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Abstract

In this paper, an iterative method for solving the Cauchy problem in linear elasticity is introduced. This problem consists in
recovering missing data (displacements and forces) on someparts of a domain boundary from the knowledge of overspecified
data (displacements and forces) on the remaining parts. Thealgorithm reads as a least square fitting of the given data, with a
regularization term whose effect fades as the iterations go on. So the algorithm convergesto the solution of the Cauchy problem.
Numerical simulations using the finite element method highlight the algorithm’s efficiency, accuracy, robustness to noisy data as
well as its ability to deblur noisy data.
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1. Introduction

Inverse problems arise in many engineering fields such as for
instance in thermal sciences, electrostatics, solid and fluid me-
chanics. Kubo [24] has defined inverse problems in opposition
to direct problems. Direct problems are problems for which the
geometry of the domain, the equilibrium equations, the consti-
tutive equations, the boundary conditions on the whole bound-
ary of the domain and the initial conditions are all given. For
Kubo, inverse problems can be characterized by the lack of at
least one of these pieces of information. According to this def-
inition, many mechanical problems, for example, identification
of material parameters, identification of unknown boundaries
(such as contact zones, cavities or cracks), identificationof
residual stresses, identification of initial boundary conditions,
identification of inaccessible boundary conditions can be con-
sidered as inverse problems. Some examples arising from frac-
ture mechanics can be found in [6] and some relating to elas-
ticity problems in [4]. In a mathematical sense, direct prob-
lems can be considered as well-posed problems. In linear cases,
these problems have a unique solution which is stable (continu-
ously dependent on the data). Conversely, inverse problemsare
generally ill-posed problems in the Hadamard sense [17], since
existence or uniqueness or continuous dependence on the data
of their solutions may not be ensured.
This paper examines an inverse boundary value problem in lin-
ear elasticity. It consists in recovering missing data (both dis-
placement and traction vectorsare unknown) on some part of
the boundary of a domain from overspecified data (both dis-
placement and traction vectors are given) on the other part.
In this case, the equilibrium equations, the constitutive equa-
tions, the domain and its boundary are known. This problem is

namely known as a Cauchy problem and is a data completion
problem. In order to solve Cauchy problems for elliptic equa-
tions, many regularization methods have been introduced. The
references [1, 5, 8, 9, 11, 12, 14, 20, 21, 23, 25, 26] propose dif-
ferent methods of solving the Cauchy problem for the Laplace
equation. References [2, 3, 13, 22, 23, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 40, 41] deal with the Cauchy problem in
linear elasticity. These methods can be classified as Tikhonov
type methods [15, 22, 27, 29, 33, 34, 35, 38, 39, 40, 41],
quasi-reversibility type methods [5, 21, 25], iterative methods
[1, 2, 3, 8, 9, 11, 12, 13, 14, 15, 20, 23, 26, 28, 32, 36, 37],...
Quasi reversibility methods and Tikhonov regularization meth-
ods present the advantage of leading to well posed problems af-
ter modifying the equilibrium equations. Some iterative meth-
ods are based on the use of a sequence of well-posed problems
and others on the minimization of an energy-like functional.
Numerical algorithms are implemented using different numeri-
cal methods, such as the finite element method (FEM) [1, 2, 3,
5, 8, 9, 11, 13, 27, 38], the boundary element method (BEM)
[12, 14, 20, 22, 26, 23, 28, 29, 30, 31, 32, 33, 36, 37, 40, 41],
the finite difference method [21] or meshless methods [34, 35].
Some papers present comparisons between different numerical
methods [10, 31, 37].
In previous works [8, 9, 12] a somewhat different resolution
approach was first introduced in [8] for the Cauchy problem
associated with the Laplace equation. This approach reduced
the resolution of the Cauchy problem to the resolution of a
sequence of optimization problems under equality constraints.
The functional is composed of two terms. At each step of the
resolution, the first term gives the gap between the optimal el-
ement and the overspecified boundary data (relaxation term),
the second one the gap between the optimal element and the
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previous optimal element (regularization term). The equality
constraints are the equilibrium equations. So, at each stepan
optimal element is obtained which is an exact solution to the
equilibrium equations and is nearer to the overspecified data
than the previous optimal element calculated. In the case of
compatible data, it was also proved that the sequence converges
and its limit is the solution to the Cauchy problem. The addi-
tional regularization term tends to zero as iterations continue. It
is the reason why this method is called the evanescent regular-
ization method.
In this paper, this inverse technique is extended to the Cauchy
problem in linear elasticity. The next section is devoted tothe
formulation of the Cauchy problem in linear elasticity. The
third section describes the iterative inverse method and the
fourth section is devoted to its numerical implementation using
the finite element method. In the fifth section, several numerical
simulations are presented.

2. The Cauchy problem in linear elasticity

Let us consider a linear elastic material which occupies an
open setΩ in IR2 or IR3, with a smooth boundaryΓ, assuming
that the boundary is divided in two partsΓd andΓu, whereΓd ∪

Γu = Γ andΓd ∩ Γu = Ø. The subscriptd denotes the data and
the subscriptu denotes the unknowns. With no body force, the
equilibrium equations are given by:

∂σi j (x)

∂x j
= 0 x ∈ Ω (1)

whereσi j is the Cauchystress tensor. This tensor isenergy
conjugatedto theinfinitesimalstrain tensorεi j by the following
constitutive equations:

σi j = 2µ εi j + λ δi j εkk (2)

whereλ andµ are the Lamé constants. These are related to
Young’s modulusE and Poisson’s ratioν as:

λ =
νE

(1+ ν) (1− 2ν)

µ =
E

2 (1+ ν)

The linearstrain tensor conponentsεi j , as function of the dis-
placement gradients, are given by:

εi j =
1
2

(∂u j

∂xi
+
∂ui

∂x j

)

(3)

By substituting Hooke’s law (2) into the governing equations
(1), the Lamé equations are obtained:

[

L(u)
]

i =
E

2(1+ ν)
∂2ui

∂x2
j

+
E

2(1+ ν)(1− 2ν)

∂2u j

∂xi ∂x j
= 0 (4)

At a point x ∈ Γ, n(x) the outward unit normal vector is de-
fined as well as the traction vectorp(x) whose components are
defined by:

pi(x) = pi
(

u(x)
)

= σi j
(

u(x)
)

n j(x) x ∈ Γ

It is assumed that both the displacement vector and the traction
vector are given or known on the part of boundaryΓd but no
condition is prescribed on the remaining partΓu:

u(x) = φd x ∈ Γd

p(x) = ψd x ∈ Γd
(5)

whereφd andψd are prescribed vector functions. The Lamé (or
Navier) system (4) and the boundary conditions (5) lead to the
formulation of the Cauchy problem in linear elasticity:























L(u) = 0 x ∈ Ω

u(x) = φd x ∈ Γd

p(x) = ψd x ∈ Γd

(6)

This problem is difficult to solve, since it is ill-posed. When
it admits a solution, its solution is unique [40], but it is known
to be very sensitive [17] to small perturbations on boundary
conditions (5).

3. The evanescent regularization method

Let us introduce the spaceH(Ω) of solutions of the equilib-
rium equation (4):

H(Ω) =
{

v satisfyingL(v) = 0 in Ω
}

Next, let us denoteH(Γ) the space composed of couples of re-
strictions onΓ of elementsv in H(Ω) and of their associated
tractionsp(v). An equivalent formulation of problem (6) reads:

{

Find U = (u, p) ∈ H(Γ) such as :
U = Φd onΓd

(7)

whereΦd =(φd , ψd).
The problem (7) is also ill-posed even if it admits a unique so-
lution. So then an iterative regularizing method is introduced
to solve it. This method is a generalization of the inverse tech-
nique introduced by Cimetière et al [8, 9] to solve the Cauchy
problem for the Laplace equation. It can be considered as an
iterative Tikhonov-type method. Givenc > 0 andU0 ∈ H(Γ)
the iterative algorithm reads:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Find Uk+1 ∈ H(Γ) such as :
Jk

c(Uk+1) ≤ Jk
c(V) ∀V ∈ H(Γ) with

Jk
c(V) =

∥

∥

∥V −Φd
∥

∥

∥

2

Γd
+ c

∥

∥

∥V − Uk
∥

∥

∥

2

Γ

(8)

where the norms are defined by:

∥

∥

∥V
∥

∥

∥

2

Γd
=

∫

Γd

v2 ds+
1
E2

∫

Γd

p2 ds

∥

∥

∥V
∥

∥

∥

2

Γ
=

∫

Γ

v2 ds+
1
E2

∫

Γ

p2 ds

In this iterative process, the equilibrium equation (4) is taken
into account exactly since at each step the search for the
optimal element is performed in spaceH(Γ). The functional
is composed of two terms which play different roles. The
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first one acts only onΓd and represents the gap between
the optimal element and the overspecified boundary data. It
relaxes the overspecified data which can be possibly blurredby
measurement noises (relaxation term). The second one acts on
the whole boundaryΓ and not only on the boundaryΓu where
the boundary conditions are to be completed. This term is a
regularization term and controls the distance between the new
optimal element and the previous optimal element. This term
tends to zero as iterations go on.
So, at each step the optimal element obtained is an exact
solution of the equilibrium equation (4) and is near to the
overspecified dataΦd =(φd , ψd). This unique optimal element
Uk+1 is characterized by:

〈

Uk+1 −Φd,V
〉

Γd
+ c

〈

Uk+1 − Uk,V
〉

Γ
= 0 ∀V ∈ H(Γ) (9)

T: Convergence of the sequence
Let Φd be compatible data associated with the compatible
pair Ue ∈ H(Γ). Then the sequence produced by the iterative
scheme (8) strongly converges toΦd on Γd and weakly toUe

onΓ.

The proof of this theorem is based on the following lemma.

L:
For all n ∈ IN, the sequence (Uk) corresponding of optimal
elements verifies:

∥

∥

∥Un+1 − Ue

∥

∥

∥

2

Γ
+

n
∑

k=0

∥

∥

∥Uk+1 − Uk
∥

∥

∥

2

Γ
+

2
c

n
∑

k=0

∥

∥

∥Uk+1 −Φd
∥

∥

∥

2

Γd
=

∥

∥

∥U0 − Ue

∥

∥

∥

2

Γ

(10)

whereUe is the solution of Cauchy problem (6) andΦd = Ue|Γd.
The proof of the lemma and consequently those of the theo-
rem is similar to that established for the algorithm introduced
in [8] to solve the Cauchy problem associated with the Laplace
equation. This proof is valid for allc > 0. Thec value only
influences the convergence rate of the algorithm.

4. The implementation using the Finite Element Method

The implementation of the inverse method using the finite
element method is presented in 2D situations.

4.1. Discrete solutions space

The first issue in this section is to discretize spaceH(Γ). Our
main concern has been to make use of any ordinary finite ele-
ment code, not to work out a specific one. As a matter of fact,
computations were run usingCast3M1 [7] and piecewise linear
finite elements, which means a piecewise constant approxima-
tion for the traction vector. Let us now discretize the domainΩ,

1The FE code Cast3M is developed by the Department of Mechan-
ics and Technology (DMT) of the French Atomic Energy Agency (CEA -
DEN/DM2S/SEMT), http://www-cast3m.cea.fr

h being the discretization parameter standing for the element
size, leading ton nodes andn elements on the boundary, and
m nodes inside the domain. LetVh be the space of continuous
piecewise linear functions with respect to the mesh, and letus
defineVh(Γ) andWh(Γ) as the space of continuous piecewise
linear functions and the space of piecewise constant functions
on the boundary. Traces of functions belonging toVh(Ω) span
the spaceVh(Γ), whereas the associated traction vectors belong
to the spaceWh(Γ) of piecewise constant functions. DefiningU
andP as the 2n vectors standing respectively for the 2n nodal
values ofu and the 2n discrete values ofp on the boundary,
andU∗ the 2m-vector of internal nodal values ofu, the discrete
equilibrium equations read as:

[

Aii AT
ei

Aei Aee

] (

U∗

U

)

=

(

0
−BP

)

(11)

Aii is the stiffness matrix corresponding to the Dirichlet problem
and thus is invertible. Expressing the internal unknownsU∗ in
terms of the boundary onesU, i.e performing a condensation,
equation (11) reduces to:

( Aee − Aei A
−1
ii AT

ei ) U + B P = 0 (12)

The matrix form of (12) reads:

[

A B
]

(

U
P

)

= 0 (13)

The finite element method leads to the definition of the follow-
ing discrete compatible pairs space which reads:

Hh(Γ) =















(U,P) ∈ IR2n × IR2n such that

Eh(U,P) = AU + BP= 0















(14)

whereEh denotes a linear operator mapping IR2n × IR2n onto
IR2n.

4.2. Discretization of the(k+ 1)th iteration

Given nowc > 0 and (Uk,Pk) ∈ Hh(Γ), iteration (k + 1) of
the discretized iterative algorithm reads as follows:

∣

∣

∣

∣

∣

∣

∣

∣

∣

Find (Uk+1,Pk+1) ∈ IR2n × IR2n such that :
Jk

c
(

Uk+1,Pk+1) ≤ Jk
c(V,Q) ∀(V,Q) ∈ IR2n × IR2n

under the 2n scalar equality constraintsEh(V,Q) = 0
(15)

Problem (15) is a minimization problem inR2n × R2n under the
2n equality constraints expressed by (13). Its solution is given
by:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Initializing with (U0 = 0 , P0 = 0)
Find

(

Uk+1,Pk+1, λk+1) ∈ IR2n × IR2n × IR2n such that :

∇Jk
c
(

Uk+1,Pk+1) +
(

λk+1)T ∇Eh
(

Uk+1,Pk+1) = 0

Eh
(

Uk+1,Pk+1) = 0
(16)

whereλk+1 is a 2n−vector of Lagrange multipliers introduced
to take the equality constraints (13) into account. Each iteration
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in the iterative algorithm needs to solve a system of 6n linear
equations with 6n unknowns. The matrix of this linear system
is independant of the iterations and needs to be computed only
once. For this reason, a direct algorithm (the Crout factoriza-
tion) has been preferred to iterative methods. The factorization,
which is obtained at the first step, is also used at each following
step.
In the case of compatible data, the proof of the convergence of
the discrete algorithm is similar to that established for the cor-
responding algorithm used to solve the Cauchy problem for the
Laplace equation [8]. This proof is valid for allc > 0 and thec
value only influences the convergence rate of the algorithm.

5. Numerical results

The purpose of this section is to present numerical results
obtained with the method introduced. Firstly, different cases
are considered for which an analytical solutionuan is known.
These cases have been previously studied, among others, by
[28, 30, 37].
The following control quantities are used to estimate the accu-
racy of the method and to determine a stopping criteria for the
iterative process:

• the norm of the error made onu:

uerror =

∫

Γ

(

U − uan)2 ds
∫

Γ

(

uan)2 ds

• the norm of the error made onp:

perror =

∫

Γ

(

P− pan)2 ds
∫

Γ

(

pan)2 ds

• the first term (relaxation term) of the functional
JΓd(U

k+1) =
∥

∥

∥Uk+1 −Φd
∥

∥

∥

2

Γd

• the second term (regularization term) of the functional

JΓ(Uk+1) = c
∥

∥

∥Uk+1 − Uk
∥

∥

∥

2

Γ

• and the valueJ(Uk+1) = JΓd(U
k+1)+ JΓ(Uk+1) of the func-

tional for the optimal elementUk+1.

Three properties of the functional terms in the minimizing se-
quence can be easily established without the assumption that
the dataΦd is compatible:

• The first term of the functionalJΓd(U
k) is monotonically

decreasing :
∥

∥

∥Uk+1 −Φd
∥

∥

∥

2

Γd
≤

∥

∥

∥Uk −Φd
∥

∥

∥

2

Γd
(17)

• The second oneJΓ(Uk) is monotonically decreasing as
soon asc > 0:

∥

∥

∥Uk+1 − Uk
∥

∥

∥

2

Γ
≤

∥

∥

∥Uk − Uk−1
∥

∥

∥

2

Γ
(18)

• The sequence defined by the values of the functionalJ for
each optimal elementUk is also monotonically decreasing
as soon asc > 0:

J(Uk+1) ≤ J(Uk). (19)

In the last example, the compression of an infinite cylinder be-
tween two rigid planes is investigated and shows that the itera-
tive inverse method allows us to reconstruct the contact zones
and the contact pressure distribution from the knowledge ofthe
displacement on a part of the free force boundary.
The procedure used during the numerical simulations is as fol-
lows:

• The meshing of the boundary is made usingSEG2 ele-
ments. TheSEG2 element is a finite element with two
nodes which leads to a linear interpolation of the displace-
ments. This induces a piecewise constant interpolation of
the traction vector components.

• The user specifies the meshing of the boundary specifying
the number and the distribution of the finite elements on
each part of the boundary.

• Then, the mesh of the entire domain is generated automat-
ically by a routine included in the softwareCast3m [7].
This mesh is constituted of 4-node quadrilaterals and 3-
node triangles.

• The computation and the assembly of the stiffness matrix
corresponding to the domain is performed thanks to the
standard routines ofCast3m software [7].

• This software creates a superelement based on the bound-
ary and computes the corresponding stiffness matrix. This
leads to the condensed stiffness matrix A.

• The stiffness matrix A is then used by the specific code
that implements the inverse method introduced.

Note that the inverse method only involves values on the bound-
ary. Therefore, for the different numerical tests only the dis-
cretization of the boundaryΓ will be specified. Moreover, note
that all numerical computations have been performed on a ma-
chine with a 2.20GHz Intelr CoreT M 2 Duo processor T7500.

5.1. Hollow cylinder under internal and external uniform pres-
sures: Reconstruction on the inner boundary

A two-dimensional isotropic linear elastic medium in a plane
stress state characterized by the material constantsE = 97.9
GPaandν = 0.34 corresponding to a copper alloy is studied.
The annular domainΩ is defined by:

Ω =
{

x = (x1, x2) / r2
i < x2

1 + x2
2 < r2

0

}

with r i = 1mandr0 = 4m.

The boundary partΓd is defined by:

Γd =
{

x = (x1, x2) ∈ Γ/x2
1 + x2

2 = r2
0

}
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Γd is discretized usingN finite elementsSEG2. All finite ele-
ments have the same length and the nodes are uniformly dis-
tributed. The boundary partΓu is defined by:

Γu =
{

x = (x1, x2) ∈ Γ/x2
1 + x2

2 = r2
i

}

and discretized using a regular mesh withN finite elements
SEG2. It is used to find the displacement and the pressure on
Γu, from the knowledge of the displacement and the pressure
on Γd. The data are built using the analytical solution for the
displacements:

uan
j (x1, x2) =

(

V
1− ν

E
x j −W

1+ ν
E

x j

x2
1 + x2

2

)

x j (20)

where

j = 1, 2; V = −
σ0 r2

0 − σi r2
i

r2
0 − r2

i

; W =
(σ0 − σi) r2

0 r2
i

r2
0 − r2

i

(21)

with σi = 10GPaandσ0 = 20GPa, which corresponds to con-
stant internal and external pressures for which the stress tensor
is given by:

σ11(x1, x2) = V +W
x2

1 − x2
2

(x2
1 + x2

2)2

σ22(x1, x2) = V −W
x2

1 − x2
2

(x2
1 + x2

2)2

σ12(x1, x2) = 2W
x1x2

(x2
1 + x2

2)2
.

(22)

5.1.1. Stopping criterion
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Figure 1: evolution of control quantities versus the numberof iterationsk

In a first step, a reliable stopping criterion is needed to stop
the iterative process. In the present case, the data onΓd are
generated from the analytical solution (equations (20) and(22))
and are not blurred by measurement noise. The boundariesΓd

andΓu are both approximated with 160SEG2 finite elements.

The value of the parameterc is arbitrarily fixed at 0.1. Figure 1
represents the evolution of different control quantitiesJ(Uk+1),
JΓd(U

k+1), JΓ(Uk+1), uerror and perror versus the number of it-
erationsk. We notice from the 130th iteration that the quanti-
tiesuerror, perror, J(Uk+1) andJΓd(U

k+1) remain constant. This
confirms that the method converges. The determination of the
iteration to stop the iterative process is made using the quan-
tity J(Uk+1) whereUk+1 is the optimal element obtained at the
(k + 1)th step. The evolution ofJ follows an L-curve [18]. As
expected from relation (19), the control quantityJ decreases
whenk < 130 and then becomes almost constantwhenk > 130
and never reincreases. So the iterative process is stoppedwhen
k = 130. This stopping criterion is blind because when cal-
culating the quantityJ it does not need to know the analytical
solution. Indeed, it only needs to know two successive optimal
elements and the data onΓd. As expected from relation (18),
we may also notice thatJΓ (regularization term) decreases as
iterations go on. This term becomes negligible compared toJΓd

and tends to zero. This proves that the algorithm converges.As
expected from relation (17), the residual errorJΓd (relaxation
term) decreases during the iterative process. After convergence
this term remains constant and corresponds to the approxima-
tion error of the finite element method.
It can also be observed that the errors in the numerical tractions
obtained (perror) using the iterative method are larger than those
corresponding to the reconstructed displacements (uerror). This
last remark is also valid for all the following numerical exam-
ples which will be analysed.

5.1.2. Influence of parameter c
It is necessary to look at the influence of parameterc which

defines the relative weight of the regularization termJΓ com-
pared to the relaxation termJΓd. For the same discretization
as in the previous example, different values of the parameterc
are tested. Table 1 lists the results obtained for each valueof
parameterc by specifying the number of iterations necessary
to achieve convergence, theuerror, theperror and the CPU time.
The errors onu and p are quite identical for each value of the
parameterc. This confirms that the algorithm converges to the

c k uerror in % perror in % CPU time ins
10. 12810 3.20E-7 4.95E-6 59.93
1. 1278 3.20E-7 4.95E-6 8.61
0.1 130 3.20E-7 4.95E-6 3.50
0.01 20 3.21E-7 4.96E-6 3.01
0.001 5 3.28E-7 4.95E-6 2.95
0.0001 3 3.29E-7 5.05E-6 2.94
0.00001 2 3.36E-7 5.22E-6 2.94

Table 1: influence ofc on the number of iterationsk to achieve convergence -
influence ofc on theuerror and on theperror

same solution whatever the value ofc. However the choice of
the parameterc affects the numberk of iterations needed to
obtain convergence. The evolution of the number of iterations
necessary to achieve convergence seems to evolve linearly with
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c where 0.1 < c < 10. From the evolution of the CPU time with
c (or with the number of iterationsk) it can be deduced that the
CPU time taken by each iteration fork > 1 is roughly 4.4 10−3

s. This CPU time is lower than the CPU time taken to achieve
both the preliminary computations and the first iteration
(roughly 2.93 s). For a small value ofc, the convergence only
takes a few iterations but theperror increases a little. This may
be explained by the fact that the regularization term becomes
too weak and induces some instabilities on the reconstructions.
Moreover, it is preferable to have a greater value of the
parameterc which induces few additional CPU time in order to
have more accurate reconstructions. Subsequently, the value of
c and the number of iterations required to achieve convergence
will be no longer specified.

5.1.3. Influence of mesh refinement

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  0.2  0.4  0.6  0.8  1

analytic solution
N=20
N=80

N=160

u 2

θ
2π

Figure 2: Reconstruction ofu2 onΓu
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Figure 3: Reconstruction ofp2 onΓu

It is necessary to see how the reconstructions are influenced
when the mesh refinement increases (depending on the number
of finite elementsN on each boundary). Figure 2 shows the
reconstructions onΓu of theu2 component of the displacement
obtainedwith N = 20, N = 80 andN = 160. Figure 3 shows
the corresponding reconstructions of thep2 component of the
traction vector. Table 2 lists the errorsuerror andperror for dif-
ferent mesh refinements. It can be observed that the error level
decreases as the mesh refinement increases. This confirms that
the inverse method is stable with respect to the mesh refine-
ment. It can also be observed that reconstruction using a small
number of data (N = 20) is also accurate.
The reconstructions of theu1 component of the displacement
and of thep1 component are not presented because the results
are similar to those obtained for theu2 andp2 components.

N uerror in % perror in %
20 1.05E-3 1.72E-2
40 6.38E-6 4.00E-5
80 2.22E-6 1.95E-5
160 3.20E-7 4.96E-6

Table 2: influence of mesh refinement on theuerror and on theperror

5.1.4. Reconstruction with noisy displacement dataφd

It is necessary to see how the reconstructions are influenced
when data are noisy. The noisy displacement dataφd are gener-
ated by:

φd = φd
an+ δ η φd

max (23)

where−1 ≤ η ≤ 1 is a random value,δ is the noise level in %
andφd

max is the maximal value of the data ofΓd.
The first step is to verify that the stopping criterion is still re-
liable when the data are noisy. The boundary partsΓd andΓu

are both approximated with 160 finite elements. The value of
parameterc is arbitrarily fixed at 1.

noise level in % uerror in % perror in %
0 3.20E-7 4.96E-6
1 1.96E-3 8.25E-3
2 6.85E-3 2.84E-2
3 1.49E-2 6.11E-2
5 4.03E-2 1.65E-1
10 1.50E-1 5.82E-1
20 5.05E-1 1.79

Table 3: influence of the noise level on theuerror and on theperror

Figure 4 represents the evolution of the different control quan-
tities J(Uk+1), JΓd(U

k+1), JΓ(Uk+1), uerror and perror versus the
number of iterationsk when the noise level is at 5%. It can
be noticed that from the 200th iteration the quantitiesJ andJΓd

remain constant. The iterative process is stopped at this step.
However if the iterations continue, it can be seen that the quan-
titiesuerror andperror continue to decrease, reaching a minimum
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Figure 4: Evolution of control quantities versus the numberof iterationsk
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at around the 400th iteration and then rising again. The stopping
criterion, defined in section 5.1.1 is still valid because itleads
us to choose a stable solution but it does not allow us to achieve
the optimal solution (the closest to the analytical solution). The
non monotonicity of the quantitiesuerror andperror do not come
out from the non compatibility part of the noise (this part ofthe
noise is deleted because each optimal element must be compat-
ible by definition in (8) for the continuous case and in (15) for
the discrete case) but is due to the fact that the compatible data
are dense in the space of all possible data. This compatible part
of the noise probably leads to a different solution of theΓu part.
It is the reason why we must stop the iterative process with the
L-curve criterion.
Figure 5 shows reconstructions onΓu of the u2 component of
the displacement obtained with different noise levels (δ = 2%,
δ = 5% andδ = 10%). Figure 6 gives the corresponding recon-
structions of the componentp2. The reconstructions obtained
can be seen to be very accurate. Table 3 lists the errors onu and
on p for the different noise levels considered.
The functional is composed of two terms with different roles.
As in most inverse methods, there is a regularization term which
tends to zero as the iterations go on. But, in the present method,
there is also a relaxation term that allows data blurred by noise
to be taken into account. We therefore seek a solution which
is close to the data but not a solution that exactly fits the data.
The algorithm then recomputes, at each step, a solution on the
whole boundary. Figure 7 represents the reconstruction ofu1 on
Γd and the noisy dataφd used (δ = 10%). It can be noticed that
the reconstruction corresponds to the analytical solutionuan

1 and
that the noise in the data has been deleted by the algorithm. The
regularization termJΓ is negligible. The residual termJ is equal
to the relaxation termJΓd. This term corresponds to the distance
onΓd between the deblurred reconstruction and the noisy data.
It can also be noted that the relations (17-19) are also verified
when the dataφd is noisy. It is not surprising because the in-
equalities were established without assumption on the data(for
instance thatΦd is compatible).
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Figure 7: Noisy dataφd and reconstruction ofu1 onΓd

7



5.1.5. Reconstruction with noisy dataψd

A similar study has been performed with noisy traction data.
The noisy traction dataψd are generated by:

ψd = ψd
an + δ η ψd

max (24)

Figure 8 represents the evolution of the different control quan-
tities J(Uk+1), JΓd(U

k+1), JΓ(Uk+1), uerror and perror versus the
number of iterationsk when the noise level is 5%.
It can be noticed that from the 400th iteration the quantitiesJ
andJΓd remain constant. The iterative process will be stopped
at this step. The relations (17-19) are once more verified al-
though the dataψd is noisy. It is also noticed that the quantities
uerror and perror reach their minimum at almost the 400th iter-
ation then rise again. The stopping criterion chosen in section
5.1.1 is still valid. Figure 9 gives the reconstructions of the
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Figure 8: Evolution of control quantities versus the numberof iterationsk

componentu1 of the displacement respectively obtained with
a noise level of 2%, 5% and 10%. Figure 10 gives the corre-
sponding reconstructions ofp2. The reconstructions obtained
can be seen to be very accurate.

5.2. Square plate under traction

A two-dimensional isotropic linear elastic medium in a plane
stress state characterized by the material constantsE = 97.9
GPa andν = 0.34 corresponding to a copper alloy has been
studied. In this situation, the domainΩ is defined by:

Ω = {x = (x1, x2)/ − 1 < x1, x2 < 1}

The boundary partΓd = Γ1 ∪ Γ3 is defined by:

Γ1 = {x = (x1, x2)/ − 1 < x1 < 1, x2 = −1} and

Γ3 = {x = (x1, x2)/ − 1 < x1 < 1, x2 = 1}

The boundary partΓu = Γ2 ∪ Γ4 defined by:

Γ2 = {x = (x1, x2)/x1 = 1,−1 < x2 < 1} and
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Γ4 = {x = (x1, x2)/x1 = −1,−1 < x2 < 1}

Γ1, Γ2, Γ3 andΓ4 are discretized using 100 finite elementsSEG2.
All finite elements have the same length and the nodes are uni-
formly distributed. The analytical solution under consideration
for the displacements reads:

uan
1 (x1, x2) =

1
E
σ0 x1, uan

2 (x1, x2) = −
ν

E
σ0 x2 (25)

It corresponds to the uniform traction stress given by:

σ11(x1, x2) = σ0, σ22(x1, x2) = σ12(x1, x2) = 0 (26)

with σ0 = 15GPa. Figure 11 gives the reconstructions ofu1 on
the whole boundaryΓwhen the displacement dataφd is exact or
blurred by a noise level of 1% and 5%. Figure 12 gives the cor-
responding reconstructions ofp1. The reconstructions obtained
are very accurate and prove the stability of the inverse method
with respect to noisy data. On the boundary partΓd supporting
the data, it can be noted that the computed reconstruction isno
longer noisy. Among others, the reconstructions ofp1 allow the
tensile stress applied onΓu to be identified.
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Figure 11: Reconstruction ofu1 on the whole boundaryΓ

5.3. Application of the inverse method to a contact problem

As a final example, a contact problem without friction has
been considered. An elastic cylinder with an infinite lengthis
compressed between two parallel rigid plane supports (Figure
13). The fact the cylinder has an infinite length justifies a two-
dimensional study with a plane strain assumption.
The response of the elastic medium corresponding to a resin
epoxy (Young’s modulusE = 4GPa andν = 0.4) is studied.
The compression load is generated by an imposed vertical dis-
placementu0 = 0.002mof the above support, the lower support
standing still. The cylinder has a radiusR= 0.1m.
A numerical reference solution is determined using a stan-
dard finite element method. The FEM computing code used is
Cast3m [7]. The boundary mesh used has 360 non-uniformly
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Figure 12: Reconstruction ofp1 on the whole boundaryΓ
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Figure 13: Definition of the domainΩ
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distributed nodes, the density being higher on theΓu part (120
uniformly distributed nodes) corresponding to1

8 of Γ.
The boundary partΓd corresponds to89 of Γ and is distributed

on both sides of both contact areas (Figure 13). Noticing that
Γd is a free edge of the cylinder, givenψd is zero. Dataφd is
the restriction toΓd of the numerical solution obtained by the
standard finite element method described above. Figures 14 and
15 compare reconstructions of the vertical displacementu2 and
the vertical nodal forcesp2 on half of the boundaryΓ with the
numerical solution obtained by the finite element method. The
reconstruction of the displacement (Figure 14) obtained isquite
accurate and allows to identify a posteriori the extensionsof the
contact zones. The reconstruction of the nodal force (Figure 15)
is less accurate and gives with a relative precision the maximal
value of the contact pressure distribution. At the end of the
boundary partΓu some instabilities appear in the reconstruction
of the vertical nodal forces.

6. Conclusion

This paper introduces an iterative method for solving the
Cauchy problem in linear elasticity. This problem consistsin
recovering missing informations (displacements and forces) on
some part of a boundary domain from the knowledge of over-
specified data (displacements and forces) on the remaining part.
This approach reduced the resolution of the Cauchy problem to
the resolution of a sequence of optimization problems under
equality constraints. The algorithm reads as a least squarefit-
ting. The functional is composed of two terms. The first is a
relaxation term which represents the gap between the optimal
element and the overspecified boundary data. The second is a
regularization term which represents the gap between the opti-
mal element and the previous optimal element. At each step, the
optimal element obtained is an exact solution of the equilibrium
equations and is near to the overspecified data. The regulariza-
tion term vanishes when iterations go on.
Numerical simulations using the finite element method have

highlighted the efficiency, accuracy and robustness of the in-
verse method to noisy data as well as its ability to deblur noisy
data.
For all analysed situations, it can be observed that the errors in
the numerical tractions obtained using the iterative method are
larger than those corresponding to the reconstructed displace-
ments. For the Cauchy problem associated with the Laplace
equation, a first order method was introduced [11, 14] in order
to improve the reconstruction of the normal derivatives. Italso
gave accurate reconstructions when the boundary partΓu had
corners. An extension to the Cauchy problem in linear elasticity
could be useful to improve the efficiency of the inverse method
presented in this paper when boundary singularities occur.
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