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1 Introduction

The topic of the presented paper is marginally related to two interesting and
open problems – turbulence and the dynamo paradox. Turbulence is still con-
sidered to be one of the most challenging and not yet resolved problems. The
geodynamo paradox is related to the Earth’s core, in which the flows, very
probably turbulent, generate and sustain the main geomagnetic field through
the dynamo process. Very recently computer simulations of the geodynamo
have provided models of the geomagnetic field, which give a true picture with
all significant features of the observed field with its secular variations.

The paradox lies in the fact, that due to the computer limitations unre-
alistically high diffusion coefficients (for example viscosity) were used. Even
accepting the turbulent viscosity and other diffusivities of the Earth’s core, the
values used in those models were noticeably higher. Thus, it was necessary
to introduce hyperviscosity into the simulations to reach agreement between
the observed and simulated fields. It means also that formally some type of
anisotropy of diffusive coefficients was considered.

We study the conditions for marginal convection in the horizontal planar
layer rotating about a vertical axis permeated by a homogeneous horizontal
magnetic field. It is a model employed in [5, 6, 13, 9], which studied both the
stationary convection and the periodic instability of modes in the form of rolls
inclined to the magnetic field. Considering also the case of isotropic diffusion
we have advanced these studies by including two types of anisotropic diffusive
coefficients. We christened the first type stratification anisotropy (SA) and it
is a crude analogue of hyperdiffusivities used in computer simulations. We dis-
tinguished the diffusivities in the vertical direction from horizontal diffusivities
(which are considered to be horizontally isotropic) and we introduced two sub-
cases: oceanic type of SA and the atmospheric type of SA, respectively. In the
first one (oceanic), the diffusivities in the horizontal directions are greater than
in the vertical one. In the second sub-case (atmospheric) it is the reverse. The
second type of anisotropy is analogous to the result obtained in [1] and it is
given by the directions of the basic magnetic field, B, and the rotation, Ω . In
the direction of Ω ×B the diffusivities are much smaller than in the directions
of Ω and B.

We focus our attention on the special type of instabilities which are affected
by diffusive processes. Of course, we can expect that these diffusive instabilities,
in particular, will be strongly influenced by anisotropic diffusive coefficients.
Especially, if one reminds oneself that the conventional understanding of the
role of diffusion — only weak damping of the instabilities which arise — is not
sufficient. It is generally accepted, that the dynamics of the Earth’s core are
determined by three basic forces: magnetic, Archimedean and Coriolis forces
(M , A, and C, respectively). However, diffusive processes may weaken the
basic forces in the sense: viscosity weakens only the Coriolis force, magnetic
diffusivity weakens only the magnetic force, and thermal diffusivity weakens
only the Archimedean force and a new triad of basic forces, M − δM , A− δA,
and C − δC, develops completely new balance of forces prone to new and even
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unexpected instabilities.
The present paper extends the papers [5, 6, 13, 9], where the diffusive co-

efficients were isotropic. The paper continues in our strategy to modify old
models or to set up new models of linear rotating magnetoconvection in the
sense of introducing anisotropic diffusive coefficients. For instance, the results
of our models of horizontal planar layer of fluid with other basic magnetic fields
(homogeneous vertical or non-homogeneous azimuthal, see e.g. [2]) or with non-
vertical orientation of rotation axis are upcoming for publication. We consider
the horizontal magnetic field and vertical rotation axis, chosen in this paper,
as a crude approximation of the Earth’s azimuthal magnetic field in polar re-
gions (not too close to poles). On the other hand, the equatorial region can
be approximated by the horizontal planar fluid layer permeated by horizontal
magnetic field but rotating about horizontal axis perpendicular to the field.

The results are in the form of conditions for the onset of instabilities which
are set by new parameters — parameters of anisotropy of diffusive coefficients.
In the case of turbulent transport phenomena the shape of transporters, i.e.
eddies, distinguish transport efficiency in various directions. For that reason it is
convenient to change the isotropic transport phenomena, usual in the molecular
case, into the anisotropic ones. It means: for transport coefficients we have
the transition from scalar into tensor quantities. Recent surveys of problems
related to the Earth’s core turbulence, the geodynamo paradox and some models
of the geodynamo and rotating magnetoconvection with anisotropic diffusive
coefficients are in [7, 14, 8], where it is possible to find some important references,
too.

The structure of the paper is the following: after definitions of the two types
of considered anisotropies (Sect. 2), the mathematical formulation is stated
and the basic dispersion relation for the two anisotropic cases is derived (Sect.
3). The method of solution for steady and overstable convection is described
in Sect. 4. The influence of anisotropy on steady modes is described and
numerical results are discussed in Sect. 5. Overstable modes in anisotropic
cases are described in Sect. 6. The most important results are summarized and
the paper is concluded in Sect. 7.

2 Anisotropy of diffusive coefficients

We introduce possibly the simplest forms of anisotropy, in which the thermal
diffusion and viscosity are considered1 to be in the form of a diagonal Cartesian
tensor with only two different values of its 3 components

ν =





νxx 0 0
0 νyy 0
0 0 νzz



 .

1see expressions (8, 9) and (10) for anisotropic Laplacian ∇
2
α in equations (3) and (5),

respectively.
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It means that in two directions the diffusion is the same, but different from the
diffusion in the third direction. For instance νxx = νyy 6= νzz or νxx 6= νyy = νzz.
We consider two basic types of anisotropy (SA and BM) of diffusive processes
in the models investigated in this paper. The definitions of SA or BM type
anisotropy (stratification anisotropy or Braginsky-Meytlis anisotropy) depend
on the importance of basic forces determining the dynamics of the system. How-
ever, both anisotropy types SA and BM, can be formally determined by single
value of diffusive coefficient, e.g. by vertical component νzz or κzz and by the
anisotropy parameter, α.

We define the parameter of anisotropy α, a measure of anisotropy, as the ratio
of two considered values of diffusivity in two different directions. Thus a measure
of the anisotropy of viscosity is the parameter, αν = νxx/νzz. Analogously, a
measure of the anisotropy of thermal diffusivity is the parameter, αϑ = κxx/κzz.
Henceforth, we will assume that these parameters are equal,

α ≡ αν =
νxx

νzz
= αϑ =

κxx

κzz
, (1)

and different subscripting, if it is used, will be only for lucidity and for realising
the connection between the parameters and the physical processes.

2.1 SA, Stratification anisotropy

In the SA case the density stratification determined by the vertical direction of
gravity or/and the Archimedean buoyancy force has dominant influence on the
dynamics of eddies. The axis of rotation has also the vertical direction z. We
christen this type of anisotropy as stratification anisotropy (SA). The anisotropy
is defined in the sense that diffusive coefficients have different values in the
vertical direction z than in the horizontal directions x and y. We distinguish
two types of this anisotropy depending on the fact that the diffusivity in the
vertical direction can be greater or smaller in comparison with diffusivity in the
horizontal directions (in the horizontal directions we consider isotropic diffusion,
i.e. diffusion is the same in all directions of the horizontal plane, e.g. for
viscosity νxx = νyy). If the diffusivity in the vertical direction is greater than in
the horizontal directions, we christen it a-anisotropy, which is a rough analogue
of the lowermost part of the atmosphere in which turbulent transport in the
vertical direction is facilitated by the developed convection. This atmospheric
type of SA anisotropy is thus defined: νzz > νxx = νyy and κzz > κxx =
κyy, and the parameter (1) of anisotropy, α, has values less than one . If the
opposite case is considered, it means that the diffusivity is smaller in the vertical
direction than in the horizontal directions; we call it o-anisotropy, i.e. oceanic
SA anisotropy, which is analogous to the uppermost layer of the ocean, stably
stratified during the day due to the heating from above. The consequence is
the weakened turbulent transport in the vertical direction. In this case the
anisotropy is defined by νzz < νxx = νyy and κzz < κxx = κyy, with the
anisotropy parameter α greater than one (1).
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2.2 BM, Braginsky and Meytlis type anisotropy

If rotation and the magnetic field have the dominant influence on the dynamics
of turbulent eddies, we can suppose BM type anisotropy (from the study by
Braginsky and Meytlis [1] of local turbulence in the Earth’s core) of the system,
in which the diffusive coefficients are greater in the direction of rotation (in
the vertical direction) z and in the y direction of magnetic field (we suppose a
homogeneous magnetic field in the horizontal direction y), than the diffusivities
in the third direction x. BM type anisotropy is defined subsequently: νzz =
νyy > νxx and κzz = κyy > κxx. The parameter (1) of anisotropy α is smaller
than one in this case. In cylindrical coordinates the anisotropy results in the
relationships, νzz ∼ νϕϕ ≫ νss and κzz ∼ κϕϕ ≫ κss, [1].

Some codes for each investigated type of anisotropy are used. Individual
types of anisotropies are coded by their physical background which determine
the range of anisotropy parameter values, α, too.

SA ⇒ stratification anisotropy, νxx = νyy 6= νzz, 0 < α < 1 or α > 1

Sa ⇒ SA anisotropy of atmospheric type, a type of SA anisotropy, 0 < α < 1

So ⇒ SA anisotropy of oceanic type, o type of SA anisotropy, α > 1

BM ⇒ Braginsky and Meytlis type anisotropy, νxx 6= νyy = νzz , 0 < α < 1

3 Model

Linear stability of the infinite horizontal plane layer of incompressible fluid and
of the width, d, is examined. The layer is permeated by homogeneous horizontal
magnetic field, B0, in the y direction, rotates about a vertical axis z, and gravity,
g, is in the −z direction. The layer is heated from below and cooled from above.
Thus the linear profile of the temperature, T0, is sustained; see Fig. 1.

We try to choose the parameters of the layer including diffusive coefficients
so that they can correspond to the Earth’s core. Therefore, we suppose that
values of viscosity and thermal diffusivity are determined by turbulent eddies
strongly shaped by basic forces in the core. Due to metallic electric conduc-
tivity, σ, of the Earth’s core there is a good reason [7, 8, 14] to neglect the
turbulent contribution to the value of the magnetic diffusivity, η = 1/µ0σ (µ0 is
magnetic permeability). Thus η in our models is isotropic. However, our study
is focused on the influence of anisotropic diffusive coefficients (coefficients of
viscosity and thermal diffusivity) on the onset of thermally driven instabilities,
i.e. the influence of anisotropy (1) parameter α in the SA and BM cases on
rotating magnetoconvection in the form of horizontally oriented rolls.

4
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Figure 1: Model of rotating magnetoconvection with homogeneous horizontal
basic magnetic field in the infinite horizontal unstable stratified fluid layer with
temperature profile, T0(z̃).

3.1 Basic equations

We consider the basic state of the system (rotating with angular velocity, Ω0 =
Ω0 ẑ),

U0 = 0, B0 = BM ŷ, T0 = Tl − ∆T
z̃ + d/2

d
, (2)

where ŷ and ẑ are unit vectors in directions y and z, respectively. Tl is a basic
temperature at the bottom of the layer, z̃ = −d/2, and ∆T is the basic temper-
ature difference between the top and the bottom of the layer. We investigate
the system stability by putting perturbations of the velocity field, magnetic field
and temperature, ũ, b̃ and ϑ̃, respectively, into the system of basic equations.
This system for the unknown perturbations is converted into the dimensionless
and linearized form,

Ro
∂u

∂t
+ ẑ × u = −∇p + Λ(∇× b) × ŷ + Rϑẑ + Ez∇2

αu, (3)

∂b

∂t
= ∇× (u × ŷ) + ∇2b, (4)

1

qz

∂ϑ

∂t
= ẑ · u + ∇2

αϑ, (5)

∇ · u = 0, (6)

and ∇ · b = 0, (7)

5
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using the following substitutions2,

z̃ = dz, t̃ =
d2

η
t, ũ =

η

d
u, p̃ = 2Ω0ηρ0p, b̃ = BMb, ϑ̃ =

η∆T

κzz
ϑ,

where tilded symbols are quantities with dimension and nontilded symbols are
their dimensionless counterparts. In the subsequent text only dimensionless
quantities are used. ρ0 and p are density and pressure (with contribution from
the centrifugal force), respectively. At first glance one can see in (3) and (5)
that the Laplacian ∇2 is replaced by the anisotropic Laplacian ∇2

α; see (8–
10). The first equation (3) is the momentum Navier-Stokes equation, which
describes the temporal behaviour of the perturbation velocity field u. The
second equation (4) is the induction equation describing the temporal behaviour
of the perturbation magnetic field b. The next equation of heat conduction (5)
describes the behaviour of the temperature field perturbation ϑ in time. The
last two equations express that the magnetic and velocity fields are solenoidal.
In the Navier-Stokes equation we consider two forms of last term, Ez∇2

αu,
describing the viscous force, since we consider two types of anisotropy. In the
case of stratification anisotropy (SA) the viscous term has the form,

Ez∇2

αu = Ez [(1 − αν)∂zz + αν∇2]u, (8)

and in the case of anisotropy by Braginsky and Meytlis (BM) the viscous term
has the form,

Ez∇2

αu = Ez [(αν − 1)∂xx + ∇2]u. (9)

In addition to the anisotropic coefficient of viscosity we suppose the anisotropy
of thermal diffusion, too. In the equation of heat conduction we consider, there-
fore, two forms of the diffusive term ∇2

αϑ. In SA and BM type anisotropy,
respectively, the forms of diffusive terms are the following,

∇2

αϑ = [(1 − αϑ)∂zz + αϑ∇2]ϑ and ∇2

αϑ = [(αϑ − 1)∂xx + ∇2]ϑ. (10)

We can easily prove in both cases of anisotropy, that setting the anisotropy pa-
rameters αν and αϑ to one (supposing isotropic diffusivities α = αν = αϑ = 1),
the diffusive terms in equations (3, 5) change into the commonly used forms,
E∇2u and ∇2ϑ, respectively. Thus the greater α differs from one, the greater
the anisotropy. We use dimensionless parameters expressing the ratio of quanti-
ties with equal dimension, for example ratios of individual forces or time scales
or length scales, i.e.

Ro =
η

2Ω0d2
, Λ =

B2

M

2Ω0ρ0µη
, Ez =

νzz

2Ω0d2
, R =

αT g∆Td

2Ω0κzz
, qz =

κzz

η
(11)

2The special form of the scaling of the temperature perturbation ϑ̃ = η∆T
κzz

ϑ is used for the

modified Rayleigh number and equation of heat conduction in their commonly used forms.
By using the simpler scaling, ϑ̃ = ∆Tϑ, the modified Rayleigh number has a form R =
αT g∆Td/2Ω0η and the equation of heat conduction is then 1

qz

∂ϑ
∂t

= 1

qz

ẑ · u + ∇2
αϑ.

6
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where
Ro – the modified Rossby number is a ratio of rotation period to magnetic diffu-
sion time (the classical Rossby number Ro = U/Ω0d is a measure of the ratio of
rotation period to the time d/U , in which the characteristic flow in the system
with the velocity U passes the characteristic length of the system, d);
Λ – the Elsasser number is a ratio of magnetic force and Coriolis force;
Ez – the Ekman number is a measure of viscous forces to Coriolis force. Due to
anisotropic viscosity we have also the second Ekman number, Ex = νxx/2Ω0d

2;
R – the modified Rayleigh number measures effective buoyancy force to Coriolis
force (where αT is thermal expansion coefficient);
qz – the Roberts number is defined as the ratio of magnetic and thermal diffu-
sion time scales, i.e. the ratio of coefficients of thermal diffusion and magnetic
diffusion. Similarly, as in the case of the Ekman number, the Roberts number
has two different values, because we consider anisotropy of thermal diffusion.
Thus we have the second Roberts number, qx = κxx/η.

It is also useful to introduce five further dimensionless numbers

ζ =
η

κzz
= q−1

z , p =
η

νzz
=

Ro

Ez
, Q =

Λ

Ez
, Ta = E−2

z , Ra =
R

Ez
, (12)

where ζ and p are two Prandtl numbers, dimensionless ratios of diffusivities, ζ
– the inverse Roberts, and p – the inverse magnetic Prandtl number3. The next
three numbers, Q – the Chandrasekhar, Ta – the Taylor, and Ra – the classical
Rayleigh number are useful for comparison between corresponding formulas here
and in [3, 5, 6].

4 Method of solution

In the following proceeding we split the perturbations of the velocity field u and
magnetic field b into poloidal and toroidal parts,

u = a−2 [∇× (∇× wẑ) + ∇× ωẑ] and b = a−2 [∇× (∇× bẑ) + ∇× jẑ ]. (13)

All perturbations (w, ω, b, j, and ϑ) have the form,

f(x, y, z, t) = ℜe [F (z) exp(ilx + imy) exp(λt)] , (14)

where the horizontal components of the wave vector, l and m, determine a2 =
l2 + m2. The square root of a2 is the horizontal wave number, a, and λ is a
complex frequency (λ = iσ). The properties of convection dependent on the
values l, m, and σ are discussed in the subsection 4.1.

Taking the z-components of the curl and double curl of the Navier-Stokes
equation, the curl of the induction equation and the induction equation itself and
the equation of heat conduction and substituting the perturbations (w, ω, b, j

3Due to the next ignoring of pressure we use symbol p for the one frequently used dimen-
sionless number, p = pz.

7
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and ϑ) into these equations we obtain following set of ordinary differential equa-
tions for the unknown functions F (z) = W (z), Ω(z), B(z), J(z), and Θ(z),

[EzDα − Roλ] Ω + DW + imΛJ = 0, (15)

(D2 − a2) [EzDα − Roλ] W − DΩ + imΛ(D2 − a2)B = a2RΘ, (16)

(D2 − a2 − λ)J + imΩ = 0, (17)

(D2 − a2 − λ)B + imW = 0, (18)

(Dα − ζλ)Θ + W = 0, (19)

where D = d/dz and the operator Dα has two different forms, that is D2−αl2−
m2 and D2−αl2−αm2 in BM and SA type anisotropy, respectively. From these
five equations (15–19) we successively eliminate 4 unknown functions except W
and we get an ordinary differential equation of the 12th order for W of the
following form,

[

(Dα − ζλ)
(

(D2 − a2)
{

Dλ (Dα − pλ) + Qm2
}2

+ TaD2

λD2

)

+

+a2RaDλ

{

Dλ (Dα − pλ) + Qm2
}

]

W = 0, (20)

where Dλ = D2 − a2 − λ and the set of dimensionless parameters (11) was
replaced by the set (12).

For direct comparison with [3] and [5, 6] we introduce also the substitutions,

l̃ =
l2

π2
, m̃ =

m2

π2
, σ1 = − iλ

π2
, T1 =

Ta

π4
, Q1 =

Q

π2
and R1 =

Ra

π4
.

(21a)
If we consider the simplest boundary conditions at z = −1/2, 1/2 (in [13] chris-
tened illustrative conditions), i.e. the stress-free and perfect thermally and
electrically conducting boundaries,

W = D2W = DΩ = Θ = B = DJ = 0,

then due to the solution W = W0 cos(πz) we can replace the operators in (20)
by simple algebraic formulas. Finally, introducing the auxiliary variables,

ã = l̃ + m̃, A = 1 + ã and (21b)

Aα =

{

1 + αl̃ + m̃
1 + αã

in the case of
BM

SA
anisotropy, (21c)

we get the dispersion relation for the Rayleigh number R1 in the form

(Aα + iζσ1)
{

A [(A + iσ1)(Aα + ipσ1) + Q1m̃]2 + T1(A + iσ1)
2

}

=

= R1(A − 1)(A + iσ1) {(A + iσ1)(Aα + ipσ1) + Q1m̃} . (22)

The dispersion equation (22) for the case of the horizontal magnetic field in
y direction is analogous to the vertical magnetic field case of ([3], chap. V).

8
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The transition to dimensionless parameters used in [3, 5, 6] serves here for
comparison and checking of complex formulas, but in the following text the
numerical results are presented in the space (11) of parameters R, Ez, Λ, qz (or
ζ = 1/qz), p (= Ro/Ez), and α.

The equation, analogous to the equation (22), in this more ”suitable” space
of dimensionless parameters has the form,

Ra2
qz(K

2 + λ)

(qzK2
α + λ)

=
K2[Ez(K

2 + λ)(K2

α + pλ) + m2Λ]2 + π2(K2 + λ)2

Ez(K2 + λ)(K2
α + pλ) + m2Λ

, (23)

where, using transforming formulas (21a,b,c),

K2 = a2 + π2 and (24a)

K2

α =

{

αl2 + m2 + π2

αa2 + π2 in the case of
BM

SA
anisotropy. (24b)

In recent years, substantial progress has been made in the numerical simu-
lations of dynamos driven by thermal convection studied here. These numerical
models are governed by the same dimensionless parameters as those in the prob-
lem of rotating magnetoconvection studied here. An important limit for these
models of the geodynamo is the limit of neglecting the inertial term ∂u/∂t,
because it is believed that the fast modes are relatively unimportant. The ba-
sic dispersion equation in this limit of zero inverse magnetic Prandtl number,
p = η/νzz, in the space (11) of dimensionless parameters Ez, Λ, qz and α has
the form,

Ra2
qz(K

2 + λ)

(qzK2
α + λ)

=
K2[Ez(K

2 + λ)K2

α + m2Λ]2 + π2(K2 + λ)2

Ez(K2 + λ)K2
α + m2Λ

. (25)

Meanwhile, we stress that, in the isotropic case α = 1, there holds K2

α = K2,
qz = q, Ez = E and similarly Aα = A and Dα = D2 − a2, which are useful for
comparing formulas (20 – 25) with the corresponding formulas in [3, 6, 13, 9].
For instance, the relation (25) in the limit α = 1 is identical with (3.3) in [13].

4.1 Convection modes in the form of rolls

The main aim of linear stability analysis is to investigate the onset of the con-
vection, thus to find the basic input parameters characterising the system and
to find the configuration of instability which starts to convect most easily. The
instability may occur if the Rayleigh number, the ratio of destabilising and sta-
bilising forces, reaches a certain critical value. The task is to find the form of
perturbation (determined by the wave numbers) which gives the least Rayleigh
number for the basic input parameters (Ekman, Elsasser, and Prandtl num-
bers, and anisotropy parameter). This Rayleigh number is named the critical
Rayleigh number and is labeled by Rc. Searching the Rc is related to the process
of minimization, but first we must define all investigated modes of convection
which compete for the preference in the space of dimensionless parameters (11).

9
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We investigate the onset of steady and overstable convection, which has the
form of horizontal rolls and is determined by the two components, l and m, of
the horizontal wave vector. The pair, l and m, can be expressed by other pair,

a = (l2 + m2)1/2 and γ = tan−1(m/l), (26)

where a is the horizontal wave number, and γ is the angle between the axes
of rolls and the imposed magnetic field in y direction. Due to (14) the vector
(l, m) determines the orientation of convection rolls (rolls are perpendicular to
the vector) and in the case of overstable convection this vector determines also
the direction of propagating waves.

The case where the wave number l is zero we call cross-rolls, because the rolls
are perpendicular to the basic magnetic field. The opposite case is when the
wave number m is zero; those modes we call parallel rolls. If both wave numbers
are nonzero we call these modes oblique rolls. To investigate the preference
means to determine which of these forms of convection is preferred for given Ez ,
Λ, qz, Ro, and α; see (11). Combining three possible orientations of rolls with
steady and overstable convection one can define 5 various modes of convection.
Using codes and names by Roberts and Jones [9, 13] we name them P, SC, SO,
OC, and OO modes, meaning parallel, steady cross, steady oblique, overstable
cross, and overstable oblique rolls, respectively. P modes are never overstable
[13].

The minimization process was done in very simple way but sufficient for this
problem. Physically relevant part of the two-dimensional space of the wave vec-
tor components l and m is covered by a grid. The Rayleigh number is calculated
in each point of the grid and the point with the minimal Rayleigh number is
found. Suitably chosen surroundings of this point is covered by new grid with
higher density of points and again the point with the minimal Rayleigh num-
ber is found. The process continues until the desired accuracy is reached with
acquiring the Rc and the components lc and mc of the critical horizontal wave
vector. In the case of overstability formally the same minimization process was
used but in each point of the grid the frequency σ was calculated. The σ is
the root of the polynomial of the 7th degree which arises from the condition
Im(R) = 0 where R corresponds to the expression (23). Obvious root, σ = 0, is
related to the steady convection. The further roots of this equation, related to
the overstable convection, stem from the polynomial equation of the 3rd degree
for unknown σ2. In the cases of more physically possible frequencies than one,
the frequency corresponding to the least Rayleigh number is critical frequency,
σc, as well as the corresponding critical lc, mc, and Rc for the overstable mode.
Finally, the critical Rayleigh numbers for steady and overstable modes are com-
pared to determine the preferred mode. The determination of the orientation
of the preferred modes (including also P modes with m = 0 and SC, OC modes
with l = 0) is a part of the minimization process.
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5 Stationary convection, Numerical results

5.1 The ΛEz regime diagrams

The following numerical results (Fig.2) show the influence of the anisotropy
on the distribution of the regions of preference in the ΛEz–plane, where three
regions are coded by the orientation of the preferred rolls

P ⇒ Steady Parallel roll is preferred;

SC ⇒ Steady Cross roll is preferred;

SO ⇒ Steady Oblique roll is preferred.

Figure 2: The regime diagram for steady convection in cases of both type of
anisotropy, SA and BM. Regime diagram shows the regions in the ΛEz–plane
with the preferred type of convection.

Figure 2a shows the influence of SA type anisotropy, i.e. Sa and So on these
regions. Solid and dotted lines correspond to the boundaries between individual
regions in the anisotropic Sa and So cases, α = 0.5 and α = 2, respectively, and
dashed lines are the boundaries in the isotropic case, α = 1. The boundary
between SO and P is shifted to smaller values of the Ekman number Ez in
the case of Sa anisotropy. It is similar for the boundary between SO and SC,
which is shifted to smaller values of the Elsasser number Λ in the Sa case. From
the physical point of view we can say that Sa anisotropy enhances the effect of
the Lorentz force, because the same region (region between two oblique lines
- boundaries SO-SC), which in the isotropic case is named the weak magnetic
field regime, corresponds in the anisotropic Sa case to the strong field regime
(Λ∗ in the isotropic case is greater than the Λ∗ in the anisotropic Sa case, see
the discussion in [13]). Similarly, we can say that Sa anisotropy weakens the
effect of the Coriolis force, because the region between the two vertical lines,
which corresponds to the fast rotation regime in the isotropic case, corresponds
to a slower rotation regime in the Sa anisotropic case (E∗

z in the isotropic case
is greater than E∗

z in the Sa anisotropic case).
Figure 2b shows the influence of BM type anisotropy on the regime dia-

gram. Solid lines again correspond to boundaries between the various regions
for the anisotropic case (α = 0.5). The names of the regions are still valid for
this BM case, even if the boundaries for the isotropic case (α = 1) are drawn
for comparison by dashed lines in the figure. The boundaries between individ-
ual regions of preference are more affected by BM anisotropy than by the SA

anisotropy, even if the parameter of anisotropy is the same. The change of these
boundaries is not only quantitative (the boundaries are only shifted in the case
of SA anisotropy) but the boundaries are changed also qualitatively because
their shape is changed. The influence of BM anisotropy on the effect of the
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Lorentz and Coriolis forces is thus more substantial than in the case of SA type
anisotropy. Parallel modes can be preferred also in the very fast rotation regime
(very small Ez) if the magnetic field is very weak (however, keep in mind that
BM anisotropy is caused by stronger magnetic fields, see comment to Figure 2c).
But only a small increase of the field is sufficient and its effect is considerable.
The rolls which are perpendicular to the magnetic field are preferred only in a
very narrow region of the Ekman number Ez and the Elsasser number Λ. The
distinction between fast rotation regime (Ez < E∗

z ) and slow rotation regime
(Ez > E∗

z ) is not so simple like in the SA anisotropy case and also the isotropic
case, because the boundary in the ΛEz plane between these two regimes is not
simply a vertical line given by E = E∗

z , i.e. by the number, E∗

z , independently
of the Elsasser number, but it is a function of it, i.e. Ez = Ez(Λ). It holds so
that the greater magnetic field, the greater the value of the boundary Ekman
number, E∗

z , which separates the slow rotation regime and the fast rotation
regime. The third Figure 2c shows in detail the region of low Ekman and El-
sasser numbers, and the region of contact of all three regimes (SC, SO, P). From
the figure we can see that in the fast rotation regime arise not only SC modes
but also P modes, what could be typical only for BM type anisotropy. However,
it can not be the case, because BM type anisotropy must be caused by stronger
magnetic fields, i.e. we must reasonably ignore the smaller Elsasser numbers,
e.g. Λ∼< 0.01. Therefore, we focus attention only on SC and SO modes, and not
on P modes in all investigated cases of anisotropic diffusive coefficients.

5.2 The critical numbers Rc, ac, and γc

Further numerical results of this stability analysis are presented in Figure 3,
which express the dependencies of critical Rayleigh number Rc, critical hori-
zontal wave number ac, and critical angle of inclination of the rolls γc on El-
sasser number Λ. The main aim of this paper is to investigate the influence of
the anisotropy of diffusive coefficients on the onset of rotating magnetoconvec-
tion. Therefore, various curves in the figures correspond to various values of
anisotropy parameter α, which is a measure of the anisotropy. For comparison
there is also the curve for the isotropic case with α = 1 in all figures.

Supposing the following range of input parameters (Elsasser number Λ ∈
(0.011, 100) and Ekman number in the z-direction, Ez = 3 · 10−7 (Ex = αEz))
only two types, SC and SO, of orientation of the rolls are possible, because rea-
sonably chosen values of Ez and Λ exclude the preference of P modes (see Fig.
2). The axes of the rolls are either perpendicular to the magnetic field (angle
γc is equal 90◦) or they are inclined to the magnetic field at some nonzero an-
gle. These two cases are distinguished by various types of curves. For mutual
comparison of the influence of the anisotropies (Fig. 3) three different values
of anisotropy parameters are chosen, α = 1., 0.5, 0.1 (for completeness So is
represented only by one α = 10). Various orientations of the rolls are distin-
guished by the type of the curves, dashed lines for cross rolls, solid lines for
oblique rolls in SA anisotropy case and dotted lines for oblique rolls in the BM

anisotropy case. The cross rolls are affected only by SA anisotropy, so in the BM
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Figure 3: Comparison of both types of anisotropy. Dependence of a) critical
Rayleigh number Rc, b) critical horizontal wave number ac and c) critical angle
between rolls and basic magnetic field γc, on Elsasser number in the case of
stratification anisotropy (SA) and anisotropy by Braginsky and Meytlis (BM).
Cross rolls — dashed curves, oblique rolls — solid curves (SA), dotted curves
(BM).

anisotropy case there is only one line for cross rolls, identical with the isotropic
case α = 1. If we look at the equations (23, 24b) which are the formulas for
the Rayleigh number R, we can see that the anisotropy parameter α is in the
BM anisotropy case always multiplied by l2 — the square of the horizontal wave
number l. The horizontal wave number l is zero for rolls perpendicular to the
y oriented basic magnetic field. This proves the loss of dependence of the cross
rolls properties (e.g. Rayleigh number value) on BM anisotropy. Therefore, we
focus our attention on the oblique rolls, i.e. on the solid and dotted lines for
the anisotropy parameter values α = 0.5 and α = 0.1 (and, of course, also to
isotropic α = 1).

We can see from the Figure 3a, that both BM and Sa facilitate convection
by decreasing the critical Rayleigh number Rc (the o type anisotropy, So with
α > 1, impedes the onset of the convection, because it increases the Rc). Sa

anisotropy facilitates convection more effectively than BM anisotropy, because
the critical Rayleigh number is smaller in the Sa anisotropy case. This difference
is the most evident for Λ = O(1) and decreases for greater values of Λ. The
values of Λ for the change of preference (from cross to oblique rolls) are smaller
for the BM anisotropy case. The Figure 3b shows, that the difference between
critical horizontal wave numbers ac in the SA case and BM case is small. The
critical horizontal wave number is slightly greater in the BM anisotropy case.
This difference gradually disappears for the greater values of Λ.

We can see very clearly in the Figure 3c, that the most substantial difference
between the influence of the two types of anisotropy on the magnetoconvection
is the effect of anisotropies on the boundary value of Λ, for which the transition
from cross to oblique rolls occurs. For example, in the case of relatively strong
anisotropy (α = 0.1) the boundary values of Λ differ by one order of magnitude
for the two cases of anisotropy. We can conclude, that the critical angle γc is
smaller in the BM anisotropy case and the difference between the SA and BM

anisotropy cases again disappears for greater values of Λ.

6 Nonstationary convection, Numerical Results

From the geophysical point of view it is more interesting to analyse the influence
of anisotropy on the time dependent instabilities. These instabilities are named
nonstationary convection (in some papers also overstability). Nonstationary
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convection in this model has the form of waves propagating in a certain direction
(given by the basic input conditions) to the basic magnetic field (oriented in the
y direction), where the angle between the magnetic field and the axes of the
rolls is again one of the outputs of this study. The waves are determined by two
wave numbers for two horizontal directions x and y and by frequency σ. Both
magnetic field and rotation have a stabilizing effect on the fluid, because both
can act as restoring forces on displaced fluid parcels and so provide a basis for
possible wave motion in the fluid. Therefore, we might expect wave motions to
be important in MHD systems such as the Earth’s core, stars, the Sun, . . . There
are many evidences for wavelike motions from measurements of magnetic field
on the surface and from modeling of the field on the CMB. Waves are therefore
a natural response of fluid systems to perturbations.

6.1 The Λqz regime diagrams

In the investigation of nonstationary convection new input parameters, Prandtl
numbers, i.e. Roberts number, q, and inverted magnetic Prandtl number, p, ap-
pear in the system. Parameter space involves then q and p as well as Λ and E.
More precisely, in anisotropy studies4 we have pz, qz , Ez and α instead of p, q,
and E. The regime diagram changes from three-dimensional in the steady case
to a more complicated five-dimensional in nonstationary convection. If we want
to investigate the influence of anisotropy on the regime diagram of overstable
modes in the simplest case, we will consider ideal electrically and thermally
conducting and stress free boundaries (as an illustrative case). Further simplifi-
cation is neglecting of the inertial forces and especially consideration of the often
used inviscid approach (E = 0). In that case the two-dimensional Λqz regime
diagram is de facto a cross section of the general three-dimensional diagram
ΛEzqz in the plane Ez = 0. In the following Figure 4 there are the two Λqz

Figure 4: Regime diagrams in the cases of both types of anisotropy, a) SA and
b) BM. Regime diagrams show the regions in the Λqz plane with the preferred
type of convection in the inviscid case, Ez = 0. (The position of symbols SO, SC,
OO and OC corresponds to correct regions bounded by solid lines for isotropic
case.)

regime diagrams derived numerically. Some important details in the diagrams
have been confirmed asymptotically, but we do not present it.

The Figures 4ab show the influence of two anisotropies on this diagram. The
curves on these figures represent boundaries between areas with a preferred type
of orientation of the rolls. We consider like in [13, 9] four regimes

SC ⇒ Steady Cross roll is preferred;

4In subsection 3.1 we have already defined (12) anisotropic Prandtl numbers p = pz and
ζ = q−1

z .
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SO ⇒ Steady Oblique roll is preferred;

OC ⇒ Overstable Cross roll is preferred;

OO ⇒ Overstable Oblique roll is preferred.

The influence of the stratification anisotropy is described in the Figure 4a.
Various types of curves correspond to different cases of SA anisotropy (different
values of the anisotropy parameter α) and the isotropic case has solid curves.
The boundary between the SO and OO regimes is vertical line independent of
the Elsasser number Λ and it is in essence a concrete number, qz = q∗z . This
boundary is not an existence boundary of overstable modes, but the bound-
ary of preference. The boundary between the SO and SC regimes is a line,
Λ = Λ∗(α), independent of qz (steady convection is always independent of the
Roberts number), where Λ∗(α) is an increasing function of α. This fact was dis-
cussed with Fig. 2 for Ez = 0 in the case of the ΛEz regime diagram for steady
convection, too. Boundary OO-OC is again a line representing linear depen-
dence Λ = Λ(qz) with inclination increasing with α. The remaining boundaries
between regimes SO-OC and SC-OC are complicated curves, Λ = Λ(qz), and
their analytical derivation is also complicated. The main task is to investigate
how these boundaries are changed under the influence of the anisotropy of the
diffusive coefficients. At first sight one can see that SA anisotropy changes the
boundaries only quantitatively — the basic nature is preserved. The whole set
of boundaries for fixed α is shifted towards the smaller Roberts numbers and
greater Λ in the oceanic type anisotropy (So, α > 1). In the case of atmospheric
type (Sa, α < 1) it is shifted towards the greater Roberts numbers and smaller
Λ.

The second Figure 4b describes the influence of BM type anisotropy on the
regime diagram. Solid lines are related to the isotropic case and the remain-
ing anisotropic cases are distinguished by different types of curves. Comparing
with the previous Figure 4a one can see that BM anisotropy changes the regime
diagram not only quantitatively but even qualitatively. The main difference is
related to the SO-OO boundary, which is a simple vertical line qz = q∗z indepen-
dent of the Elsasser number only in the isotropic case. Even weak anisotropy
(α = 0.9) changes it into the curve Λ = Λ(qz). The obliqueness increases
with increasing anisotropy. The next important difference from the SA case is
connected with the OC-OO boundary, which is independent of the anisotropy
parameter, the same like the isotropic case. The boundary between SO and SC
is similarly a horizontal line like from the SA anisotropy case in the previous
Figure 4a. However, this similarity of boundaries SO-SC in SA and BM type
anisotropies is not obvious in non-zero Ez cases as is seen in Fig. 2, showing
the regime diagram in the ΛEz-plane for steady convection. The most probable
reason is in the well known big difference between the case, E → 0, and the here
considered case, E = 0. The remaining boundaries between the regimes SO-OC
and SC-OC are again complicated curves Λ = Λ(qz) as in SA anisotropy.
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6.2 The dependence of Rc, ac, σc, and γc on Λ

Similarly to the case of steady convection our attention is focused on the in-
fluence of anisotropy on the dependencies of the basic parameters of instability
(critical Rayleigh number Rc, critical horizontal wave number ac, critical angle
γc and critical frequency σc) on input parameters decribing the basic state (El-
sasser number Λ, Ekman number Ez and anisotropy parameter α, but for fixed
values of the Prandtl numbers, ζ and p). The following results are presented in
the form of figures of dependencies of Rc, ac, σc and γc on the Elsasser number
for constant Ekman number (or dependencies on the Ekman number with con-
stant Elsasser number), when the inertial forces are considered (non-zero Rossby
number). Various strengths of anisotropy are represented by various curves in
the figures (curves are labeled by value of the anisotropy parameter α).

Figure 5: The influence of BM type anisotropy on nonstationary convection. a)
critical angle between rolls and basic magnetic field γc and b) critical frequency
σc as functions of Elsasser number Λ for constant Ekman number Ez = 3 ·10−7.

The Figures 5ab show γc and σc as functions of Λ for the high rotation
case, Ez = 3 · 10−7, in BM type anisotropy (Rc and σc are not presented in
figures, see comment below.). Seven curves refer to seven various values of the
anisotropy parameter α = 1, 0.7, 0.6, 0.55, 0.5, 0.3, 0.1. Obviously, at α values,
0 < α < 1, typical for BM anisotropy, it is valid that the smaller anisotropy
parameter α, the stronger the anisotropy, i.e. at α → 0 the BM anisotropy is
the strongest one, and at α → 1 is the weakest one. At first sight a considerable
effect of the anisotropy is seen in particular in the reduction of the existence
interval of Λ in which the instabilities can occur. The interval decreases from
the right side and the left side is independent of anisotropy. This means that
even strong BM anisotropy can not change the fact that overstable modes exist
only for sufficiently strong magnetic field (i.e. the Elsasser number has to be
large enough; see the left-hand end of the curves). In the first Figure 5a one can
see that nonstationary convection starts to exist as cross rolls (γc = 90◦) at a
certain value of Elsasser number, but for greater values of Λ the rolls are more
oblique to the direction of magnetic field. The frequency is independent of the
Elsasser number only in the isotropic case, but in anisotropic cases the frequency
is a decreasing function of Λ with a sharp drop to zero, which is seen in the
Figure 5b. The value of Λ for this sharp drop is an increasing function of the
anisotropy parameter α, meaning that this value is smaller for the stronger BM

type anisotropy. This limitation of overstable modes existence is also evident
from the Figure 5a as the sharp right-hand end of the curves. This is one of
the important discovered influences of BM type anisotropy, because there is no
indication for this property in the isotropic case or in SA type anisotropy. The
critical Rayleigh number Rc and critical horizontal wave number ac as functions
of Λ are not shown, because there is no influence on these dependencies in the
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case of BM anisotropy for very small Ez = 3 · 10−7 as well as in the isotropic
case [9, 13]. Rc is not dependent on Λ (and nor α for OO - overstable oblique
modes), because Rc = 6ζ

√
3π2 (

.
= 51.28 for ζ = 0.5 where ζ is q−1

z ). Similarly,
the critical horizontal wave number ac has the same feature. Moreover, ac =
π
√

2
.
= 4.44 is constant and even it does not depend on ζ like Rc. There is

another reason to not show the dependencies of Rc(Λ) and ac(Λ). Varying
length curves of these dependencies at different α for BM anisotropy overlap
and therefore are indistinguishable.

Figure 6: The influence of BM type anisotropy on nonstationary convection. a)
Critical Rayleigh number Rc, b) critical horizontal wave number ac, c) critical
frequency σc and d) critical angle between rolls and basic magnetic field γc as
functions of Elsasser number Λ for constant Ekman number Ez = 10−3.

Next Figure 6 shows the same dependencies (now also including Rc and ac

as functions of Λ) again in the fast rotation case, but now for higher values of
the Ekman number Ez = 10−3, but for the same Prandtl numbers p = 0.9 and
ζ = 0.5 like in Fig. 5. Various curves correspond to values of the anisotropy
parameter α = 1, 0.7, 0.6, 0.55, 0.5, and 0.3, as for smaller Ez = 3 · 10−7 in this
BM case.

The effect of BM anisotropy is obvious from all four Figures 6abcd and the
differences between isotropic and anisotropic cases increase more strongly with
increasing anisotropy than for the much smaller Ekman number Ez = 3 · 10−7

case. Equally as in the preceding case of smaller Ez (Fig. 5) BM anisotropy
affects non favourably the onset of nonstationary convection from a particular
point of view, because it narrows the existence interval of the Elsasser num-
ber. From the Figure 6a one can see that the minimal value of Λ for existence
of overstability slightly decreases, but the critical Rayleigh number increases
for increasing anisotropy. The critical horizontal wave number ac has similar
behaviour; it is a slightly increasing function of BM anisotropy. Critical frequen-
cies are decreasing functions of the Elsasser number and have small values. The
sharp drop of frequencies and subsequent end of the existence of overstability
for higher values of the Elsasser number is seen for all the considered values
of the anisotropy parameter α. The value of Λ at which the sharp drop of fre-
quency occurs is a decreasing function of BM anisotropy (the smaller anisotropy
parameter α, the smaller Λ).

The same dependencies were investigated also in the case of stratification
anisotropy. The influence of this SA type anisotropy on nonstationary convec-
tion is very simple and therefore is not presented in figures. The critical Rayleigh
number Rc as well as the critical horizontal wave number ac are not influenced
by SA type anisotropy and have the same value as in the isotropic case [9, 13]
(Rc = 6ζ

√
3π2 where ζ is q−1

z and ac = π
√

2
.
= 4.44). Both critical numbers

together with the critical frequency σc are independent of the Elsasser number
Λ. The critical frequency is a decreasing function of Sa type anisotropy, as in
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the case of BM type anisotropy. Thus the smaller the anisotropy parameter α,
the smaller the critical frequency σc.

6.3 The dependence of Rc, ac, σc, and γc on Ez

Figure 7: The influence of BM type anisotropy on nonstationary convection. a)
Critical Rayleigh number Rc, b) critical horizontal wave number ac, c) critical
frequency σc and d) angle between rolls and basic magnetic field γc as functions
of Ekman number Ez for constant Elsasser number Λ = 3.

The next Fig. 7 is again related to the BM case, but shows Rc, ac, σc

and γc as functions of the Ekman number Ez for the constant Elsasser number
Λ = 3. The Prandtl numbers p = 0.9 and ζ = 0.5 are the same like in other
nonstationary studies presented in Figures 5 and 6.

The critical Rayleigh number Rc is for smaller Ekman number Ez not depen-
dent on it and is not influenced by BM anisotropy. The slight dependence of Rc

on Ez and α is only for the greater Ez > O(10−5). For smaller Ekman numbers
the critical horizontal wave number is not influenced either by the anisotropy
or by the Ekman number alone. However, for Ekman numbers greater than
Ez = O(10−5) the influence of anisotropy starts to be evident and the hori-
zontal wave number behaves as an increasing function of the Ekman number
for the case of strong anisotropy (α = 0.01) as well as a decreasing function
of the Ekman number for weak anisotropy up to the isotropic case (α = 1),
with a smooth transition between these two behaviours. We can see similar be-
haviour in the Figure 7d where the critical angle γc is a function of anisotropy
but independent of the Ekman number for small Ekman numbers. For greater
Ez the dependence on Ez itself appears and the effect of BM anisotropy is also
qualitative. In the isotropic case the angle γc increases with increasing Ekman
number so the rolls tilt into the direction perpendicular to the magnetic field.
BM anisotropy changes this behaviour into the opposite one — for greater Ek-
man numbers the rolls tilt into the direction parallel to the magnetic field (the
angle γc decreases). The third Figure 7c shows that sharp drop of frequency
occurs for the cases of stronger anisotropy, the nonstationary convection does
not exist for values of the Ekman number greater than the value at which the
frequency reaches zero (this value is an increasing function of the anisotropy
parameter α). The BM type anisotropy handicaps the overstability by reducing
the range of Ekman numbers at which the overstability exists (similar to the
case of the Elsasser number).
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7 Conclusions

The influence of anisotropy of the diffusion coefficients (thermal diffusion and
viscosity) on the marginal stability of a horizontal planar layer of electrically
conducting fluid has been studied. The layer is permeated by a horizontal
homogeneous magnetic field and rotates about a vertical axis of rotation. This
model was employed by Roberts and Jones [13, 9] and also by Eltayeb [5, 6].
Considering yet the isotropic diffusion we advanced these studies by including
two types of anisotropic diffusive coefficients, SA — stratification anisotropy
(νzz 6= νxx = νyy, κzz 6= κxx = κyy) and BM — the anisotropy of Braginsky
and Meytlis [1] (νzz = νyy > νxx, κzz = κyy > κxx).

Three regimes, as in [13, 9, 5, 6], are possible in the case of steady convection:
P – rolls parallel to the magnetic field; SO – oblique rolls; and SC – cross rolls.
Both types of anisotropy influence the ΛEz regime diagram (Fig. 2). The
boundaries between individual regions of preference are more affected by BM

anisotropy than by SA anisotropy in comparison with the isotropic case. SA

anisotropy of atmospheric type enhances the effect of the Lorentz force and
weakens the effect of the Coriolis force. In BM anisotropy the change of these
boundaries is not only quantitative (the boundaries are only shifted in the SA

anisotropy case), but the boundaries are changed also qualitatively because their
shape is changed. The influence of BM anisotropy on the effect of the Lorentz
and Coriolis forces is thus more substantial than in the SA anisotropy case.
SA anisotropy of atmospheric type facilitates convection more effectively than
BM anisotropy, because the critical Rayleigh number is smaller in this SA case.
Critical horizontal wave numbers are slightly greater in the BM anisotropy case
than in the SA and isotropic cases. The differences between the influence of SA

and BM anisotropy are the most evident for Λ = O(1) and decrease for greater
values of Λ.

Supposing nonstationary convection new input parameters appear. Ne-
glecting inertial forces and considering an inviscid approach the influence of
both types of anisotropy on the Λqz regime diagram has been studied. Four
regimes are compared, as in [13, 9, 5, 6]: steady cross rolls (SC); steady oblique
rolls (SO); overstable cross rolls (OC), and overstable oblique rolls (OO). SA

anisotropy changes the boundaries between regimes only quantitatively — the
basic nature is preserved (in comparison with the isotropic case [13]). The re-
gion boundaries are shifted towards the smaller Roberts numbers and greater
Elsasser numbers in the case of oceanic type anisotropy (α > 1), and in atmo-
spheric type (α < 1) they are shifted in opposite directions. BM anisotropy
changes the regime diagram not only quantitatively but even qualitatively. In
BM anisotropy the OC-OO boundary is independent of the anisotropy param-
eter and is the same as for the isotropic case.

The influence of anisotropies on critical numbers (Rc, ac, γc and σc) as func-
tions of the Elsasser number Λ and the Ekman number Ez has been also inves-
tigated. In the case of very small Ez = 3 · 10−7 the critical Rayleigh number Rc

is not dependent on Λ (and nor α for OO - overstable oblique modes), because
Rc = 6ζ

√
3π2 (

.
= 51.28 for ζ = 0.5). Similarly, the critical horizontal wave num-
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ber ac has the same feature. Moreover, ac = π
√

2
.
= 4.44 is constant. These

features hold for both anisotropies. It means, that anisotropy does not change
the preference of the overstable modes in the very small Ez = 3 · 10−7 case.

The effect of BM anisotropy is more substantial for larger Ekman number
Ez = 10−3 (Fig. 6). The difference between the isotropic and anisotropic
BM cases increases more strongly with increasing anisotropy than for the much
smaller Ekman number Ez = 3 · 10−7 case. Rc and ac are no longer simple
constants, but both are functions of Λ and the anisotropy parameter α.

There is one unique property of BM anisotropy (in comparison with the SA

or/and isotropic cases). BM anisotropy handicaps the overstability by reduc-
ing the ranges of the Elsasser number as well as the Ekman number at which
overstability occurs (see e.g. drops of frequencies in Figs 5 - 7 in curves σc(Λ)
and σc(Ez)). This reduction is in the sense that greater the BM anisotropy, the
smaller the maximum Λ and Ez at which nonstationary convection ceases to
occur.

We expect that additional study (in preparation) of anisotropic diffusivities
influence on rotating magnetoconvection matched to equatorial regions will re-
veal other interesting facts.
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