKUML, PRHL) < KV, Q) V(V, Q) € R x R

element method is presented in 2D situations. under the B scalar equality constraint&n(V, Q) = 0

(15)
Problem (15) is a minimization problem R" x R" under the
The first issue in this section is to discretize spHEE). Our  2n equality constraints expressed by (13). Its solution igigiv
main concern has been to make use of any ordinary finite elésy:
ment code, not to work out a specific one. As a matter of fact,

4.1. Discrete solutions space

computations were run usirtast3M! [7] and piecewise linear Initializing with (U% = 0, P° = 0)
finite elements, which means a piecewise constant apprexima | Find (U1, Pkt ak+1) € R x R?" x R* such that :
tion for the traction vector. Let us now discretize the damsj VIKUKL, PRy 4 (k)T VEL (UKL, PRy = 0
Eh(U k+l’ Pk+l) =0
1The FE code Cast3M is developed by the Department of Mechan- Kl - . (16)
ics and Technology (DMT) of the French Atomic Energy Agengef - Whered™ ™ is a In—vector of Lagrange multipliers introduced
DEN/DM2S/SEMT), http/www-cast3m.cea.fr to take the equality constraints (13) into account. Eachiien



in the iterative algorithm needs to solve a system mfi6ear e The sequence defined by the values of the functidriat
equations with 6 unknowns. The matrix of this linear system each optimal elemettX is also monotonically decreasing
is independant of the iterations and needs to be computgd onl  as soon as > O:

once. For this reason, a direct algorithm (the Crout fazéori

tion) has been preferred to iterative methods. The facttida, J(U) < J(UY). (19)
which is obtained at the first step, is also used at each follpw
step. In the last example, the compression of an infinite cylinder b

In the case of compatible data, the proof of the convergehce aween two rigid planes is investigated and shows that tha-ite

the discrete algorithm is similar to that established fert¢br-  tive inverse method allows us to reconstruct the contacezon

responding algorithm used to solve the Cauchy problem fr thand the contact pressure distribution from the knowledgbef

Laplace equation [8]. This proofis valid for all> 0 and thec  displacement on a part of the free force boundary.

value only influences the convergence rate of the algorithm. The procedure used during the numerical simulations islas fo
lows:

5. Numerical results e The meshing of the boundary is made usBEg2 ele-

The purpose of this section is to present numerical results ~ Ments. ThesEG2 element is a finite element with two

obtained with the method introduced. Firstlyffdient cases nodes which leads to a linear interpolation of the displace-
are considered for which an analytical solutig® is known. ments. ThIS induces a piecewise constant interpolation of
These cases have been previously studied, among others, by the traction vector components.

[28, 30, 37].

e The user specifies the meshing of the boundary specifying
the number and the distribution of the finite elements on
each part of the boundary.

The following control quantities are used to estimate thmuac

racy of the method and to determine a stopping criteria fer th

iterative process:

e Then, the mesh of the entire domain is generated automat-
ically by a routine included in the softwa@ast3m [7].

(U -u"?ds This mesh is constituted of 4-node quadrilaterals and 3-

e the norm of the error made an

Uerror r node triangles.
2
fr(uan) ds e The computation and the assembly of théfiséiss matrix
corresponding to the domain is performed thanks to the
e the norm of the error made qn standard routines @fast3m software [7].
P- pan)Z ds e This software creates a superelement based on the bound-
_Jr ary and computes the correspondingfséiss matrix. This
Perror = —f(pa”)z ds leads to the condensedfitiess matrix A.
r

e The stifness matrix A is then used by the specific code
the first term (relaxation term) of the functional that implements the inverse method introduced.

k+ly _ ||y jk+1 d||2
I, (U™) = ”U - ”rd Note that the inverse method only involves values on the Boun
the second term (regularization term) of the functional@’y- Therefore, for the dierent numerical tests only the dis-
(U = ¢ ||Uk+1 - UkHz cretization of the boundady will be specified. Moreover, note
r - r that all numerical computations have been performed on a ma-
and the valud(Uk+1) = Jr (U<*1) + Jr(U*1) of the func-  chine with a 2.20GHz Intél Coré 2 Duo processor T7500.

tional for the optimal elemern<+*.

5.1. Hollow cylinder under internal and external uniformepr

Three properties of the functional terms in the minimizieg s sures: Reconstruction on the inner boundary

quence can be easily established without the assumptidn tha

the data®d is compatible: A two-dimensional isotropic linear elastic medium in a @an

. _ o _ stress state characterized by the material constants97.9
e The f|rs§ term of the functionalr,(U®) is monotonically ~ Gpaandy = 0.34 corresponding to a copper alloy is studied.
decreasing : The annular domaif is defined by:

k+1 d||? K d||2
Jut - @ ”rd <[u-o ”rd 17) Q= {x = (X1, X) /T2 < X+ %5 < rg}
. _ . with ri = Imandrg = 4m.
e The second ondr(U¥) is monotonically decreasing as
soon ag > 0: The boundary pailiy is defined by:

2 1112
”Uk+l - Uk”r = ”Uk - UK l”r (18) Ty = {x = (X1, %) €T/XE + X5 = r(z)}



Iy is discretized usingN finite elementsSEG2. All finite ele-  The value of the parameteiis arbitrarily fixed at OL. Figure 1
ments have the same length and the nodes are uniformly disepresents the evolution offEérent control quantitied(Uk*1),

tributed. The boundary palt, is defined by: er(U"*l), Jr(U**1), Uerror and perror Versus the number of it-
erationsk. We notice from the 130 iteration that the quanti-
I'y= {X = (X1, %) €T/XE + X5 = f.z} ties Uerror, Perror, J(UKHY) and Jr, (UX*1) remain constant. This

) . . o confirms that the method converges. The determination of the
and discretized using a regular mesh whihfinite elements jieration to stop the iterative process is made using the-qua
SEG2. It is used to find the displacement and the pressure Offty J(U**1) whereUK*! is the optimal element obtained at the

Iy, from the knowledge_ of the displacemgnt and the Pressurgc 4 1y step. The evolution of follows an L-curve [18]. As
on I'4q. The data are built using the analytical solution for theexpected from relation (19), the control quantitydecreases
displacements: whenk < 130 and then becomes almost constainenk > 130
and never reincreases. So the iterative process is stappenl

- X; ) ) N

ui(x, %) = [V 1oy Xj —Wli/ ﬁ Xj (20) k = 130. This stopping criterion is blind because when cal-

E E X+ culating the quantityl it does not need to know the analytical

solution. Indeed, it only needs to know two successive ogitim

where .

elements and the data d3. As expected from relation (18),

oor?—oir? oo — o) r2r? we may also notice thalr (regularization term) decreases as
j=1,2;V=—00 ||;W:(0 |)o| (21) y (g )

r2—r2

_ iterations go on. This term becomes negligible comparel to
o~ i

and tends to zero. This proves that the algorithm converses.
with o; = 10GPaandoo = 20GPa, which corresponds to con- expected from relation (17), the residual erdpy (relaxation
stant internal and external pressures for which the stegsot  term) decreases during the iterative process. After coevere

2 2
rg—r

is given by: this term remains constant and corresponds to the apprexima
tion error of the finite element method.

X2 — X5 It can also be observed that the errors in the numericaldrasct
o11(X1, %) =V + Wm obtained perror) Using the iterative method are larger than those

Xlz B Xzz corresponding to the reconstructed displacementg(). This
o2a(Xe, X2) = V — % (22)  last remark is also valid for all the following numerical exa

(X5 + x5)? ples which will be analysed.
0’12(X1, Xz) = 2W2Xl—X222 .
(X +%5) 5.1.2. Influence of parameter ¢

It is necessary to look at the influence of parametenhich
defines the relative weight of the regularization telmcom-
pared to the relaxation terd,. For the same discretization

5.1.1. Stopping criterion

100 ‘ ‘ N as in the previous example fitirent values of the parameter
P Jp are tested. Table 1 lists the results obtained for each \aflue
001 : UEWJ | parametec by specifying the number of iterations necessary
Perror ===+ to achieve convergence, thgyor, the perror and the CPU time.
0.0001 1 The errors oru and p are quite identical for each value of the
1e-06 | parametec. This confirms that the algorithm converges to the
1e-08 |
1e10 | c k Uerror iIN % | Perror iN % | CPU time ins
10. 12810| 3.20E-7 | 4.95E-6 59.93
ledz t 1 1278 | 320E-7 | 4.95E-6 | 8.61
le-14 ¢ \ 1 0.1 130 3.20E-7 | 4.95E-6 3.50
le-16 e 001 20 3.21E-7 | 496E-6 |[3.01
et | | | 0.001 5 3.28E-7 | 4.95E-6 2.95
1 10 100 1000 10000 | 0.0001 | 3 3.29E-7 | 5.05E-6 2.94
k 0.00001| 2 3.36E-7 | 5.22E-6 2.94
Figure 1: evolution of control quantities versus the nundféterationsk Table 1: influence of on the number of iterations to achieve convergence -

influence ofc on theueror and on theperror

In a first step, a reliable stopping criterion is needed tp sto
the iterative process. In the present case, the datBgj@are  same solution whatever the valuemfHowever the choice of
generated from the analytical solution (equations (20)@2%)  the parametec affects the numbek of iterations needed to
and are not blurred by measurement noise. The boundayies obtain convergence. The evolution of the number of iteratio
andT’, are both approximated with 1&EG2 finite elements. necessary to achieve convergence seems to evolve lineignly w

5



cwhere 01 < ¢ < 10. From the evolution of the CPU time with It is necessary to see how the reconstructions are influenced
¢ (or with the number of iteratiorlg) it can be deduced that the when the mesh refinement increases (depending on the number
CPU time taken by each iteration fer> 1 is roughly 44103 of finite elementsN on each boundary). Figure 2 shows the
s. This CPU time is lower than the CPU time taken to achievereconstructions o, of theu, component of the displacement
both the preliminary computations and the first iterationobtainedwith N = 20, N = 80 andN = 160. Figure 3 shows
(roughly 293 s). For a small value o€, the convergence only the corresponding reconstructions of fhecomponent of the
takes a few iterations but th&or increases a little. This may traction vector. Table 2 lists the erraugor and perror for dif-
be explained by the fact that the regularization term becomeferent mesh refinements. It can be observed that the err@lr lev
too weak and induces some instabilities on the reconstmgti  decreases as the mesh refinement increases. This confitms tha
Moreover, it is preferable to have a greater value of thehe inverse method is stable with respect to the mesh refine-
parametec which induces few additional CPU time in order to ment. It can also be observed that reconstruction using 8 sma
have more accurate reconstructions. Subsequently, the gl number of dataN = 20) is also accurate.
¢ and the number of iterations required to achieve convergenclhe reconstructions of the; component of the displacement
will be no longer specified. and of thep; component are not presented because the results
are similar to those obtained for thig andp, components.

i N Uerror In % perror |n %
5.1.3. Influence of mesh refinement 50 T 0SE3 Tos=
40 | 6.38E-6 4.00E-5
03 80 | 2.22E-6 1.95E-5
160 | 3.20E-7 4 96E-6

0.2 |

analytic solution

N=20 Table 2: influence of mesh refinement on theor and on theperror

N=80

N=160
0.1

5.1.4. Reconstruction with noisy displacement dstta

It is necessary to see how the reconstructions are influenced
when data are noisy. The noisy displacement détare gener-
ated by:

Uz
o

-0.1

¢d = ¢gn + 577¢(rjnax (23)
where—1 < n < 1is a random valuej is the noise level in %
03 s s s i andgd ., is the maximal value of the data bB§.
0 0.2 o4, 06 08 1 The first step is to verify that the stopping criterion is|s#-
2n liable when the data are noisy. The boundary pBgtandI’,
are both approximated with 160 finite elements. The value of
parametec is arbitrarily fixed at 1.

-0.2

Figure 2: Reconstruction ab onT

noise level in %| Ugrror iN % | Perror iN %
10000 ‘ ﬁ 0 3.20E-7 4.96E-6
8000 - analytic solution % 1 1.96E-3 8.25E-3
6000 |- N=20 mDvE L 2 6.85E-3 | 2.84E-2
N=160 O i N 3 1.49E-2 6.11E-2
e ¥ ] 5 4.03E-2 | 1.65E-1
2000 R P 10 1.50E-1 5.82E-1
8 o[%EB P g 20 5.05E-1 | 1.79
-2000 Nh m; Table 3: influence of the noise level on thgor and on theperror
-4000 |- T, 3
7
-6000 ND
O i Figure 4 represents the evolution of thé&eiient control quan-
8000 w tities J(U**Y), Jr, (UK*1), Ir(UK*Y), Uerror and Perror Versus the
-10000 gt : number of iteration& when the noise level is at 5%. It can
0 0.2 0.4 0.6 0.8 1

0 be noticed that from the 280teration the quantitie§ and Jr,
remain constant. The iterative process is stopped at thjs st
However if the iterations continue, it can be seen that tfengqu
tities Uerror @ndperror CONtinue to decrease, reaching a minimum

Figure 3: Reconstruction g, onT,
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Figure 4: Evolution of control quantities versus the numifeterationsk

0.3
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Figure 5: Reconstruction ab onT
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Figure 6: Reconstruction g, onT

0.8

at around the 40Diteration and then rising again. The stopping
criterion, defined in section 5.1.1 is still valid becauske#ds

us to choose a stable solution but it does not allow us to aehie
the optimal solution (the closest to the analytical sohitid'he
non monotonicity of the quantiti@gror andperror do NOt cOMe
out from the non compatibility part of the noise (this parttod
noise is deleted because each optimal element must be compat
ible by definition in (8) for the continuous case and in (15) fo
the discrete case) but is due to the fact that the compatitiée d
are dense in the space of all possible data. This compatile p
of the noise probably leads to df#irent solution of thé&', part.

It is the reason why we must stop the iterative process wih th
L-curve criterion.

Figure 5 shows reconstructions oy of the u, component of
the displacement obtained withfi#irent noise levelss(= 2%,

¢ = 5% ands = 10%). Figure 6 gives the corresponding recon-
structions of the componemk. The reconstructions obtained
can be seen to be very accurate. Table 3 lists the errassod

on p for the diferent noise levels considered.

The functional is composed of two terms withfdrent roles.

As in most inverse methods, there is a regularization terimhvh
tends to zero as the iterations go on. But, in the presentadeth
there is also a relaxation term that allows data blurred hgeno
to be taken into account. We therefore seek a solution which
is close to the data but not a solution that exactly fits tha.dat
The algorithm then recomputes, at each step, a solutioneon th
whole boundary. Figure 7 represents the reconstruction of

I'q and the noisy datay used § = 10%). It can be noticed that
the reconstruction corresponds to the analytical soluffdand
that the noise in the data has been deleted by the algorithen. T
regularization terndr is negligible. The residual terthis equal

to the relaxation terndr,. This term correspondsto the distance
onTIy between the deblurred reconstruction and the noisy data.
It can also be noted that the relations (17-19) are also edrifi
when the datayq is noisy. It is not surprising because the in-
equalities were established without assumption on the(flata
instance tha®¢ is compatible).

0.8

0.6

analytic solution
noisy data
reconstruction

X
o]

04

0.2

Uy

-0.2 +

04

-0.6 |-

0.8 I I I I

Figure 7: Noisy data® and reconstruction af; onT'q



5.1.5. Reconstruction with noisy dagé

A similar study has been performed with noisy traction data.

The noisy traction data® are generated by:

'pd =¢gn+ 6U¢Enax

(24)

Figure 8 represents the evolution of th&elient control quan-
tities J(UKHY), JIr, (UXD), Ir(UK*L), Uerror and perror Versus the

number of iteration& when the noise level is 5%.

It can be noticed that from the 4)Qteration the quantitied

andJr, remain constant. The iterative process will be stopped
at this step. The relations (17-19) are once more verified al-
though the datéy is noisy. It is also noticed that the quantities

Uerror @nd Perror reach their minimum at almost the 40@er-
ation then rise again. The stopping criterion chosen ini@ect
5.1.1 is still valid. Figure 9 gives the reconstructions loé t

100

0.01
0.0001 |-
1e-06 |
1e-08 |
1le-10 : : :
1 10 100 1000
k

10000

Figure 8: Evolution of control quantities versus the numifaterationsk

component; of the displacement respectively obtained with
a noise level of 2%, 5% and 10%. Figure 10 gives the corre-

sponding reconstructions @,. The reconstructions obtained

can be seen to be very accurate.

5.2. Square plate under traction

A two-dimensional isotropic linear elastic medium in a @an
stress state characterized by the material constants97.9

GPaandv = 0.34 corresponding to a copper alloy has been

studied. In this situation, the domaihis defined by:
Q={X=(X,X%)/ —1<Xx, %<1
The boundary paliliy = I'; U T'3 is defined by:
I ={x=0M,%)/-1<xg<1lx=-1and
I3={X=(0X,X)/-1<xg<lx=1)

The boundary paif, = I'; U I'4 defined by:

I ={x=(X,%)/x1=1-1<x% <1}and

-~
S5

p2

Figure 10: Reconstruction @b onT
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Ta={x=X,%)/x1=-1-1<x<1)

20000
1}

I'1, 'z, '3 andl’, are discretized using 100 finite elemeSEs?2. SED
Al finite elements have th length and the nod S et aralyic soluton
inite elements have the same length and the nodes are uni- reconSuCion ne roion

formly di.stributed. The analytical solution under consaten 10000 | ‘ F oSt & &
for the displacements reads:

5000 - ‘

1 %
U?n(Xl, X2) = E o0 X1, Ugn(Xl, X2) = —E oo X2 (25) S 0r L:N]DDDDDDDDDD-‘

It corresponds to the uniform traction stress given by: 5000 ‘ ]

-10000

o11(X1, X2) = 00,  022(X1, X2) = 012(X1, X2) = 0 (26) o |
-15000 - <A e
with op = 15GPa Figure 11 gives the reconstructionagfon
the whole boundarly when the displacement daéis exact or -20000 - N 5 3 . S o ; 8
blurred by a noise level of 1% and 5%. Figure 12 gives the cor- Arc length
responding reconstructions pf. The reconstructions obtained
are very accurate and prove the stability of the inverse atkth Figure 12: Reconstruction gf on the whole boundary

with respect to noisy data. On the boundary parsupporting
the data, it can be noted that the computed reconstructiom is

longer noisy. Among others, the reconstructionpoéllow the \

tensile stress applied dn, to be identified.

Uo Uo

0.2
0.15 o

0.1

analytic solution

reconstruction no noise <
reconstruction 1%

reconstruction 5% O

Iy

0.05 -

Uy
o

-0.05

0.1 +

-0.15 |- D\

0.2 s s s s s s s Figure 13: Definition of the domaif:

Arc length

Figure 11: Reconstruction of on the whole boundarly 0.0001

direct method
inverse method %

5.3. Application of the inverse method to a contact problem -0.0001 r

As a final example, a contact problem without friction has
been considered. An elastic cylinder with an infinite lenigth
compressed between two parallel rigid plane supports (Eigu
13). The fact the cylinder has an infinite length justifies a-tw
dimensional study with a plane strain assumption. -0.0004
The response of the elastic medium corresponding to a resin
epoxy (Young’s modulug = 4GPaandy = 0.4) is studied. -0.0005
The compression load is generated by an imposed vertical dis
placementiy = 0.002mof the above support, the lower support -0.0006 073 074 o078 076 077
standing still. The cylinder has a radiRs= 0.1 m. o
A numerical reference solution is determined using a stan-
dard finite element method. The FEM computing code used is ~ Figure 14: Reconstruction of on half of the boundary paft,
Cast3m [7]. The boundary mesh used has 360 non-uniformly

9

-0.0002

Uz inm

-0.0003




highlighted the #iciency, accuracy and robustness of the in-

0.12
verse method to noisy data as well as its ability to deblusyoi
01r direct method data.
 \verse method X For all analysed situations, it can be observed that theseimo
0.08 1 X \ 1 the numerical tractions obtained using the iterative me:the
¥ * \ larger than those corresponding to the reconstructedatispl
008 T j " 1 ments. For the Cauchy problem associated with the Laplace
= 00 - x| ’i | equation, a first order method was introduced [11, 14] inorde
| * to improve the reconstruction of the normal derivativeslsb
002 L x| | % | gave accurate reconstructions when the boundaryIpanad
- x | | %, corners. An extension to the Cauchy problem in linear elégti
Y T —— % W could be useful to improve thefiiency of the inverse method
Xy et presented in this paper when boundary singularities occur.
-0.02 o : : :

Figure 15: Reconstruction g on half of the boundary paft,
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distributed nodes, the density being higher onlth@art (120
uniformly distributed nodes) correspondinggm)f I.

The boundary paity corresponds t(g of I and is distributed
on both sides of both contact areas (Figure 13). Noticing tha
Iy is a free edge of the cylinder, giver is zero. Datap is
the restriction tdy of the numerical solution obtained by the
standard finite element method described above. Figuresdl4 a 3)
15 compare reconstructions of the vertical displacerogand
the vertical nodal forcep, on half of the boundar¥ with the
numerical solution obtained by the finite element methode Th [4

(1]

(2]

reconstruction of the displacement (Figure 14) obtainegite 5]
accurate and allows to identify a posteriori the extensaditise
contact zones. The reconstruction of the nodal force ([Eid6) ]

is less accurate and gives with a relative precision the maixi
value of the contact pressure distribution. At the end of the 7
boundary part’, some instabilities appear in the reconstruction

of the vertical nodal forces. -

6. Conclusion (9]

This paper introduces an iterative method for solving thgqj
Cauchy problem in linear elasticity. This problem consists
recovering missing informations (displacements and &roe

. [11]

some part of a boundary domain from the knowledge of over:
specified data (displacements and forces) on the remaiairig p
This approach reduced the resolution of the Cauchy proldem t[12]
the resolution of a sequence of optimization problems under
equality constraints. The algorithm reads as a least sditare [13]
ting. The functional is composed of two terms. The first is a
relaxation term which represents the gap between the optima
element and the overspecified boundary data. The second id4]
regularization term which represents the gap between ttie op
mal element and the previous optimal element. At each step, t [15]
optimal element obtained is an exact solution of the equilib
equations and is near to the overspecified data. The regadar
tion term vanishes when iterations go on.
Numerical simulations using the finite element method have

10

i [16]

References

S. Andrieux, T.N. Baranger, A. Ben Abda, Solving Cauchigtpems by
minimizing an energy-like functional, Inverse Problem®, 006), 115-
133.

S. Andrieux, T.N. Baranger, An energy error-based metfuo the reso-
lution of the Cauchy problem in 3D linear elasticity, Comgrukiethods
in Applied Mechanics and Engineering, 197,(2008), 902-920

T.N. Baranger, S. Andrieux , An optimization approach fiee Cauchy
problem in linear elasticity, Structural and Multidisgity Optimization,
35,(2008),141-152.

] M. Bonnet, A. Constantinescu, Inverse problems in agt Inverse

Problems, 21,(2005), R1-R50.

L. Bourgeois, A mixed formulation of quasi-reversibjlito solve the
Cauchy problem for the Laplace equation, Inverse Probl@hg2005),
1087-1104.

H.D. Bui, Fracture mechanics. Inverse problems and t8wig, Springer,
Dordrecht, 2006.

CASTEM 2000 (1998) Code de calcul pour I'analyse de dtnes par la
méthode des élements finis. Guide d'utilisation. Consanist I'Energie
Atomique, DENDM2S/SEMT/LM2S, F-91191 Gif-sur-Yvette, France.
A. Cimetiere, F. Delvare, F. Pons, Une methode inverse aegularisa-
tion evanescente, C.R. Acad. Sci. Paris Tome llb, 328,(R@3D-644.
A. Cimetiere, F. Delvare, M. Jaoua, F. Pons, Solutiorhef€auchy prob-
lem using iterated Tikhonov regularisation, Inverse Reoisd, 17, (2001),
553-570.

A. Cimetiere, F. Delvare, M. Jaoua, F. Pons, An inversinethod for
harmonic functions reconstruction, International Jouahdhermal Sci-
ences,41, (2002),509-516.

A. Cimetiere, F. Delvare, F. Pons, Une methode inveteedce un pour
les problémes de complétion de données. Comptes Renduaariifue,
333 (2005), 123-126.

F. Delvare, A. Cimetiere, F. Pons, An iterative bourydalement method
for Cauchy inverse problems. Computational Mechanics(Z#8)2), 291-
302.

F. Delvare, J.L. Hanus, Completion de donnees par ndetlioverse en
elasticite lineaire lineaire, 7eme Colloque National erc@ade Struc-
tures, 17-20 mai 2005, Giens, France, 2005.

F. Delvare, A. Cimetiere, A first order method for the Clay problem for
the Laplace equation using BEM, Computational Mechanits (2008),
789-796.

H.W. Engl, M. Hanke, A. Neubauer, Regularization oférse Problems.
Kluwer Academic Publications, Boston. 1996.

P. Feissel, O. Allix, Modified constitutive relation rer identifica-
tion strategy for transient dynamics with corrupted datée Elastic
case, Computer Methods in Applied Mechanics and Engingdra®,
(2007),1968-1983.



(17]
(18]
[19]

(20]

[21]

[22]

(23]

[24]
(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

J. Hadamard, Lectures on Cauchy’s problem in lineatigdatifferential
equations. Yale University Press, New Haven, 1923.

P.C. Hansen, Analysis of discrete ill-posed problemsneans of the L-
curve,SIAM Review,34,(1992),561-580.

K.L. Johnson, Contact mechanics. Cambridge UniverBitess, Cam-
bridge, 1985.

M. Jourhmane, D. Lesnic, N. S. Mera. Relaxation procesldior an iter-
ative algorithm for solving the cauchy problem for the lagla@quation.
Engineering analysis with boundary elements, 28, (20(B5;655.

M. V. Klibanov and F. Santosa. A computational quasersibility
method for Cauchy problems for Laplace’s equation. SIAMrdaliof
Applied Mathematics, 51,(1991), 1653-1675.

T. Koya, W.C. Yeih, T. Mura, An inverse problem in elady with par-
tially overspecified boundary conditions. Il. Numericatalks. Transac-
tions of the ASME. Journal of Applied Mechanics 60,(199%)1&06.
V.A. Kozlov, V.G. Maz'ya, A.V. Fomin, An iterative metid for solving
the Cauchy problem for elliptic equations, Comput. Methiddsh. Phys.,
31, (1991), 45-52.

S. Kubo, Inverse problems related to the mechanics mautiure of solids
and structures. JSME International Journal Series |, 38g), 157-166.
R. Lattes and J. L. Lions. Methode de quasi-reverséiit applications.
Dunod, Paris, 1967.

D. Lesnic, L. Elliot, D. B. Ingham. An iterative boundeelement method
for solving the Cauchy problem for the Laplace equationggigering
analysis with boundary elements, 20, (1997), 123-133.

A. Maniatty, N. Zabaras,K. Stelson, Finite elementlgsia of some elas-
ticity problems. Journal of Engineering Mechanics DiwisidSCE, 115,
(1989), 1302- 1316.

L. Marin, L. Elliott, D.B. Ingham, D. Lesnic, Boundaryeznent method
for the Cauchy problem in linear elasticity, Engineeringalysis with
Boundary Elements 25, (2001), 783-793.

L. Marin, D. Lesnic, Regularized boundary element solu for an in-
verse boundary value problem in linear elasticity, Comroations in Nu-
merical Methods in Engineering 18, (2002), 817-825.

L. Marin, D. Lesnic, Boundary element solution for thau€hy problem
in linear elasticity using singular value decompositiomn@uter Meth-
ods in Applied Mechanics and Engineering 191, (2002), 32570.

L. Marin, L. Elliott, D.B. Ingham, D. Lesnic, Boundaryleenent regu-
larization methods for solving the Cauchy problem in linetasticity,
Inverse Problems in Engineering, 10, (2002), 335-357.

L. Marin, D.N. Hao , D. Lesnic, Conjugate gradient-bdary element
method for the Cauchy problem in elasticity, Quarterly daliof Me-
chanics and Applied Mathematics 55, (2002), 227-247.

L. Marin, D. Lesnic, BEM first-order regularization nhetd in linear elas-
ticity for boundary identification, Computer Methods in Aiggl Mechan-
ics and Engineering, 192, (2003), 2059-2071.

L. Marin, D. Lesnic. The method of fundamental solusdor the Cauchy
problem in two-dimensional linear elasticity, Internatid Journal of
Solids and Structures, 41, (2004), 3425-3438.

L. Marin, A meshless method for solving the Cauchy peoblin three-
dimensional elastostatics, Computers and Mathemati¢sAgplications
50, (2005), 73- 92.

L. Marin, D. Lesnic. Boundary element-Landweber methior the
Cauchy problem in linear elasticity, IMA Journal of Applidththematics
18, (2005), 817- 825.

L. Marin, The minimal error method for the Cauchy prahlén linear
elasticity. Numerical implementation for two-dimensibhamogeneous
isotropic linear elasticity, International Journal of fsland Structures,
46, (2009), 957-974.

D. Schnur, N. Zabaras, Finite element solution of tvimehsional elastic
problems using spatial smoothing. International JourpalNumerical
Methods in Engineering 30, (1990), 57-75.

A. N. Tikhonov and V. Y. Arsenin. Solution of ill-posedgblems. John
Wiley and Sons, New York, 1977.

W.C. Yeih, T. Koya, T. Mura, An inverse problem in elady with par-
tially overspecified boundary conditions. I. Theoreticapeach, Trans-
actions of the ASME Journal of Applied Mechanics 60,(19835-600.
N. Zabaras, V. Morellas, D. Schnur, Spatially reguad solution of in-
verse elasticity problems using the BEM. Communicationg\plied
Numerical Methods, 5, (1989), 547-553.

11



