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Abstract The purpose is to propose an improved method
for inverse boundary value problems. This method is pre-
sented on a model problem. It introduces a higher order prob-
lem. BEM numerical simulations highlight the efficiency,
the improved accuracy, the robustness to noisy data of this
new approach, as well as its ability to deblur noisy data.
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1 Introduction

The purpose is to propose an improved method using bound-
ary element method (BEM) to solve Cauchy inverse prob-
lems. These problems are called data completion problems.
They consist in recovering data on a part of the boundary
given the partial differential equation within the domain and
overspecified data available on the remaining part of the boun-
dary. This kind of problems arises in many engineering fields
like thermal problems, electrostatic or elastostatic ones.
For convenience, we will present the new method in the
framework of a model problem: the Cauchy problem for the
Laplace equation. Other methods exist to solve this prob-
lem. The main methods are Tikhonov like methods, [8], [11],
[17], [18], quasi reversibility methods [3], [9], [13], [15],
and iterative methods [1], [12], [14], [16]. Quasi reversibility
methods and Tikhonov regularization methods present the
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avantage to lead to well-posed problems after modifying the
partial derivative operator. The iterative methods, where the
number of iterations acts as a regularization parameter, are
based on the use of a sequence of well-posed problems.
In previous works [4],[6] we have presented a somewhat dif-
ferent resolution approach for the Cauchy problem for the
Laplace equation. This approach was introduced in [4] and
reduces to the resolution of a sequence of optimization prob-
lems under equality constraints. The functional is composed
of two terms. The first one represents the gap between the
optimal element and the overspecified data, the second one
the gap between the optimal element and the previous opti-
mal element (regularization term). The equality constraints
characterize the equilibrium. So, we obtain at each step an
optimal element which is an exact equilibrium and is near
to the overprescribed data. In case of compatible data, we
have also proved that the sequence limit is the solution of
the Cauchy problem.
This method was numerically implemented using both the
finite element method [4] and the boundary element method
[6]. We obtained the same results in both situations, accu-
racy and robutness features especially for the function.
In order to improve the reconstruction of the normal deriva-
tives, reduce the extension of the boundary part where over-
specified data are given and deblur noisy normal derivatives
data, we have introduced [5] a higher order method which
will be called first order method.
This paper is devoted to the numerical implementation of
the first order method using BEM. The efficiency of the pro-
posed method, as well as its robustness and ability to deblur
noisy data will be highlighted.

2 The first order method

2.1 The Cauchy problem for the Laplace equation

The presentation of the method is carried out for the model
problem (1), where Ω is a two-dimensional bounded domain
and ∆ denotes the Laplacian operator. On the part Γd of the
boundary Γ = ∂ Ω , overspecified boundary conditions are
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given. The aim is to calculate u and its normal derivative
denoted by u′ on Γu = Γ \Γd .






∆u = 0 in Ω
u = φd on Γd
u′ = ψd on Γd

(1)

The problem (1) admits a unique solution when the data φd
and ψd are compatible, but its solution is very sensitive to
small data perturbations, since Cauchy inverse problems are
ill-posed problems [10].

2.2 The first order problem

In order to improve the reconstruction of u′, we introduce
the following first order method:


























∆u = 0, ∆u1 = 0, ∆u2 = 0 in Ω
u′ = u1n1 +u2n2 on Γ
∫

Γ
(u1n1 +u2n2)ds = 0

u = φd , u1 = φ1d , u2 = φ2d on Γd
u′ = ψd , u′1 = ψ1d , u′2 = ψ2d on Γd

(2)

where n1 and n2 are the outward normal components.
The first order method is associated with the problem (2).
The expressions of the additional data (φ1d ,φ2d , ψ1d and ψ2d )
are related to φd and ψd by (3):










φ1d = ψdn1 −
dφd

ds
n2, φ2d = ψdn2 +

dφd

ds
n1

ψ1d = −
dφ2d

ds
, ψ2d =

dφ1d

ds

(3)

When the data φd and ψd are compatible and the solution u
is sufficiently regular, all the data of the problem (2) are also
compatible. Then u is the solution of the problem (1) and u1
and u2 are respectively the two partial derivatives of u.

2.3 Equivalent formulation for the first order problem

We rewrite the problem (2) distinguishing the equilibrium
equations (4)
{ ∆u = 0, ∆u1 = 0, ∆u2 = 0 in Ω

∫

Γ
(u1n1 +u2n2)ds = 0 (4)

and the boundary conditions (5)






u = φd , u1 = φ1d , u2 = φ2d on Γd
u′ = ψd , u′1 = ψ1d , u′2 = ψ2d on Γd
u′ = u1n1 +u2n2 on Γ

(5)

Given Φd = (φd ,φ1d ,φ2d ,ψd ,ψ1d , ψ2d), an equivalent for-
mulation for (2) is given by (6), where H(Γ ) is a space of
traces of functions satisfying (4).






Find U = (u,u1,u2,u′,u′1,u
′
2) ∈ H(Γ ) such that :

U = Φd on Γd
u′ = u1n1 +u2n2 on Γ

(6)

The problem (2) and its reformulation (6) are ill-posed prob-
lems in Hadamard’s sense.

2.4 The iterative regularizing algorithm

In order to solve the ill-posed problem (6), we introduce the
iterative regularizing algorithm (7):


























Let us consider c > 0 and U 0 ∈ H(Γ )
Find Uk+1 ∈ H(Γ ) such that :
Jk

c (U
k+1) ≤ Jk

c (V ) ∀V ∈ H(Γ ) with :
Jk

c (V ) = ||v′− (v1n1 + v2n2)||
2
− 1

2 ,Γ
+||V −Φd||

2
Γd

+ c||V −Uk||2Γ

(7)

It is based on the same idea as the algorithm proposed in [6].
The ill-posed problem (2) is replaced by a sequence of well-
posed optimization problems in H(Γ ). In order to remove
instabilities, the last term is introduced. It is a control term
on the whole boundary Γ . The optimal elements obtained at
each step are solutions of the equilibrium equations (4).
When the data (φd ,ψd) are compatible, it is also proved that
this iterative process converges for all U 0 in H(Γ ) and for
all c > 0. The first component of the limit is associated with
the solution of problem (1). The proof is similar to the one
carried out in [6].

3 BEM implementation and numerical simulations

3.1 BEM discretization of the iterative algorithm

3.1.1 The boundary element method

The boundary element method [2] is used to discretize the
iterative algorithm (7) and specially to obtain a discrete rep-
resentation of the H(Γ ) space.
By using the usual fundamental solution of the Laplace equa-
tion and Green’s identities then the governing partial differ-
ential equation ∆u = 0 is transformed into the following in-
tegral equation [2]:

η(x)u(x) =

∫

Γ
(G(x,y)

∂ u(y)
∂ n

−u(y)
∂ G(x,y)

∂ n
)dΓy (8)

where η(x) = 1 if x ∈ Ω and η(x) = 1
2 if x ∈ Γ (smooth),

and G is the fundamental solution of the Laplace equation
which in two dimensions is given by

G(x,y) = −
1

2π
ln(r), r2 = (x1 − y1)

2 +(x2 − y2)
2 (9)

In practice the boundary integral equation cannot be solved
analytically and thus some form of numerical approximation
is needed. Generically, if the boundary Γ is discretized into
N boundary elements and the boundary integral equation is
applied at the midpoint of each element, then a system of N
linear algebraic equations is obtained in the form

AU +BU ′ = 0 (10)

where A and B are matrices which only depend on the ge-
ometry of the boundary and the vectors U and U ′ are re-
spectively the discretized values of the function and its nor-
mal derivative, which are assumed to be constant over each
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boundary element and take their values at the midpoint of
each element.

Expression (10) represents a system of N linear algebraic
equations with 2N unknowns.

3.1.2 Discrete representation of the space H(Γ )

The boundary element method leads to the definition of Hh(Γ ),
the H(Γ ) discretization. Hh(Γ ) reads as follows:

Hh(Γ ) =



















Ψ = (U,U1,U2,U ′,U ′
1,U

′
2) ∈ R6N :

AU +BU ′ = 0
AU1 +BU ′

1 = 0
AU2 +BU ′

2 = 0
NT

1 U1 +NT
2 U2 = 0



















(11)

where U1,U2, U ′
1 and U ′

2 are respectively the discretized val-
ues of u1 and u2 and their normal derivatives and where
N1,N2 are the discretized values of the unit normal compo-
nents over each boundary element.
Expression (11) represents a system of 3N + 1 linear alge-
braic equations with 6N unknowns.

3.1.3 Discretization of the iterative algorithm

In the discrete case, the equivalence of the norms in finite
dimension makes it possible to replace the H− 1

2 (Γ ) norm
by the L2(Γ ) norm. We also take in all situations U0 = 0 as
initialization. The parameter c value influences only the con-
vergence rate. For non-noisy data, one takes a value c = 10−4

and for noisy data, a value c = 1. In all cases, the algorithm
converges in less than 100 iterations.

Description of one step
A discrete formulation of the continuous iterative process
(7) reads as follows:
{

Find Ψ k+1 ∈ Hh(Γ ) such that :
Jk

hc(Ψ
k+1) ≤ Jk

hc(Ψ ) ∀Ψ ∈ Hh(Γ )
(12)

This optimization problem is equivalent to the following op-
timization process under equality constraints:


































Find Ψ k+1 ∈ R6N such that :
Jk

hc(Ψ
k+1) ≤ Jk

hc(Ψ) ∀Ψ ∈ R6N

under the equality constraints :
AU +BU ′ = 0
AU1 +BU ′

1 = 0
AU2 +BU ′

2 = 0
NT

1 U1 +NT
2 U2 = 0

(13)

We introduce a 3N +1 vector of Lagrange multipliers to take
into account the 3N + 1 equality constraints. Each iteration
in the algorithm needs to solve a system of 9N + 1 linear
algebraic equations with 9N +1 unknowns.

Some comments and remarks
The obtained matrix is symmetric. It is the same for each
step of the iterative process and so needs to be computed
and decomposed by a Crout factorization only once. From
the second step of the algorithm, only actualization of the
second member is needed.
The computational time for the first step of the algorithm
(computation of different matrices, Crout decomposition) is
equivalent to the time needed for three hundred additional
iterations.
The stopping test is based on a comparison between two suc-
cessive optimal elements.

3.2 Evaluation of additional data

The evaluation of additional data by the use of the relations
(3) needs differentiations of the data φd and ψd . First it is
proceeded to an interpolation by B-splines of these data [7].
Then the differentiations are obtained by the analytical dif-
ferentiation of the B-splines. For further details, the reader
can see the description of the computational algorithm (fig-
ure 1). This is a way to obtain additional data but we have al-
ready used quadratic regression to compute differentiations
and obtained similar results [5].
The input data for the inversion algorithm are on one hand
the data φd and ψd and on the other hand the generated ad-
ditional data φ1d , φ2d , ψ1d and ψ2d . It can be noticed that the
interpolated functions φd and ψd of the data are only used to
evaluate differentiations of the given data.

3.3 Numerical simulations

This section is devoted to compare numerical results ob-
tained by the proposed method (first order method) to whose
obtained by the inverse method introduced (so called previ-
ous method) in [6].
The function u to be recovered is defined by:

u(x,y) = cos(x)cosh(y)+ sin(x)sinh(y).

3.3.1 Smooth boundary

In this section, numerical simulations are performed on the
domain Ω which is the disk with radius 1

2 centered at point
( 1

2 , 1
2 ). In the whole section, the boundary mesh is a regular

one.

Behaviour with respect to boundary mesh
In this section, half of the boundary carries prescribed data.
Figure 2 (respectively Figure 3) displays L2 errors on u (re-
spectively on its normal derivative u′) obtained by our pre-
vious method [6] and by the first order method, with re-
spect to the number of boundary elements. We can notice
that the first order method is stable with respect to bound-
ary mesh as the previous method. But the first order method
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Analytic differentiation
Use of relations (3)
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ds
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ds

φ2d

φ2d

dφ2d

ds

ψd

ψd

ψ1d ψ2d

Fig. 1 Computational algorithm for additionnal data evaluations

is more accurate. Errors obtained on function (respectively
normal derivative) reconstructions are roughly five (respec-
tively ten) times less.

Behaviour with respect to Γd boundary extension
In this section, we introduce the ratio ρ between the mea-
sures of Γd and Γ . The number of boundary elements is fixed
to 180. Figure 4 (respectively Figure 5) displays L2 errors on
u (respectively on its normal derivative u′) obtained by our
previous method [6] and by the first order method with re-
spect to the ratio ρ . We can notice that the first order method
is again more accurate than the previous method. As a con-
sequence, the Γd extension can be reduced by the use of the
first order method.
Figure 6 (respectively Figure 7) gives the function (respec-
tively its normal derivative) reconstructions for ρ = 1

4 using
the previous method and the first order one.
We can notice that the normal derivative reconstruction (Fig-
ure 7) is improved by the first order method. This reconstruc-
tion is as accurate as the function reconstruction (Figure 6)
obtained by the previous method.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  100  200  300  400  500  600

E
rr

or

Boundary elements

previous method
first order method
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boundary mesh
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Fig. 8 φd noisy data (10%)

Behaviour with respect to noisy data
In this section, we discuss the numerical stability of the algo-
rithm to noisy data. Half of the boundary carries prescribed
data, the mesh is a 180 elements regular one. For each case,
the noise is a random one whose amplitude is equal to 10%
of the data maximum value on the boundary.
Firstly, we look at the algorithm stability when the data φd
is noisy. Figure 8 gives the noisy data used by the algorithm.
Figures 9 and 10 give the function and its normal derivative
reconstruction.
We can notice that the algorithm by recomputing informa-
tions on Γd is able to deblur the noisy data φd . It also gives
accurate reconstructions and is stable.
Secondly, we look at the algorithm stability when the data
ψd is noisy. Figure 11 gives the noisy data used by the al-
gorithm. Figures 12 and 13 give the function and its normal
derivative reconstruction.
We can notice that the first order method, by opposition to
the previous one [6], is also able to deblur the noisy data ψd .
The deblurring effect of the first order method does not rely
on the use of the interpolation by B-Splines for generating
the additional data. The justification comes from the follow-
ing points:

– The zero order method (previous method) already de-
blurred the field data φd but not the flux data ψd ,

– The first order method behaves roughly like three zero
order methods for the evaluation of u and its two partial
derivatives u1 and u2. So it deblurs φd , φ1d and φ2d data
and therefore the flux data ψd .

3.3.2 Non smooth boundary

Numerical simulations are now performed on a square do-
main (Ω =]0,1[×]0,1[). The Γd boundary part is composed
of two sides (y = 0 and x = 1) (Figure 14). The boundary
mesh is a regular one with 120 elements on each side.
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Fig. 16 u′ reconstructions (previous and first order method)

Comparison with other methods
This example was already studied by our previous method
[6], a Tikhonov like method [11] and an iterative method
[16] which all gave similar results. Figure 15 (respectively
Figure 16) compares function (respectively normal deriva-
tives) reconstructions obtained with one of these methods
[6] and with the first order method. We can notice improved
reconstructions by the first order method.

Behaviour with respect to noisy data φd and ψd
We look at the algorithm stability when the φd and ψd data
are both noisy. Figure 17 and Figure 18 give the function and
its normal derivative reconstruction in this case and show the
efficiency and the stability of this new approach. In particu-
lar, it is stable with respect to perturbations on the data (1%
noise level).

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2  2.5  3  3.5  4

u

curvilign abscissa

analytic solution
reconstruction

Fig. 17 u first method reconstruction (noisy data φd and ψd (1%))
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Fig. 18 u′ first method reconstruction (noisy data φd and ψd (1%))

4 Conclusion

A new method has been introduced for Cauchy inverse prob-
lems. This method has been carried out for a model problem.
It has introduced a higher order problem which has been nu-
merically implemented using BEM.
Although this new method requires a computational time
approximately nine times greater than that of the previous
method, the presented numerical simulations prove the ef-
ficiency, the accuracy and the robustness of the method as
well as the following properties:

– It reconstructs the function like its normal derivative with
an increased precision,

– It allows us to reduce the extension of the boundary part
Γd where prescribed data are given,

– It deblurs the two boundary data φd and ψd when they
are noisy.

This method can be extended without difficulty to 3D prob-
lems as well as to other problems, like elasticity problems.
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