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Abstract. In this paper, a polygonal approximation approach based on a multi-
objective genetic algorithm is proposed. In this method, the optimiza- 
tion/exploration algorithm locates breakpoints on the digital curve by minimiz- 
ing simultaneously the number of breakpoints and the approximation error. 
Using such an approach, the algorithm proposes a set of solutions at its end. This 
set which is called the Pareto Front in the multi objective optimization field 
contains solutions that represent trade-offs between the two classical qual- ity 
criteria of polygonal approximation : the Integral Square Error (ISE) and the 
number of vertices. The user may choose his own solution according to its ob- 
jective. The proposed approach is evaluated on curves issued from the literature 
and compared with many classical approaches. 

1 Introduction 

Polygonal approximation of digital planar curves is an important issue in pattern 
recognition and image processing. It is a classical way to represent, store and process 
digital curves. For example, its results are frequently used for shape recogni- tion. The 
problem can be stated as follows: Given a curve C consisting of N ordered 

points C = {Ci ≡ (xi , yi )}N=
1
 , the goal is to find a subset S of M ordered points i

S = {Si ≡ (xi , yi )}M=
1
 with M ≤ N and S ⊆ C . These points constitute the ex- i

tremities of line segments so that the polygon constructed by directly connecting these 
line segments best fits the given digital curve. Figure 1, issued from [1], illustrates such a 
process for two different curves. Many paradigms have been proposed in the literature to 
solve the problem of polygonal approximation, what leads to a great number of published 
papers. Among these approaches, one can cite split or split and merge techniques [2][3][4], 
Hough transform [5], perceptual organization [6], domi- nant points detection [7][8][9]
[10][11][12], competitive Hopfield neural networks [13] or dynamic programming [14][1]
[15]. Another paradigm has been recently pro- posed in [16][17][18]. It consists in using 
Genetic Algorithms in order to find a near- optimal polygonal approximation. In such an 
approach, as in dynamic programming methods, the polygonal approximation technique is 
considered as an optimization process and the algorithm automatically selects the best 
points of the polygon by 



minimizing a given criterion. Two kinds of configuration may be distinguished in the 
published papers. In the first case, the number of vertices to be obtained is fixed and the 
method uses the concept of genetic evolution to obtain a near-optimal polygon [16][17]. In 
the second case, a maximal approximation error is fixed and the algo- rithm minimizes the 
number of vertices of the polygon [16]. One can note that this kind of approach has also 
been used in order to approximate curves with circular arcs or ellipses [18][19]. 

In this paper, we adopt the same paradigm and we propose a new algorithm for po- 
lygonal approximation using genetic algorithms. The originality of the described approach 
is the factorization of the two kinds of configuration mentioned above through the use of 
a multi-objective optimization process whereas existing approaches minimize an unique 
criterion as explained before. Such a new viewpoint enables the user of the system to 
choose a trade-off between different quality criteria, according to its objectives of use of 
the results (recognition, interpretation, storage...). 

Fig. 1. Results provided by a polygonal approximation [1]. On the top left, a curve composed of 
992 points. On the top right, its polygonal approximation (15 line segments). At the bottom left, 
a free curve of 3222 points, on the right, its polygonal approximation (16 line segments). 

The remainder of the paper is organized as follows. In section 2, an introduction to the 
multi-objective optimization problem is proposed and our algorithm is detailed. In section 
3, the application of this algorithm to the polygonal approximation problem is shown. 
Section 4 presents the experimentally obtained results, a comparison with classical 
approaches and a discussion concerning the interests of such an approach. Section 5 
summarizes the concluding remarks and proposes some perspectives for this work. 

2 A Genetic Based Multi-objective Optimization Algorithm 

When an optimisation problem involves more than one objective function (a very frequent 
context in the document analysis field - one can cite recognition rate/reject rate, precision 
rate/recall rate, compression / quality), the task of finding one or more optimum solutions 
is known as multi-objective optimization. Some classical text- books on this subject have 
been published, e.g. [20]. We just recall here some essen- tial notions in order to introduce 
the proposed algorithm. The main difference between single and multi-optimization task 
lies in the requirement of compromises 



between the various objectives in the multi-optimization case. Even with only two 
objectives, if they are conflicting, the improvement of one of them leads to a deterio- 
ration of the other one. For example, in the context of polygonal approximation, the 
decrease of the approximation error always leads to an increase of the vertices num- ber. 
Two main approaches are used to overcome this problem in the literature. The first one is 
to combine the different objectives in a single one (the simpler way being to use a linear 
combination of the various objectives), and then to use one of the well- known techniques 
of single objective optimization (like gradient based methods, simulated annealing or 
classical genetic algorithm). In such a case, the compromise between the objectives is a 
priori determined through the choice of the combination rule. The main critics addressed 
to this approach are the difficulty to choose a priori the compromise and the fact that some 
objective points can not be reached. It seems a better idea to postpone this choice after 
having several candidate solutions at hand. This is the goal of Pareto based method using 
the notion of dominance between can- didate solutions. A solution dominates another one 
if it is better for all the objectives. 
This dominance concept is illustrated on figure 2. On this example, two criteria J1 and 
J2 have to be minimized. The set of non-dominated points that constitutes the Pareto- 
Front appears as 'O' on the figure, while dominated solutions are drawn as 'X'. 

Using such a dominance concept, the objective of the optimization algorithm be- comes 
to determine the Pareto front, that is to say the set of non-dominated points. Among the 
optimization methods that can be used for such a task, genetic algorithms are well-suited 
because they work on a population of candidate solutions. They have been extensively 
used in such a context, with many variants. The most common algo- rithms are VEGA - 
Vector Evaluated Genetic Algorithm - [21], MOGA - Multi Objective Genetic Algorithm 
-approach [22], NSGA - Non-Dominated Sorting Ge- netic Algorithm - [23], NSGA II 
[24], PAES - Pareto Archived Evolution Strategy - [25] and SPEA - Strength Pareto 
Evolutionary Algorithm - [26]. The strategies used in these contributions are different, but 
the obtained results mainly vary from the convergence speed point of view. A good review 
of the existing approaches can be found in [27]. 

J2 

X

X

X

X

J1 

Fig. 2. Illustration of the Pareto Front concept 

The proposed genetic algorithm is elitist and steady-state. This means that (i) it man- ages 
two populations and (ii) the replacement strategy of individuals in the popula- tions is not 
made as a whole, but individual per individual. The two populations are a classical 
population, composed of evolving individuals and an "archive" population 



composed of the current Pareto Front approximation elements. These two populations are 
mixed during the genetic algorithm. The first population guarantees space explo- ration 
while the archive guarantees the exploitation of acquired knowledge and the convergence 
of the algorithm. 

Based on such concepts, our optimization method uses the algorithm #1. In this section, 
we only describe the optimization algorithm, without applying it to the po- lygonal 
approximation problem. The particular application to the polygonal approxi- mation 
problem is described in the following section. This algorithm has been designed in order 
to be applied to various problems (see section 5). The design of a new application only 
consists in the choice of a coding scheme for individuals, in the design of the evaluation 
method and in the choice of the genetic parameters values. 

Algorithm #1. The multi objective algorithm in use 

Population Initialization 

Archive Initialization (selection of the non dominated element in the population) 

do 

- Random selection of two individuals I1 and I2 in the current population 

- Crossover between the selected individuals to generate I3 and I4 

- Mutation applied to the generated children I3 and I4 

- Evaluation of children I3 and I4 

- Selection either of the dominant individual I5 between mutated children 
(if it exists) or random selection of I5 between I3 and I4 

- Random selection of an individual in the archive population (I6) 

- Crossover between I5 and I6 to generate children I7 and I8 

- Evaluation of children I7 and I8 

- Test for the integration of I7 and I8 in the archive 

- Test for the integration of I7 and I8 in the current population 

- Incrementation of the generation number 

While the maximal generation number has not been reached 

In the current implementation of this algorithm, the coding of an individual is a 
classical bit set, the crossover is a well-known 2-point crossover, and the mutation is a 
simple transformation of a gene value by its complementary value. Concerning the 
replacement strategy, several choices can be made for the integration of a candidate 
individual in the archive. The simplest is a dominance test between the candidate and the 
archive elements. The candidate is inserted within the archive if no archive ele- ment 
dominates it. In the same time, archive elements dominated by the candidate are 
eliminated from the archive. A problem reported in the literature on evolutionary multi-
objective optimization is the possible bad exploration of Pareto front: the ar- chive 
population elements concentrate on only some parts of the front. This difficulty is 
overcome in our approach by defining a minimal distance between two points 



in the objective space. This algorithm has been tested on classical multi-objective 
problems such as BNH, TNK or OSY [28] problems and the results have shown the 
quality of the proposed approach. 

3 A Genetic Based Multi-objective Optimization Algorithm 

In order to apply the algorithm presented above to the polygonal approximation prob- lem, 
an individual has to represent a possible solution to the polygonal approximation problem. 
That is why an individual is composed of N genes, where N is the number of points in the 
initial curve. A gene is set to '1' if the point is kept as a breakpoint, '0' if 
it is not. An example of an individual coding is given in figure 3. Each point Ci of the 
curve S corresponds to a bit in the chromosome. In the example of figure 3, the indi- 
vidual is a binary string of 14 genes corresponding to the initial C0.- C13.. The example 
polygon is composed of 4 vertices whose extremities are C0, C4, C7 and C11. Such a 
polygonal approximation corresponds to the individual "10001001000100". 

Fig. 3. An example of the coding scheme applied on a simple curve 

Concerning the computation of the criterion to be optimized, two objectives have been 
included in the current version. The first one is the Integral Square Error (ISE) and the 
second one is the vertices number. Such a choice enables to have a trade-off between the 
precision of the result and the number of line segments, thanks to ele- ments of the Pareto 
front. One can note that the use of a discrete objective (vertices number) guarantees itself 
the diversity on the Pareto front, we do not need to specify any minimal distance between 
any couples of solutions of the Pareto Front. 

4 Experimental Results and Performance Analysis 

In order to assess the performances of the proposed algorithm, it has been applied to the 
four digital curves presented in [7]. Fig. 4a is a chromosome shaped curve with 60 points, 
Fig. 4b is a leaf-shaped curve with 120 points, Fig. 4d is a curve containing four semi-
circles with 102 points and Fig. 4c is a figure-eight curve with 45 points. These curves 
have been broadly used in the literature. Such tests allow to test the performances of the 
proposed algorithm versus those of published approaches. For each of these curves, the 
program has been run for 2000 generations, using a 



population size of 100 individuals. Such a parameter set involves about 8000 calls to the 
evaluation method (see the algorithm below). The mutation rate has been fixed to 0.05 and 
the crossover rate to 0.6. As said before, the output of the presented algo- rithm is not a 
single ISE for a number of vertices given a priori. It consists in the whole Pareto front of 
the optimization problem. That is why the result is a set of cou- ple (ISE - number of 
vertices). As an example, figure 5 shows the set of couple obtained at the end of one run 
on a "map of France" curve and the corresponding polygons. Another remark has to be 
done. Since GA are stochastic, results may be different at independent runs. That is why, 
in these experiments, we present the best and the worst ISE for each number of vertices 
obtained after 5 independent runs. Using such a strategy, obtained results are compared for 
each curve with the results 
proposed in the literature using the following scheme: 

- A table containing the results obtained by several approaches from the literature on 
the given figure; 

- The results (comparable points on the Pareto Front) obtained by the proposed algo- 
rithm on the same curve compared with the best ISE found in the literature; 

- A figure representing the whole Pareto Front and showing a visual performance 
comparison between our results and the results issued from the state of the art. 

Fig. 4. Test curves: (a) chromosome-shaped curve: 60 points; (b) leaf-shaped curve: 120 points; 
(c) curve with four semi-circles: 102 points and (d) figure-of-eight curve: 45 points 

Fig. 5. Results obtained on a curve of a map of France: on the left, the obtained Pareto front, on 
the right, the polygons corresponding to the points labeled (1-6) on the Pareto front 



4.1 Results Obtained on the Chromosome-Shaped Curve 

Table 1. Results obtained with several existing methods on the chromosome-shaped curve 

Table 2. Results obtained using 5 runs of the described approach on the chromosome-shaped 
curve compared with best results found in the literature 

Fig. 6. Comparison between performances obtained using several approaches issued from the 
literature ( ); our best result (o) and our worst result (+) for 5 runs on the chromosome-shaped 
curve 



4.2 Results Obtained on the Leaf-Shaped Curve 

Table 3. Results obtained with several existing methods on the leaf-shaped curve 

Table 4. Results obtained using 5 runs of the described approach on the leaf-shaped curve 
compared with best results found in the literature 

Fig. 7. Comparison between performances obtained using several approaches issued from the 
literature ( ); our best result (o) and our worst result (+) for 5 runs on the leaf-shaped curve 



4.3 Results Obtained on the Curve with 4 Semi-circles 

Table 5. Results obtained with several existing methods on the curve with 4 semi-circles 

Table 6. Results obtained using 5 runs of the described approach on the curve with 4 semi- 
circles compared with best results found in the literature 

Fig. 8. Comparison between performances obtained using several approaches issued from the 
literature ( ); our best result (o) and our worst result (+) for 5 runs on the curve with 4 semi- 
circles 



4.4 Results Obtained on the Figure-Eight Curve 

Table 7. Results obtained with several existing methods on the curve with 4 semi-circles 

Table 8. Results obtained using 5 runs of the described approach on the curve with 4 semi- 
circles compared with best results found in the literature 

Fig. 9. Comparison between performances obtained using several approaches issued from the 
literature ( ); our best result (o) and our worst result (+) for 5 runs 

4.5 Discussion 

Many observation can be drawn from the results presented above. Concerning the obtained 
performances for a given number of vertices, one can see that the proposed approach 
provides results that are only outperformed by optimal methods [14][15]. These results are 
logical since GA are known to be near-optimal. On the contrary, the non-optimal or sub-
optimal approaches are outperformed by the proposed algorithm. 



Another advantage of our approach is the fact that no input parameters concerning the 
initial curve or the desired results have to be defined a priori. All the tests mentioned 
above have been led with exactly the same configuration of the program. The most 
important in this context is that our approach does not need the number of vertices to be 
obtained as an a priori parameter. Furthermore, the algorithm gives the user a bet- ter 
information on the solved problem as it proposes as output a set of solutions con- taining a 
wide range of values for the number of vertices and the corresponding ISE. The user of the 
system can choose the better solution regarding its application constraints, as shown in 
Fig. 4. Concerning the complexity, our algorithm has an important computational cost 
(comparable to Yin's one) but for a pool of solutions. Moreover, this computational cost 
may be reduced using a parallelization since ge- netic algorithms are parallel by nature. 
Another solution to reduce this complexity is to consider an evolution of the genetic 
parameters (mutation and crossover rates) during the algorithm. This point is actually under 
consideration. 

5 Conclusion and Future Works 

In this paper, we have proposed a new approach for the polygonal approximation of 
curves. This approach considers the polygonal approximation as an optimization process. 
The fundamental difference with existing approaches lies in the fact that we use a multi-
objective optimization process while other contributions only optimize a unique objective. 
One can see several interests in such an approach. As many solu- tions are proposed, the 
user may choose the optimal solution regarding its constraints. Another interest is that it is 
easy to add a new objective. For example, our current work concerns the maximization of 
the parallel line segments, in order to apply con- tour matching in a vectorization process. 
Another future work concerns the integra- tion of the detection of circular arcs in our 
approximation system, using an approach inspired from [18]. A more global objective is to 
generalize the principles of multi- objective optimization to the different steps constituting 
the chain of a document image analysis system. The aim is to build a multi-objective 
document analysis sys- tem which adapts its objective thanks to a dialog with the user. 
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