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Determining the time-variable part of the toroidal geomagnetic field in the core-mantle
boundary zone

J.M. Hagedoorna, H. Greiner-Maia, L. Ballania

aHelmholtz Center Potsdam, GFZ German Research Center for Geosciences, Section 1.5: Earth System Modelling, Telegrafenberg, D-14473 Potsdam, Germany

Abstract

For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the core-
mantle boundary (CMB). It can be divided into linearly independent poloidal and toroidal parts. As shown by previous investiga-
tions, the toroidal field produces more than 90 % of the EM torque. It can be obtained by solving the associated (toroidal) induction
equation for the electrically conducting part of the mantle, i.e. an initial boundary value problem (IBVP). The IBVP differs basically
from that for the poloidal field by the boundary values at the interface between lower conducting and upper insulating parts of the
mantle: the toroidal field vanishes, the poloidal field continues harmonically as potential field towards the Earth surface. The two
major subjects are to find a suitable algorithm to solve the IBVP and to compute the toroidal geomagnetic field at the CMB. Com-
pared to the poloidal field, the toroidal field at the CMB cannot be inferred from geomagnetic observations at the Earth’s surface.
In this study, it is inferred from the velocity field of the fluid core flow and the poloidal field at the CMB using an approximation
which is consistent with the frozen-field approximation of the geomagnetic secular variation. This investigation differs from earlier
ones by: (i) inferring the poloidal field at the CMB from the observed geomagnetic field using a rigorous inversion of the associated
(poloidal) induction equation on which the fluid-flow inversion is based to determine consistently the surface flow velocities at
the CMB, (ii) applying orthonormal spherical harmonic functions for the representation of the fields and torques, (iii) solving the
IBVP numerically by a modified Crank-Nicolson algorithm, which (iv) allows us to highlight the influence of this approach on the
resulting EM coupling torques. In addition to an outline of the derivations of the theoretical formalism and numerical methods, the
time-variable toroidal field at the CMB is presented for different conductivity models.
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1 Introduction

The toroidal geomagnetic field is bound to electrically conducting parts of the
Earth and zero (not observable) outside. It plays a decisive role in dynamo
theory, but also in electromagnetic core-mantle coupling. In this paper, we
will present theoretical derivations and results obtained for the computation
of the toroidal field within the framework of our study of EM core-mantle
coupling, i.e. its determination as a prerequisite for the computation of EM
torques, which are additionally presented here.

Different approaches were chosen to estimate the toroidal geomagnetic
field in the Earth’s mantle and/or core in the past. In some studies (e.g.
Celaya and Benton, 1991; Love and Bloxham, 1994) EM coupling is used
to relate the observed variations in length-of-day (LOD) to the necessary
geomagnetic field in the Earth’s mantle, assuming that EM coupling is the
sole mechanism which causes LOD variations on decadal time scales. Be-
side this assumption, their approach is also limited to the steady fluid flows
at the core-mantle boundary (CMB). This restrictive assumption and their
problematic interpretation is discussed in Holme (1998a).

Other investigations are focused on the determination of the toroidal ge-
omagnetic field in the core and consider also the CMB as a boundary with
special conditions. For example, Levy and Pearce (1991) use measurements
of the electrical potential in newly constructed submarine telegraph cables
and use Green’s functions to determine the boundary values at the CMB
and the toroidal geomagnetic field in the core. Zhang and Fearn (1993) esti-
mated the toroidal geomagnetic field based on stability investigations of the
magneto-hydrodynamics of the outer core. A similar study was performed
by Bhattacharyya (1995).

Our study follows the idea to set up proper boundary conditions at the
CMB to determine the toroidal geomagnetic field. This idea was earlier
published by Stix and Roberts (1984), but in contrast to our rigorous time-
dependent formulation and solution they have introduced an iterative tech-
nique for the field determination.

In general, EM torques within the conducting regions of the Earth’s man-
tle are produced by the Lorentz forces originated by the interaction of electric
currents with the internal geomagnetic field. These currents are induced by
temporal variations of the geomagnetic field in the mantle or leak from the
core into the mantle. By using Ohm’s law to express the current density,
j, by the electric field, E, and eliminating the electric field in the Maxwell
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equations by the magnetic flux, B, we obtain a differential equation of second
order for B, which is the so-called induction equation:

1

µ0

curl

(

1

σM

curl B

)

+
∂

∂t
B = 0. (1)

In eq. (1), µ0 is the permeability of vacuum. B fulfils the additional condition:
div B = 0. The induction equation is the basic equation describing how the
geomagnetic field penetrates the conducting part of the mantle.

As shown by e.g. Jacobs (1987, Sec. 1.3.2), the vector B can be di-
vided linearly independent into poloidal, BP, and toroidal, BT, parts: B =
BP+BT. For a radially dependent mantle conductivity, σM(r), the induction
equation of the mantle can be divided adequately into independent induc-
tion equations for BP and BT, respectively. The notation ”poloidal” and
”toroidal” introduced for vector fields has been extended to the EM torque
(e.g. Stix and Roberts, 1984) to identify whether the associated part of the
torque is produced solely by the poloidal field or by a combination of BP

and BT. It has been shown by several authors (e.g. Stix and Roberts, 1984;
Greiner-Mai, 1993) that for physically reasonable values of σM the toroidal
torque produces nearly the whole EM torque.

As shown by Rochester (1962), and recently by Hagedoorn and Geiner-
Mai (2008), the EM torque can be represented by a surface integral over the
CMB (r = RCMB), in which B is required. Therefore, the major problem of
the torque computation is to infer the geomagnetic field at the CMB from
its representations at the Earth’s surface by the solution of the respective
induction equation.

The associated initial-boundary value problems (IBVP) for BP and BT

differ basically from each other. For BP the boundary value problem (BVP)
is a one-side or side-ways ill-posed inverse BVP (according to the notation in
inverse heat conduction theory, e.g. Ballani et al., 2002). For this case, the
boundary values at the interface between the conducting lower and insulating
upper mantle, r = Rσ (see also Hagedoorn and Geiner-Mai, 2008, Fig. 3.1),
can be inferred from the geomagnetic field at the Earth’s surface, r = RE,
by a harmonic downward continuation according to potential theory. The
IBVP to determine BP in the corresponding electrical conducting part of
the mantle is solved by the non-harmonic downward continuation (NHDC)
developed by Ballani et al. (2002).

In contrast, the IBVP for BT is a two-side forward BVP, for which the
boundary values are zero at Rσ, and those at RCMB cannot be inferred di-
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rectly from the observed geomagnetic field. In this second case, we calcu-
late boundary values of the third kind by applying an additional boundary
condition, derived from the continuity of the tangential component of E.
Thereby, we consider an approximation corresponding with the frozen-field
theory (e.g. Backus, 1969) of the secular variation (SV) of the poloidal field
(see Sec. 3.2). Based on this boundary values we solve rigorously the toroidal
induction equation (Sec. 2 and 3.3) as an IBVP, to calculate the values of
BT(RCMB) on the mantle side, necessary for the determination of the coupling
torques.

A precondition for the existence of currents and EM coupling torques
on the mantle itself, is a non-zero mantle electrical conductivity. Most of
the associated conductivity models are based on the assumption that regions
with significant conductivity are concentrated in thin shells near the CMB,
and are more or less reasoned by high pressure laboratory experiments (e.g.
Dubrovinsky et al., 2003), nutation theory (e.g. Buffett, 1992) and investi-
gations of EM torques (e.g. Holme, 1998b). A more detailed justification
for the conductivity models chosen in our EM torque studies is given in a
preliminary investigation of Greiner-Mai et al. (2007) (see also Sec. 4).

Our study is based on: (i) a rigorous inversion of the induction equa-
tion of the mantle, developed by Ballani et al. (2002) and Greiner-Mai et al.
(2004) by which the poloidal geomagnetic field in the core-mantle boundary
region can be inferred from the observed geomagnetic surface field; (ii) the
reformulation the orthonormal complex spherical harmonic (SH) functions
according to Varshalovich et al. (1989), to obtain analytical expressions of
EM torque components in dependence of the SH coefficients of the defining
scalars of BP and BT (Sec. 2); (iii) development of a numerical method to
solve the IBVP for BT which we will present here in Sec. 3.3. Compared
with earlier investigations (e.g. Stix and Roberts, 1984; Greiner-Mai, 1987;
Holme, 1998a) using quasi-stationary solutions, our solution is also rigorous
with respect to the initial value problem. The formalism, the numerical im-
plementation and corresponding derivations are described in Hagedoorn and
Geiner-Mai (2008) so that we will refer to this monograph for more details.
For the numerical calculation we use satellite supported geomagnetic field
representations (Wardinski and Holme, 2006) with a high temporal resolu-
tion appropriate for the numerical method applied. We present results for
toroidal fields at the CMB in Sec. 5 using preliminary conductivity models
(see Sec. 4.2) and, for comparison, results from the perturbation approach
used frequently (e.g. Stewart et al., 1995). Moreover, we show the related

3
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EM coupling torques based on the different approaches for the computation
of the toroidal geomagnetic field at the CMB.

2 The induction equation of the toroidal field

The derivation of the induction equation (1) is only indicated, therefore, we
summarize here the related equations. The fundamental equations for the
derivation are the so-called pre-Maxwell equations (e. g. Backus, 1986),

curl B = µ0j, (2)

div B = 0, (3)

curl E = −
∂

∂t
B, (4)

and Ohm’s law

j = σE. (5)

Here, we assume a radially dependent conductivity profile, σM(r), which leads
considering Ohm’s law and eqs. (2) and (4) to

1

µ0

curl

(

1

σM

curl B

)

+
∂

∂t
B = 0. (6)

Furthermore, the geomagnetic field is divergence free (see eq. (3)) and
can, therefore, be decomposed into its poloidal and toroidal parts by

B = BP + BT = curl curl
(

r S
)

+ curl
(

r T
)

, (7)

where the functions S and T are the so-called field-generating scalars. These
scalars are normalized in the way that their surface integral over the CMB
vanishes (e.g. Krause and Rädler, 1980), which writes e. g. for T

∫

Ω

TdΩ = 0, (8)

where dΩ denotes the spherical surface element.
Assuming an only radially varying conductivity profile, σM(r), allows us to

split the induction equation into independent poloidal and toroidal contribu-
tions. Using the definition in eq. (7) and some rules about the decomposition

4
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into poloidal and toroidal contributions, the toroidal part of the induction
equation (6) is given by

1

µ0

curl

(

1

σM

curl curl
(

r T
)

)

+
∂

∂t
curl

(

r T
)

= 0, (9)

which reads after some mathematical manipulations (see Appendix A.1)

r × grad

[

1

µ0σM

(

∆T −
1

rσM

d

dr
σM

∂

∂r

(

rT
)

−
∂

∂t
T

)]

= 0. (10)

The vector product shows a sole r-dependence of the expression (10) in the
brackets. With the normalization of the field-generating scalar T in eq. (8),
from which also follows

∫

Ω
∆T dΩ = 0 , we can conclude

∫

Ω

1

µ0 σM

[

∆T −
1

rσM

d

dr
σM

∂

∂r

(

rT
)

−
∂

∂t
T

]

dΩ = 0 . (11)

From r × grad[f(r, Ω)] = 0, we can conclude in this line of arguments that
f(r, Ω) = g(r) vanishes identically, i.e. eq. (10) is only satisfied if

1

µ0 σM

(

∆T −
1

rσM

d

dr
σM

∂

∂r

(

rT
)

−
∂

∂t
T

)

= 0 . (12)

The spherical harmonic (SH) representation of the field-generating scalar T
is given by

T (r, Ω) =

jmax
∑

j=1

j
∑

m=−j

Tjm(r)Yjm(Ω), (13)

where the orthonormal spherical harmonic base functions, Yjm, are defined
according to Varshalovich et al. (1989, Chap. 5). The scalar induction equa-
tion (12) in SH representation can then be reduced to the following expression
for each degree, j, and order, m:

∂2

∂r2
Tjm(r, t) +

[

2

r
−

1

σM(r)

∂

∂r
σM(r)

]

∂

∂r
Tjm(r, t)

−

[

j(j + 1)

r2
+

1

rσM(r)

∂

∂r
σM(r)

]

Tjm(r, t) =

µ0σM(r)
∂

∂t
Tjm(r, t). (14)

More details of the derivation are given in Appendix A.1.

5
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3 The initial boundary value problem for the

toroidal field

In contrast to the BVP for the poloidal geomagnetic field, BP, no direct
observed boundary values exist for the toroidal geomagnetic field, BT, be-
cause it vanishes outside of an electrical conductor. The necessary boundary
value of T at the CMB must be inferred e. g. from known field quantities at
the CMB. Here, we consider only that part of BT which is produced by the
interaction of the core motion with the poloidal field at the top of the core,
giving the (small) variable part of the toroidal field. In this approach, we
have to consider two restrictions: (i) we cannot quantify the toroidal “main
field” and must, therefore, restrict to the time variable part of deduced quan-
tities, and (ii) the resulting field is afflicted with the problem of ambiguity
of the inversion of the frozen-flux equation by which the velocity field will be
determined. The first restriction is not crucial, if we want to determine the
EM coupling torques, because for such investigations only the variation of
the torque and the observed Earth’s rotation will be considered. In contrast,
the second restriction affects our approach of EM coupling torque determi-
nation by the non-uniqueness of the necessary fluid-flow at the CMB, which
is determined from the poloidal geomagnetic field and its time derivative at
the CMB. This is discussed in Sec. 3.2 in more detail.

Primarily, we use the continuity of the tangential component of the elec-
tric field as boundary condition. From it, a boundary value for ∂ T/∂r can
only be inferred. T (r = RCMB) itself must then be calculated by the solution
of the related IBVP for which this additional boundary condition is used
instead one for T itself.

3.1 Derivation of the boundary conditions for T

For any boundary at which the electrical conductivity changes, the magnetic
flux B is continuous (e.g. Jacobs, 1987, Sec. 3.2.1). The poloidal and toroidal
parts of the magnetic flux are linearly independent. Therefore, the continuity
is valid for the toroidal part:

[

BT
]+

−
= 0. (15)

The notation [. . .]+
−

denotes the difference between the related values infinites-
imal above (+) and below (−) of the considered boundary. For the derivation

6
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of the boundary conditions for T , the relation between it and the toroidal
flux, BT, in eq. (7) is used in eq. (15):

[

−r × gradT
]+

−
= 0,

which leads to

−r × grad
(

T+
− T−

)

= 0. (16)

The expression in parentheses in eq. (16) is independent of ϑ and ϕ due to
the vector product of r and the differential operator grad, which leads for a
fixed r to a constant value:

(

T+
− T−

)

= const.

Considering the integral normalization of T in eq. (8), we can conclude that
the constant is zero, i.e.

T+ = T−.

Due to the orthonormal definition of the SH representation of T (see eq. (13)),
the first boundary condition is

T+
jm = T−

jm. (17)

Beside the continuity of BT, respectively Tjm, we have to introduce a
second boundary condition at the CMB for the solving of the IBVP for Tjm.
That is the continuity of the tangential component of the electrical field at
the CMB (e.g. Greiner-Mai, 1986) which reads

r ×
(

E+
− E−

)

= 0. (18)

To relate this boundary condition for the electrical field to the field-generating
scalar T , we express the electrical field above and below the CMB by j from
eq. (5), and express j by B using eq. (2). In this way, we find for the electrical
field above the CMB (in the mantle)

E+ =
1

µ0σM

curl B+, (19)

7
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For the electrical field below the CMB, we have to consider additional contri-
butions to the current density due to the relative velocity, u, of the conduct-
ing liquid outer core material and, for a general description, an additional
electrical field generated by possible turbulent flows, EF:

j− = σC

(

E− + u × B− + EF
)

, (20)

where σC is the electrical conductivity in the fluid outer core. Hereby, we
find for the electrical field below the CMB the expression

E− =
1

µ0σC

curl B−
−

(

u × B−
)

− EF. (21)

For the further derivation, we define analogously to eq. (7) field-generating
scalars for the additional quantities in eq. (21). Here, we must consider that
u × B is not divergence free and must be represented by three scalar func-
tions. According to e. g. Krause and Rädler (1980, Sec. 13.4), the following
decompositions

(

u × B−
)

P

= r V + grad W, (22)
(

u × B−
)

T

= curl
(

r U
)

, (23)

EFP = r V F + gradW F, (24)

EF T = curl
(

r UF
)

, (25)

are introduced and the related field-generating scalars U and V are normal-
ized like T in eq. (8), that their surface integral over the CMB is identically
zero.

The combination of the expressions (19)–(21) with the additional bound-
ary condition in eq. (18) gives

r ×

[

1

µ0σM

curl curl
(

r T+
)

−
1

µ0σC

curl curl
(

r T−
)

+r V + gradW + r V F + grad W F

]

= 0. (26)

Applying the relation in eq. (51) from Appendix A.1 to curl curl(r T ), we
obtain

r × grad

(

1

σM

[

∂

∂r
(rT )

]+

−
1

σC

[

∂

∂r
(rT )

]

−

+ µ0W + µ0W
F

)

= 0. (27)

8
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To fulfill the condition in eq. (27) at the CMB (r = RCMB) the expression in
the parentheses has to be constant. Due to the general representation of (u×

B) in eqs. (22)–(23), it is only possible to set up two normalization conditions
for V and U . The field-generating scalars W and W F are determined by
(u × B) except for arbitrary integration constants. It is possible to choose
this additive constants, so that the following second boundary condition for
T holds:

1

σC

[

∂

∂r
(rT )

]

−

−
1

σM

[

∂

∂r
(rT )

]+

= µ0

(

W + W F
)

. (28)

We introduce further approximations to reduce the boundary condition and
derive a boundary value of the third kind for T . First, we assume that
W F is identically zero, which means we neglect the contribution due to the
turbulent flow, which are normally of small scales. This corresponds with the
restriction of our investigation on decadal time scales. Moreover, we assume
that

σM

σC

[

∂

∂r
(rT )

]

−

∼= F

is temporally constant, which leads to

[

∂

∂r
(rT )

]+

∼= −µ0σM W + F. (29)

This simplification is based on the conception, that F is determined to a large
extent by the toroidal geomagnetic dynamo field, which varies very slowly
with time, where the variations on the decadal time scale considered here,
do not contribute significantly to F . This assumption was also suggested by
Jault and LeMouël (1991) and is analogous to the conventional separation
of BP into a main and secular variation field, where the different sources of
the geomagnetic field are related to the specific field (dynamo processes to
the “main field”, CMB surface flow to the secular variation field). Therefore,
we neglect F for the further investigation. With these assumptions, we can
only determine the time-variable part of T . A time-independent part of T
can not be determined by this approach, i. e. any leakage of the temporally
constant toroidal field of the outer core has to remain unconsidered. As
mentioned in Sec. 3, this assumption affects the resulting toroidal field but
not the variation of the computed EM coupling torques.

9
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Following this line of arguments, the second boundary condition for the
field-generating scalar T in eq. (28) can be transformed into a boundary value
of the third kind:

[

∂

∂r
(rT )

]+

= −µ0σM W. (30)

Due to the orthogonality of the SH, we can also conclude that the following
relation holds:

[

∂

∂r
(rTjm)

]+

= −µ0σM Wjm. (31)

3.2 Calculation of the boundary values at Rσ and R
CMB

Two boundaries are specified for the IBVP for the field-generating scalar T ,
where the first is the CMB, which prescribes the boundary between the solid
mantle and the fluid outer core at r = RCMB. The second boundary at r = Rσ

prescribes the boundary between the electrically conducting and insulating
mantle (see also Sec. 4).

At r = Rσ eq. (17) is valid. Moreover, the toroidal geomagnetic field is
zero in any electrically insulating part of the mantle, which leads to

T−

jm = T+
jm = 0 at r = Rσ. (32)

For the CMB (r = RCMB) eq. (17) is also valid, but it is not possible to
determine T−

jm inside the outer core directly from any observation. There-
fore, we can only determine the boundary value of the third kind, given
in eq. (31), by calculating Wjm from the poloidal geomagnetic field, BP,
and the fluid-flow velocity, u, at the CMB. The field-generating scalar S,
representing BP at the CMB, is obtained by non-harmonic downward con-
tinuation (NHDC) of a global geomagnetic field model like C3FM (Wardinski
and Holme, 2006) according to Ballani et al. (2002). This non-harmonically
downward continued quantities are used afterwards for a fluid-flow inversion
according to Wardinski (2005) to determine the surface flow velocity u of
the outer core fluid close to the CMB. It is known, that such an inversion is
non-unique and needs additional constraint for the flow velocity determina-
tion. As by Wardinski (2005), here is assumed tangential geostrophy for the
resulting u. We use the surface velocity as input data for the determination

10
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of the boundary value which is therefore affected by this non-uniqueness of
the fluid-flow inversion. A comprehensive discussion of the related problems
of non-uniqueness in relation to the toroidal field and EM coupling torque
determination can be found in Holme (1998a).

From the general decomposition of (u × B) in eqs. (22) and (23), it
is straight-forward to derive the following relation for the angular part of
the Laplace operator in spherical coordinates, ∆Ω, applied on W (e.g. see
Hagedoorn and Geiner-Mai, 2008, Appendix D3)

∆Ω W = r · curl
[

r ×
(

u × B
)]

. (33)

The definition of ∆Ω and the derivation of the SH representation of W is
given in the Appendix A.2, which leads to

Wjm =
−1

j(j + 1)

∫

Ω

r · curl
[

r ×
(

u × B
)]

Y ∗

jm(Ω) dΩ. (34)

Here, Y ∗

jm denotes the complex conjugate of the SH. For the further deriva-
tion, we simplify the integral kernel and introduce scalars P and Q, repre-
senting the velocity field u at the CMB (see eqs. (61)–(62) in Appendix A.2).
Moreover, using the SH representation of the scalars S, P and Q analogue
to eq. (13), it is possible to reduce analytically the integral to a summation
of this SH coefficients and related coefficients, which can be expressed by
Clebsch-Gordan coefficients. This derivation is summarized in Appendix A.2
and leads to

Wjm =
−1

j(j + 1)

∑

klst

k(k + 1)Skl(t)
[

L
jm
klst Pst(t) −K

jm
klst Qst(t)

]

, (35)
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where the integral-representing coefficients (see also eqs. (65)–(66) in Ap-
pendix A.2) are given by

K
jm
klst =

1

2
[k(k + 1) − s(s + 1) − j(j + 1)]

·

√

(2k + 1)(2s + 1)

4π(2j + 1)
C

j 0
k 0 s 0 C

j m
k l s t, (36)

L
jm
klst =

i

2

√

(k + s + j + 2)(k + s − j)

·

√

(k − s + j + 1)(−k + s + j + 1)

·

√

(2k + 1)(2s + 1)

4π(2j + 3)
C

(j+1) 0
k 0 s 0 C

j m
k l s t. (37)

Here, C
j m
k l s t, denote the Clebsch-Gordan coefficients according to their defi-

nition in Varshalovich et al. (1989, Chap. 8) and
∑

klst is an abbreviation for
the summation over the degrees k and s and the related orders l and t.

Based on the SH representations for the field-generating scalars S, P and
Q at the CMB it is now possible to determine the boundary value of the
third kind in eq. (31) by eqs. (35)–(37).

3.3 Solving the IBVP for the toroidal field

The previous Sections 2 and 3.2 present the governing differential equation
and the related boundary values for the IBVP of the toroidal geomagnetic
field at the CMB and its SH representation by Tjm. To obtain a compact
form of the governing partial differential equation (14), we introduce the
following abbreviations:

Φ =

[

2

r
−

1

σM(r)

∂

∂r
σM(r)

]

, (38)

Θ =

[

j(j + 1)

r2
+

1

rσM(r)

∂

∂r
σM(r)

]

, (39)

Ψ = µ0σM(r). (40)

12
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Moreover, we use a reduced notation for the partial derivatives and neglect
all arguments of the field-generating scalar, according to:

T = Tjm(r, t), (41)

T,r =
∂

∂r
Tjm(r, t), (42)

T,rr =
∂2

∂r2
Tjm(r, t), (43)

T,t =
∂

∂t
Tjm(r, t). (44)

The initial-boundary value problem (IBVP) for the field-generating scalar T
in its SH representation for an electrically conducting mantle is set up by the
differential equation

T,rr + Φ T,r − Θ T − Ψ T,t = 0 (45)

and the boundary conditions at r = Rσ

T
+ = T

− = 0, (46)

and at r = RCMB

T
+ = T

− and
[

(rT),r

]+
= −µ0σMWjm. (47)

In addition, we need to prescribe an initial value for Tjm(r, t = 0).
The basic idea for the solution of the IBVP is to express all derivatives

in the describing differential equation by finite differences. This method can
be numerically implemented quite straight forward. We follow the common
approach of finite differences (e.g. Ciarlet and Lions, 1990, Chap. I.1) to solve
the partial differential equation (45) with respect to the spatial variable r, and
the time t. As initial value we have chosen the solution of the related quasi-
stationary problem (solving eq. (45) without the time-derivative). A detailed
description of the numerical implementation and the related derivation is
given in Hagedoorn and Geiner-Mai (2008, Sec. 4).
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4 Input data and electrical conductivity mod-

els

4.1 Preparation of input data

The observed poloidal geomagnetic field and its representation by time-de-
pendent SH coefficients, Sjm, at the Earth’s surface are the only given input
data for the computation of the toroidal geomagnetic field at the CMB. We
choose the representation C3FM of the geomagnetic field at the Earth’s sur-
face (Wardinski and Holme, 2006). This field model covers the time interval
of the calendar year 1980–2000 with monthly resolution and a spatial reso-
lution up to SH degree jmax = 15. For all calculations and visualizations, we
restrict the results and the related computation to the maximum SH degree
jmax = 8. By this, we want to ensure that all variations in the observed geo-
magnetic field (i.e. in the boundary condition) are related to processes in the
Earth’s core and are not significantly influenced by crustal magnetization or
other processes (e.g. Greiner-Mai et al., 2007).

In addition, we need for the determination of the toroidal geomagnetic
field the field-generating scalar of the poloidal geomagnetic field (S) at the
CMB and the generating scalars (P and Q) of the surface fluid-flow velocity,
u, in the outer core close to the CMB. We apply the NHDC considering
one of the conductivity models (RX, RZ, RA and RO) presented in Sec. 4.2,
to determine the poloidal geomagnetic field at the CMB. Wardinski (2005)
has set up a fluid-flow inversion approach, where this time variable poloidal
geomagnetic field is the main input. This method is applied here and we refer
to the related publication as well as to Wardinski et al. (2008). The results
discussed in Section 5 are based on those input data, where the fluid-flow
inversion is based on the poloidal geomagnetic field at the CMB, determined
by the NHDC.

4.2 Electrical conductivity models

For the determination of BP and u presented above, we have to assume mod-
els for the stratification of the electrical conductivity in the Earth’s mantle.
In Fig. 1 are shown the four different applied conductivity models, which
are motivated by different investigations. Recently, Otha et al. (2008) in-
vestigate the electrical conductivity of perovskite and post-perovskite under
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tFigure 1: Electric conductivity model profiles RX (2·108 S), RZ (2·108 S), RA

(0.7 · 108 S) and RO (1.9 · 108 S). The values in brackets are the conductance
of the related model, i.e. the integral measure of the conductivity throughout
the Earth’s mantle.

deep-mantle pressure and temperature conditions with laser-heated diamond-
anvil cell experiments. They find an electrical conductivity of post-perovskite
of more than 100 Sm−1. In contrast, the measurements for perovskite are in
the range between 0.01 and 1.0 Sm−1. In addition, they emphasize that
∼ 3 weight percent of Al2O3 in the post-perovskite layer could increase the
electrical conductivity by a factor of 3.5 (see also Xu et al., 1998a). The
idea of a highly electrical conducting post-perovskite layer above the CMB
is also published by Ono et al. (2006), based on shock-wave experiments on
Al2O3. In their conclusions, they come up with a model in which the spatial
heterogeneous heat flow out of the core creates a heterogeneous conductiv-
ity distribution by a second phase transition from post-perovskite back to
perovskite. The value of the electrical conductivity of post-perovskite in the
so-called D′′-layer above the CMB as well as the existence of the double-
crossing of the phase transition between perovskite and post-perovskite is
in debate in the last years (e.g. Ono et al., 2006; Xu et al., 1998b, 2000).
Moreover, the influence of the electronic spin state is still in discussion (e.g.
Bengtson et al., 2008; Lin et al., 2008; Stackhouse, 2008) and how the va-
lence state (e.g. Zhang and Oganov, 2006) affects the electrical conductivity.
Nagao et al. (2003) use observations of geomagnetic jerks to estimate the
conductivity of the Earth’s mantle, especially the differences of anomalies.
Veĺımský et al. (2006) uses geomagnetic storms observed by the CHAMP
satellite to invert for a one-dimensional conductivity profile. Their inves-
tigation confirms earlier findings that the electrical conductivity rises from
∼ 0.01 Sm−1 in the upper mantle to 6–10 Sm−1 in the upper part of the
lower mantle (e.g. Olsen, 1998; Constable and Constable, 2004; Kuvshinov
and Olsen, 2006). Buffett et al. (2002) constrain the electrical conductivity
by the modelling of the nutation and precession of Earth’s rotation including
electromagnetic coupling. They conclude that a conductance (i.e. the integral
measure of the conductivity throughout the mantle) of ∼ 108 S is necessary
to explain the phase shifts in the observed nutation and precession.

Based on these different findings, we set up four different conductivity
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tFigure 2: Both components of BT at the CMB for the calendar year 1993

considering the conductivity model RX (contour-lines for every 10000 nT).

Figure 3: Both components of BT at the CMB for the calendar year 1993
considering the conductivity model RZ (contour-lines for every 10000 nT).

models. Model RX is a simplified representation of the high-pressure exper-
iments with a highly conducting layer above the CMB. With model RZ, we
consider in addition the results of the EM induction studies mentioned above.
As an alternative to model RZ, we introduce model RA, which considers that
EM induction studies do not resolve the lowermost mantle. Moreover, with
model RO we take into account that a double-crossing of the phase bound-
ary between perovskite and post-perovskite is possible close to the CMB (e.g.
Ono et al., 2006)

5 Discussion of numerical results

In Sec. 3, we have summarized the applied method to compute the toroidal
geomagnetic field at the CMB based on the field-generating scalars S, P
and Q inferred from geomagnetic observations. For the time series of the
input data (1980–2000), we calculate the toroidal field by a Crank-Nicolson
approach, which uses a LU-decomposition with partial pivoting, performed
once at the beginning, and the related back substitution for each time step
(e.g. Press et al., 1992, Sec. 2.3).

Figs. 2–5 show the ϑ- and ϕ-component of the toroidal geomagnetic field
(Br is sole poloidal) at the CMB considering the different conductivity mod-
els, each for the begin of the calendar year 1993 as an example. The extrema
are in the order of ±60000 nT for the conductivity models RX (Fig. 2) and
RZ (Fig. 3), which is only around 12 % of the poloidal field strength (e.g.
Hagedoorn and Geiner-Mai, 2008). Here, we emphasize that using the con-
dition (31) we only determine the time-variable part of the toroidal field (see
Sec. 3.1), whereas the poloidal field also contains the (quasi-) stationary dy-
namo field as “main field”. Studies like those of Celaya and Benton (1991);
Love and Bloxham (1994), found toroidal geomagnetic field strengths at the
CMB in the order of 106 nT. Those estimations of the toroidal fields are based
on the observed variation in LOD and the assumption that the responsible
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tFigure 4: Both components of BT at the CMB for the calendar year 1993

considering the conductivity model RA (contour-lines for every 2500 nT).

Figure 5: Both components of BT at the CMB for the calendar year 1993
considering the conductivity model RO (contour-lines for every 5000 nT) .

core-mantle coupling is solely an EM coupling. Moreover, Love and Bloxham
(1994) restricted their investigation to steady fluid flows at the CMB. Those
do not produce predominantly the variation of the EM coupling torque, these
are the time-varying flow and the geomagnetic field.

In the results for the conductivity models RA (Fig. 4) and RO (Fig. 5),
the extrema are only in the order of ±10000 nT and ±20000 nT, respec-
tively. Common features in the ϑ-component are the dipolar structure in the
northern hemisphere, which is located along 270◦ E with the extrema around
45◦ N. A much weaker dipolar structure can be found on the northern hemi-
sphere, which spread out from 0◦ – 180◦ E. The most prominent feature in
the southern hemisphere of the ϑ-component is a large-size structure with a
maximum along 135◦ E and a minimum along 225◦ E. Those structures re-
main throughout the whole time series. Most conspicuous spatial pattern
for the ϕ-component of the toroidal geomagnetic field, which is visible in all
results, is an elongated structure along the equator with an minimum in the
northern and a maximum in the southern hemisphere.

As for all other spatial patterns, which are detectable in all results, the
amplitudes are significantly dependent on the conductivity model. For the
conductivity models RX and RZ, similar toroidal geomagnetic fields are ob-
tained. If the conductance is varied from 2 ·108 S for RX and RZ to 0.7 ·108 S
for RA, than the amplitudes of the dominant spatial pattern reduce by a
factor of 6.

A different result can be observed for the conductivity model RO, which
has a conductance of ∼ 1.9 · 108 S but in contrast to the other models a
value of 50 Sm−1 at the CMB. In this case the resulting extrema are reduced
by a factor of 3. This observations lead to the conclusion, that the radial
stratification can have a significant influence on the toroidal geomagnetic
field at the CMB, where the spatial pattern are significantly determined by
the spatial patterns of the poloidal geomagnetic and fluid-flow velocity fields
at the CMB. A so-called perturbation method (e.g. Stewart et al., 1995;
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tFigure 6: Difference between the results of the different computation methods

(rigorous IBVP, perturbation method) for both components of BT at the
CMB. The differences are shown for the calendar year 1993 considering the
conductivity model P3 (contour-lines for every 1000 nT).

Holme, 1998a) for the downward continuation and the computation of the
toroidal geomagnetic field would not be able to consider such differences as
between the models RX and RO, because the conductivity stratification is
considered by an integral value.

For a comparison with the perturbation method (e.g. Benton and Whaler,
1983), we choose therefore a more suitable conductivity model; a 2 km thick
layer above the CMB with a constant conductivity of 10000 Sm−1 (labeled
P3). We use the formalism of Ballani et al. (2002, eqs. (42)–(43)) to imple-
ment the perturbation solution of the poloidal geomagnetic field. In addition,
the authors compare therein the results for the perturbation method and the
NHDC. For the determination of the toroidal field, we follow for the approach
of Stewart et al. (1995). For both solution methods the poloidal geomagnetic
field is determined at the CMB and used as input for the fluid-flow inver-
sion. For the computation of the toroidal geomagnetic field at the CMB, the
particular poloidal geomagnetic and fluid-flow velocity fields are considered.

In Fig. 6 are shown the differences in the resulting toroidal field compo-
nents at the CMB for the year 1993. The maximal differences are in the order
of ±3000 nT, which is about 5 % of the toroidal field. The spatial pattern
is similar to that of the toroidal field itself (not shown here, but compa-
rable with results of RX in Fig. 2). The amplitudes of the differences are
strongly time-dependent. Hence, we compare in Figs. 7–8 the time behavior
of the real and imaginary part for selected SH coefficients Tjm(t), as defined
in eq. (13) for the different methods. We show the results for: (i) the per-
turbation method (dotted lines), (ii) the rigorous solution of the IBVP (solid
lines), and (iii) for the perturbation method applied for the determination
of the toroidal field, but using only the harmonically downward continued
poloidal field and the related fluid-flow velocities (dashed lines). Some of
the resulting SH coefficients for (iii) differ from the related results for the
rigorous solution by more than 100 %, but those differences are strongly time
dependent (e.g. Re(T40), Im(T42), etc.). This should highlight the necessity
to consider a non-harmonic downward continuation or perturbation method
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tFigure 7: Real and imaginary part of the toroidal SH coefficients, Tjm(r),

at the CMB for different solution methods and input models. We compare
results from the rigorous solution of the IBVP (solid line) with those from
the perturbation approach (dotted lines) and for the perturbation approach
and only harmonically downward continued input data (dashed line).

Figure 8: Same as Fig. 7 for additional SH coefficients.

for the poloidal geomagnetic field and the related fluid-flow inversion.
The remaining differences between the rigorous solution of the IBVP for

the toroidal field (solid line) and a perturbation method (dotted line) can still
reach up to 5 % in most SH coefficients. This is related to the solution of the
IBVP, which considers the time evolution and the diffusion rigorously. The
occurrence of significant differences is dependent of SH degree and order. In
some coefficients, like Re(T11) and Re(T42), a nearly constant overestimation
can be observed, and in other coefficients (Re(T20), Re(T40), Im(T42) etc.)
the differences vary strongly with time.

As mentioned in the introduction, one of the main motivations for a rigor-
ous solution of the IBVP for the toroidal geomagnetic field is its necessity for
the determination of the electromagnetic (EM) core-mantle coupling torque
(e.g. Rochester, 1960; Roberts, 1972; Stix and Roberts, 1984; Greiner-Mai,
1993; Holme, 1998a). For this reason, we present in Fig. 9 a comparison of
the variation of the EM coupling torques (the applied formalism is published
by Hagedoorn and Geiner-Mai, 2008) using the different conductivity mod-
els. In addition, we also show the results based on the perturbation method
explained above. In all three components (where ∆Lx and ∆Ly are related
to the polar motion and ∆Lz to the variation in length-of-day) similar time
behavior for the different results can be observed, whereas the amplitude
differs up to a factor of nearly 10.

The different amplitudes are not only a result of different conductance of
the conductivity models, as it can be seen by a comparison of the torques
for the models RX and RO (like for the toroidal geomagnetic field), which
differ only slightly in their conductance but significantly in their values of
the conductivity at the CMB (1600 Sm−1 vs. 50 Sm−1 respectively). The
models RX and RZ have the same conductance. Therefore, the differences
in the associated torques are caused by differences in the radial stratification
of the conductivity. The influence of the reduced thickness of a conducting
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tFigure 9: Comparison of the variation of the electromagnetic coupling torque

for the considered conductivity models (RX, RZ, RA and RO) and different
solution techniques (rigorous solution: P3, perturbation solution AP3).

layer with the same conductance is visible in the differences between the
torques for the models RX and P3; the amplitudes in all components are
comparable but a time shift is clearly visible. Using the geomagnetic fields
and the fluid-flow velocities determined by the perturbation method leads to
a systematic overestimation of the amplitudes of the coupling torques up to
20 % for the x- and z-component and even up to 50 % for the y-component.
In addition, we can detect a time shift relative to the results for P3 as well
as for the whole mantle conductivity models.

6 Conclusions

Our investigation can be seen as a continuation in the development of rig-
orous methods of the determination of the geomagnetic field in the CMB
region, which has begun several years ago by Ballani et al. (2002) and is
embedded in the development of the description of the core-mantle interac-
tions. In this article, we developed a theoretical description of the IBVP
for the toroidal geomagnetic field in an electrical conducting mantle. Spe-
cial assumptions about the generation of the toroidal field at the top of the
CMB allows us only to determine the time-variable part of the toroidal field
in the electrically conducting mantle (Sec. 3.1). By these assumptions, the
resulting toroidal field is affected by the ambiguity of the fluid-flow veloc-
ities at the CMB, which are determined under the frozen-flux approxima-
tion (for detailed discussion see Holme, 1998a). Beside the formulation of a
Crank-Nicolson schema for the numerical implementation, we derived ana-
lytical solutions of coupling integrals between the surface-flow velocity and
the poloidal geomagnetic field at the CMB to calculate boundary values of
the third kind (given in eq. (31)). Numerical calculations were performed
to determine the time-variable toroidal geomagnetic field at the CMB based
on satellite supported poloidal geomagnetic field models and assumed con-
ductivity models. In addition, we show a comparison of the resulting EM
coupling torque variation for the time series of the geomagnetic field model.

The choice of our conductivity models is motivated by the EM coupling
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torque computation. Recent investigation of the electrical conductivity, sum-
marized in Sec. 4, only constrain the lower and upper bounds of the conduc-
tivity for different depths, which is reflected in the chosen simplified conduc-
tivity models. In addition to the theoretical description of the determination
of the time-variable toroidal geomagnetic field at the CMB, our first numer-
ical results show a significant influence of the conductivity models by their
value at the CMB and their integral measure (conductance) as shown in
the comparison of results for the conductivity models RX, RA and RO. For
the comparison with the perturbation method, we consider a suitable thin-
layer conductivity model (P3), which consists only of one 2 km thick highly
conducting layer with constant σM = 10000 Sm−1. The comparison of the re-
sulting toroidal geomagnetic field at the CMB for the two approaches shows
similar spatial patterns, which differ by around 5 %. Those differences are
strongly time-dependent, which is visible in the SH coefficients (see Figs. 7–8)
and also reach 5 %. This findings lead us to the conclusion that the rigorous
solution of the IBVP for the geomagnetic field in connection with the NHDC
for the determination of the poloidal geomagnetic field at the CMB has a
significant influence on the time-behavior of the resulting field.

This influence is also visible in the comparison of the related EM coupling
torques for the different solution approaches, where the differences in the
geomagnetic field leads to an time shift and a systematic overestimation of
the torques based on the results of the perturbation method relative to our
approach.
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A Appendix

A.1 Additional derivations for the toroidal geomag-

netic field

In Sec. 2, the derivation of eq. (10) starting from eq. (9) is suppressed for
readability and is summarized here. Considering the r-dependence of σM and
the following relations for the differential operator curl, and any vector v and
any scalar s (e.g. Bronstein et al., 1997, Sec. 13.2.5),

curl
(

sv
)

= s curl v + grad s × v, (48)

curl
(

v1 + v2

)

= curl v1 + curl v2, (49)

the toroidal induction equation reads:

1

µ0

[

1

σM

curl curl curl
(

rT
)

+ grad
1

σM

× curl curl
(

rT
)

]

+
∂

∂t
curl

(

rT
)

= 0. (50)

Furthermore, we consider the relations (e. g. Krause and Rädler, 1980, Sec. 13.3)

curl curl
(

rT
)

= −r∆T + grad

(

∂

∂r
rT

)

, (51)

curl curl curl
(

rT
)

= r × grad
(

∆T
)

, (52)

which leads to the following toroidal induction equation:

1

µ0σC

[

r × grad
(

∆T
)]

+
1

µ0

[

grad
1

σM

×

(

−r∆T + grad

(

∂

∂r
rT

))]

−
∂

∂t

(

r × gradT
)

= 0. (53)
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For the further derivation, we have to reformulate the second term in the
equation above, which reads with r = rer, a spherical symmetric conductiv-
ity σM and its related partial derivative er

d
dr

1
σM

= −r 1
rσ2

M

d
dr

σM:

1

µ0

[(

r
1

rσ2
M

d

dr
σM × r∆T

)

−

(

r
1

rσ2
M

d

dr
σM × grad

(

∂

∂r
rT

))]

=

1

µ0 σM

[

−r × grad

(

1

rσM

d

dr
σM

∂

∂r
rT

)]

. (54)

We also consider that due to the sole r-dependence of the conductivity the
following relation is valid:

r
1

rσM

d

dr
σM × grad

(

∂

∂r
rT

)

= r × grad

(

1

rσM

d

dr
σM

∂

∂r
rT

)

.

First, we exchange the second term in eq. (53) by eq. (54) and, secondly, we
consider that the following is valid for any scalar function a and b:

r × grad a + r × grad b = r × grad (a + b).

This leads for the toroidal induction equation to:

r × grad

[

1

µ0σM

(

∆T −
1

rσM

d

dr
σM

∂

∂r

(

rT
)

−
∂

∂t
T

)]

= 0,

which is identical with eq. (10).
Moreover, in Sec. 2 is given in eq. (14) the SH representation of the

toroidal induction equation. In the following, the derivation starting from
eq. (10) is summarized. Applying the SH representation of the field-generating
scalar in eq. (13) and introducing the symbol

∑

jm for the summation of j
and m on the toroidal induction equation leads to

∑

jm

{

1

µ0σM(r)

[

∆Tjm(r, t)Yjm(Ω)

−
1

rσM(r)

d

dr
σM(r)

∂

∂r

(

rTjm(r, t)
)

Yjm(Ω)

]

−
∂

∂t
Tjm(r, t)Yjm(Ω)

}

= 0. (55)

23



Page 25 of 41

Acc
ep

te
d 

M
an

us
cr

ip
t

We split now the Laplace operator into its radial and angular part (eq. (58)),
and apply the angular part on the SH base function in eq. (59) (e.g. Var-
shalovich et al., 1989, Chap. 5), which leads to

∑

jm

{

1

µ0σM(r)

[

1

r2

(

∂

∂r

(

r2 ∂

∂r
Tjm(r, t)

)

−j(j + 1)Tjm(r, t)

)

−
1

rσM(r)

d

dr
σM(r)

∂

∂r

(

rTjm(r, t)
)

]

−
∂

∂t
Tjm(r, t)

}

Yjm(Ω) = 0. (56)

Due to the orthogonality of the SH, we can conclude that each equation for
any j and m has to be satisfied. Implementing the radial derivatives, we can
find the equation:

1

µ0σM(r)

[

2

r

∂

∂r
Tjm(r, t) +

∂2

∂r2
Tjm(r, t)

−
j(j + 1)

r2
Tjm(r, t)

−
1

σM(r)

d

dr
σM(r)

(

Tjm(r, t) + r
∂

∂r
Tjm(r, t)

)]

−
∂

∂t
Tjm(r, t) = 0, (57)

where a reordering with respect to the order of the partial derivatives of the
coefficients Tjm leads to eq. (14).

A.2 Additional derivations for the boundary value

In Sec. 3.2, we introduce the angular part of the Laplace operator in spherical
coordinates, which is given by

∆Ω =

[

1

sin ϑ

∂

∂ϑ

(

sin ϑ
∂

∂ϑ

)

+
1

sin2 ϑ

∂

∂ϕ2

]

. (58)
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The SH are eigenfunctions of the angular part of the Laplace operator so
that

∆Ω Yjm(Ω) = −j(j + 1)Yjm(Ω) (59)

is valid. For the derivation of eq. (34), we apply the angular Laplace operator
on the SH representation of W , according to eq. (59),

∆Ω W (r, Ω, t) =
∑

jm

Wjm(r, t) ∆Ω Yjm(Ω),

= −

∑

jm

j(j + 1)Wjm(r, t)Yjm(Ω).

Next, we substitute ∆Ω W by eq. (33) and divide this equation by −j(j + 1)
and multiply it with Y ∗

jm(Ω). Considering the orthogonality of the SH leads
then to

Wjm =
−1

j(j + 1)

∫

Ω

r · curl
[

r ×
(

u × B
)]

Y ∗

jm(Ω) dΩ ,

which is identically with eq. (34).
For the derivation of eq. (35) in Sec. 3.2 starting from the integral ex-

pression (34), we simplify first the integral kernel in spherical coordinates,
considering that ur = 0 at r = RCMB,

r · curl
[

r ×
(

u × B
)]

= r · curl
(

u r Br

)

,

which explicitly reads

[

r · curl
(

u r Br

)]

r
=

r

r sin ϑ

[

∂

∂ϑ

(

r Bruϕ sin ϑ
)

−
∂

∂ϕ

(

r Bruϑ

)

]

. (60)

For the vector components of the velocity field u, we define the following
decomposition with the representing scalars P and Q

uϑ =
∂

∂ϑ
P +

1

sin ϑ

∂

∂ϕ
Q, (61)

uϕ =
1

sin ϑ

∂

∂ϕ
P −

∂

∂ϑ
Q. (62)

25



Page 27 of 41

Acc
ep

te
d 

M
an

us
cr

ip
t

With the definition of the angular Laplace operator in eq. (58) and the de-
composition of the magnetic flux in eq. (7), it can be shown that

Br = −
1

r
∆Ω S. (63)

Applying the expressions (60)–(63) to eq. (34), we find

Wjm =
−1

j(j + 1)

∫

Ω

1

sin ϑ

{

∂

∂ϑ

[

−∆Ω S

(

∂

∂ϕ
P − sin ϑ

∂

∂ϑ
Q

)]

−
∂

∂ϕ

[

−∆Ω S

(

∂

∂ϑ
P +

1

sin ϑ

∂

∂ϕ
Q

)]}

Y ∗

jm(Ω) dΩ . (64)

For the next step, all field-generating scalars (S, P and Q) are represented by
SH analogue to eq. (13) for the field-generating scalar T . After applying the
product rule for the partial derivatives and the angular part of the Laplace
operator, additional rearranging and combining of the partial derivatives (see
Hagedoorn and Geiner-Mai, 2008, Appendix D.3) lead to the expression

Wjm =
−1

j(j + 1)

∑

klst

k(k + 1)Skl

[

L
jm
klst Pst −K

jm
klst Qst

]

,

where

∑

klst

=

kmax
∑

k=1

k
∑

l=−k

smax
∑

s=1

s
∑

t=−s

,

K
jm
klst =

∫

Ω

[

∂

∂ϑ
Ykl(Ω)

∂

∂ϑ
Yst(Ω)

+
1

sin2 ϑ

∂

∂ϕ
Ykl(Ω)

∂

∂ϕ
Yst(Ω)

+ Ykl(Ω) ∆Ω Yst(Ω)

]

Y ∗

jm(Ω) dΩ , (65)

L
jm
klst =

∫

Ω

1

sin ϑ

[

∂

∂ϑ
Ykl(Ω)

∂

∂ϕ
Yst(Ω)

−
∂

∂ϕ
Ykl(Ω)

∂

∂ϑ
Yst(Ω)

]

Y ∗

jm(Ω) dΩ . (66)
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It remains to solve analytically both integrals above to derive the integral-
representing coefficients (36) and (37) in Sec. 3.2 in terms of Clebsch-Gorden
coefficients. The triple product of SH with different degrees and orders in
eq. (65) is expressible by a combination of re-normed Clebsch-Gorden coeffi-
cients (Varshalovich et al., 1989, Sec. 5.9.1, eq. 4). Moreover, for the mixed
partial derivatives in eq. (65) is given a relation to Clebsch-Gorden coeffi-
cients in Pěč and Martinec (1988, eq. 11). The derivation of L

jm
klst is more

extensive, because the mixed partial derivatives of SH multiplied by 1
sinϑ

in
eq. (66) can be expressed by the radial component of the vector product of

vector spherical harmonics (er ·[S
(0)
kl (Ω)×S

(0)
st (Ω)]). The integral is expressed

by Clebsch-Gorden coefficients considering different relation between vector
and scalar spherical harmonics by so-called Wigner 9j symbols and related
expressions according to Varshalovich et al. (1989, Chap. 7 & 8). The exten-
sive mathematical manipulations of the detailed derivation are skipped here
and can be found in Hagedoorn and Geiner-Mai (2008, Appendix D.4–D.5).
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