Some Properties of Inclusions of Multisets and Strictly Increasing Boolean Functions

Pierre Hyvernat

To cite this version:

Pierre Hyvernat. Some Properties of Inclusions of Multisets and Strictly Increasing Boolean Functions. 2011. hal-00601505v2

HAL Id: hal-00601505
 https://hal.science/hal-00601505v2

Preprint submitted on 27 Dec 2011 (v2), last revised 1 Apr 2014 (v6)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Some Properties of Inclusions of Multisets and Strictly Increasing Boolean Functions

Autumn 2011

Pierre Hyvernat* pierre.hyvernat@univ-savoie.fr http://lama.univ-savoie.fr/~hyvernat/

Abstract

Consider the following curious puzzle: call an n-tuple $\bar{X}=\left(X_{1}, \ldots, X_{n}\right)$ of sets smaller than \bar{Y} if it has less unordered sections. We show that equivalence classes for this preorder are very easy to describe and characterize the preorder in terms of the simpler pointwise inclusion and the existence of a special strictly increasing boolean function $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$. We also show that contrary to plain boolean functions or increasing boolean functions, strictly increasing boolean functions aren't finitely generated, which might explain why this preorder isn't easily described concretely.

0. Introduction: a puzzle. Choose a (fixed) set N and a (fixed) natural number n. We can consider the following partial order on $\mathcal{P}_{*}(N)^{n}$, the collection of n-tuples of non-empty subsets of N :

$$
\bar{X} \subseteq \bar{Y} \quad \stackrel{\text { def }}{=} \quad \prod_{1 \leq i \leq n} X_{i} \subseteq \prod_{1 \leq i \leq n} Y_{i}
$$

Because we restrict to non-empty subsets, this preorder is just pointwise inclusion:

$$
\left(X_{1}, \ldots, X_{n}\right) \subseteq\left(Y_{1}, \ldots, Y_{n}\right) \quad \Leftrightarrow \quad \forall 1 \leq i \leq n, \quad X_{i} \subseteq Y_{i}
$$

Consider now a commutative version of the cartesian product where instead of the usual ordered n-tuples, we take "unordered n-tuples".

Definition 1. If $\bar{X}=\left(X_{1}, \ldots, X_{n}\right)$ is an n-tuple of non-empty subsets of N, define $\mathcal{S}(\bar{X})$, the set of unordered sections of \bar{X}, as

$$
\begin{equation*}
\mathcal{S}(\bar{X}) \quad \stackrel{\text { def }}{=}\left(\prod_{1 \leq i \leq n} X_{i}\right) / S_{n} \tag{1}
\end{equation*}
$$

where _/ S_{n} denotes quotienting by the action of the symmetric group S_{n}.
From now on, we will drop the adjective "unordered" and refer to an element of $\mathcal{S}(\bar{X})$ simply as a section of \bar{X}. We now define the preorder \sqsubseteq on $\mathcal{P}_{*}(N)^{n}$:
Definition 2. If \bar{X} and \bar{Y} are in $\mathcal{P}_{*}(N)^{n}$, put:

$$
\begin{equation*}
\bar{X} \sqsubseteq \bar{Y} \quad \stackrel{\text { def }}{=} \quad \mathcal{S}(\bar{X}) \subseteq \mathcal{S}(\bar{Y}) \tag{2}
\end{equation*}
$$

We write $\bar{X} \approx \bar{Y}$ for " $\bar{X} \sqsubseteq \bar{Y}$ and $\bar{Y} \sqsubseteq \bar{X}$ ".
Note that this relation isn't antisymmetric because $\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right) \approx\left(X_{1}, \ldots, X_{n}\right)$ for any permutation $\sigma \in S_{n}$.

The aim of this note is to answer the following:

Questions.

- When do we have $\bar{X} \approx \bar{Y}$?
- What is the relation between $\bar{X} \sqsubseteq \bar{Y}$ and $\bar{X} \subseteq \bar{Y}$?

The problem is subtler than it appears and the first question makes for an interesting puzzle: while elementary, the proof is more complex than what most people initially think. Readers are thus encouraged to spend a couple of minutes playing with the problem before reading on.

[^0]Related notions: the notion of system of representatives was introduced by P. Hall in 1935 [3]. A system of representatives for the finite family of sets \bar{X} is simply a family \bar{x} such that there is a bijection σ satisfying $x_{i} \in X_{\sigma(i)}$ for $i=1, \ldots, n$. Equivalence classes of those under permutations are exactly the unordered sections of \bar{X} of Definition 1. A lot of attention has been devoted to systems of distinct representatives, also called transversal, where the x_{i} 's are pairwise distinct [7]. Rather than looking at them individually, this note looks at the collection of all possible systems of representatives. This shift of focus seems to be new in itself, as is the notion of strictly increasing boolean function that appears later. Relating the two will give a concise answer to the second question.

The fact that all the results contained in this note are elementary makes it all the more interesting, but also more likely that I missed some related notions in the existing literature, or maybe just an exercises in a classical textbook.*

Notation: to make formulas less verbose, we will abuse the vector notation by lifting " \in " pointwise: just as $\bar{X} \subseteq \bar{Y}$ means " $\forall 1 \leq i \leq n, X_{i} \subseteq Y_{i}$ ", the notation $\bar{a} \in \bar{X}$ is a synonym for " $\forall 1 \leq i \leq n, a_{i} \in X_{i}$ ". The action of S_{n} on n-tuples is written with a dot and is defined as $\sigma \cdot \bar{a} \stackrel{\text { def }}{=}\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right)$. When talking about n-multisets (orbits for the action of S_{n}), we identify an n-tuple with its orbit. In particular, $\bar{a} \in \mathcal{S}(\bar{X})$ means that $\sigma \cdot \bar{a} \in \bar{X}$ for some permutation σ.

1. The equivalence relation. The first question has a simple answer: equivalence is just equality up-to a permutation of the sets. In other words, the failure of antisymmetry isn't more complex than what was noted after Definition 1.

Proposition 1. Given any \bar{X} and \bar{Y} in $\mathcal{P}_{*}(N)^{n}$, we have

$$
\begin{equation*}
\bar{X} \approx \bar{Y} \quad \Leftrightarrow \quad \exists \sigma \in S_{n}, \sigma \cdot \bar{X}=\bar{Y} . \tag{3}
\end{equation*}
$$

This is slightly surprising because the left-hand side is definitionally equal to

$$
\forall \bar{a} \in \bar{X}, \exists \sigma \in S_{n}, \sigma \cdot \bar{a} \in \bar{Y} \quad \text { and } \quad \forall \bar{a} \in \bar{Y}, \exists \sigma^{\prime} \in S_{n}, \sigma^{\prime} \cdot \bar{a} \in \bar{X}
$$

while the right-hand side is definitionally equal to

$$
\exists \sigma \in S_{n}, \quad\left(\forall \bar{a} \in \bar{X}, \sigma \cdot \bar{a} \in \bar{Y} \text { and } \forall \bar{a} \in \bar{Y}, \sigma^{-1} \cdot \bar{a} \in \bar{X}\right)
$$

That the latter implies the former is trivial. Proposition 1 asserts the converse, i.e., that we can choose the permutation uniformly for all the $\bar{a} \in \bar{X}$ and $\bar{a} \in \bar{Y}$!

Lemma 1.

- If $\bar{X} \sqsubseteq \bar{Y}$ then, for all $1 \leq j \leq n$, there is some $1 \leq i \leq n$ s.t. $X_{i} \subseteq Y_{j}$.
- If $\bar{X} \approx \bar{Y}$ then $X_{i_{0}}=Y_{j_{0}}$ for some pair i_{0}, j_{0}.

Proof. The first point is shown by contradiction. Suppose that $\exists j_{0}, \forall i, X_{i} \nsubseteq Y_{j_{0}}$, this implies that there is an $\bar{a} \in \bar{X}$ s.t. $\forall i, a_{i} \notin Y_{j_{0}}$. This \bar{a} cannot be a section of \bar{Y}. Contradiction!

The second point follows easily: starting from Y_{1} and repeatedly using the first point, we can construct an infinite chain of reverse inclusions:

$$
Y_{1} \supseteq X_{i_{1}} \supseteq Y_{j_{2}} \supseteq X_{i_{2}} \supseteq Y_{j_{2}} \supseteq \ldots
$$

Because there are finitely many X_{i} 's and Y_{j} 's, the chain must contain cycles. This gives an equality between some X_{i} and Y_{j}.

[^1]This solves the beginning of Proposition 1: if $\bar{X} \approx \bar{Y}$, then at least one of the sets appears on both sides. What we now need is to show that

$$
\left(Z, X_{2}, \ldots, X_{n}\right) \approx\left(Z, Y_{2}, \ldots, Y_{n}\right) \quad \Rightarrow \quad\left(X_{2}, \ldots, X_{n}\right) \approx\left(Y_{2}, \ldots, Y_{n}\right)
$$

This will allow to finish the proof of Proposition 1 by induction on n. If unordered sections are seen as a "commutative cartesian product", the next definition would be the corresponding "division":

Definition 3. Let T be a collection of n-multisets and $Z \in \mathcal{P}_{*}(N)$ we put

$$
T \div Z \quad \stackrel{\text { def }}{=}\left\{\left(a_{2}, \ldots, a_{n}\right) \mid \forall a \in Z,\left(a, a_{2}, \ldots, a_{n}\right) \in T\right\}
$$

Lemma 2. We have:

$$
\begin{equation*}
\mathcal{S}\left(X_{1}, X_{2}, \ldots, X_{n}\right) \div X_{1}=\mathcal{S}\left(X_{2}, \ldots, X_{n}\right) \tag{4}
\end{equation*}
$$

Proof. The "?" inclusion follows from the definition.
For the " \subseteq " inclusion, suppose $\left(a_{2}, \ldots, a_{n}\right) \in \mathcal{S}(\bar{X}) \div X_{1}$. Let $b \in X_{1}$: we necessarily have that $\left(b, a_{2}, \ldots, a_{n}\right) \in \mathcal{S}(\bar{X})$, i.e., there is a permutation τ s.t. $\left(b, a_{2}, \ldots, a_{n}\right) \in\left(X_{\tau(1)}, \ldots, X_{\tau(n)}\right)$. If $\tau(1)=1$, we have $\left(a_{2}, \ldots, a_{n}\right) \in\left(X_{\tau(2)}, \ldots, X_{\tau(n)}\right)$ and we can conclude directly.
If $\tau(1) \neq 1$, up-to choosing an appropriate element in the orbit of $\left(a_{2}, \ldots a_{n}\right)$, we can assume that $\tau(1)=2, \tau(2)=1$ and $\tau(i)=i$ when $2<i \leq n$, i.e., that $b \in X_{2}, a_{2} \in X_{1}$, and $a_{i} \in X_{i}$ whenever $2<i \leq n$.
Put $a_{1} \stackrel{\text { def }}{=} a_{2}$. Because $a_{1}=a_{2} \in X_{1}$, we have $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{S}(\bar{X})$, i.e., $\sigma \cdot \bar{a} \in \bar{X}$ for some permutation σ. Let $k \stackrel{\text { def }}{=} \min \left\{i \mid i>0, a_{\sigma^{i}(1)}=a_{1}\right\}$. This k exists and is at most the length of the cycle of σ containing 1 . We put $I \stackrel{\text { def }}{=}\left\{1, \sigma(1), \ldots, \sigma^{k-1}(1)\right\}$ and $I^{c}=\{1, \ldots, n\} \backslash I$.
Rearrange the columns of

into two parts:

The indices of \bar{X} on the left are exactly those in I, and so are the indices of \bar{a}. Thus, the indices of \bar{X} and \bar{a} on the right are exactly those in I^{c}. This shows that $\left(a_{i}\right)_{i \in I^{c}}$ is a section of $\left(X_{i}\right)_{i \in I^{c}}$. Moreover, because each of $\sigma(1), \ldots, \sigma^{k-1}(1)$ is strictly more than 2 (by the definition of k), we also have $a_{\sigma^{i}(1)} \in X_{\sigma^{i}(1)}$ for each $1 \leq i \leq k-1$ by a previous hypothesis. This shows that the permutation

$$
\rho:\{2, \ldots, n\} \rightarrow\{2, \ldots, n\} \quad \rho(i) \stackrel{\text { def }}{=} \begin{cases}i & \text { if } i \text { is one of } \sigma(1), \ldots, \sigma^{k-1}(1) \\ \sigma(i) & \text { otherwise }\end{cases}
$$

satisfies $\rho \cdot\left(a_{2}, \ldots, a_{n}\right) \in\left(X_{2}, \ldots, X_{n}\right)$, and this finishes the proof that $\left(a_{2}, \ldots, a_{n}\right)$ is indeed a section of $\left(X_{2}, \ldots, X_{n}\right)$.
2. The preorder. The initial question wasn't very formal and read as: "What is the relation between $\bar{X} \sqsubseteq \bar{Y}$ and $\bar{X} \subseteq \bar{Y}$?" It is obvious that $\bar{X} \subseteq \bar{Y}$ implies $\bar{X} \sqsubseteq \bar{Y}$, but unfortunately, the converse doesn't hold, even if we consider n-tuples of sets up-to permutations. For example, we have

$$
\bar{X}:=(\{3\},\{1,2,3\}) \quad \sqsubseteq \bar{Y}:=(\{1,3\},\{2,3\})
$$

because the sections of \bar{X} are all sections of \bar{Y} :

$$
\mathcal{S}(\bar{X})=\{[3,1],[3,2],[3,3]\} \quad \subset \quad \mathcal{S}(\bar{Y})=\{[1,2],[1,3],[3,2],[3,3]\} .
$$

However, one of the X_{i} 's is strictly bigger than all the Y_{j} 's: we have $\{1,2,3\} \supset\{2,3\}$ and $\{1,2,3\} \supset\{1,3\}$! More generally, $\left(Y_{i} \cap Y_{j}, Y_{i} \cup Y_{j}\right) \sqsubseteq\left(Y_{i}, Y_{j}\right)$ and any operator F on n tuples of sets obtained by composing such \cap / \cup functions will satisfy $F(\bar{Y}) \sqsubseteq \bar{Y}$. For example:

$$
\begin{aligned}
F\left(Y_{1}, Y_{2}, Y_{3}\right):=\left(Y_{1} \cap Y_{3}, Y_{2} \cap\left(Y_{1} \cup Y_{3}\right), Y_{2} \cup\left(Y_{1} \cup Y_{3}\right)\right) & \sqsubseteq\left(Y_{1} \cap Y_{3}, Y_{2}, Y_{1} \cup Y_{3}\right) \\
& \sqsubseteq\left(Y_{1}, Y_{2}, Y_{3}\right) .
\end{aligned}
$$

We will now characterize exactly which F 's satisfy this property by looking at functions from \mathbf{B}^{n} to itself.

Definition 4.

- Let $\mathbf{B} \xlongequal{\text { def }}\{0,1\}$ equipped with the order $0 \leq 1$. This is a complete lattice with operations written \vee and \wedge. The lattice structure is lifted pointwise to \mathbf{B}^{n}.
- If $u \in \mathbf{B}^{n}$, the weight of u is the number of 1's in u. It is written $|u|$.

We write elements of \mathbf{B}^{n} without parenthesis as in " $011101 \in \mathbf{B}^{6}$ ".
Definition 5. If $a \in N$ and $\bar{X} \in \mathcal{P}_{*}(N)^{n}, \chi_{\bar{X}}(a) \in \mathbf{B}^{n}$ is defined by $\left(\chi_{\bar{X}}(a)\right)_{i}=1$ iff $a \in X_{i}$.
Thus, $\chi_{\bar{X}}(a)$ describes in which X_{i} 's the element a appears, and $\left|\chi_{\bar{X}}(a)\right|$ is the number of X_{i} 's which contain a. There is a necessary condition for $\bar{X} \sqsubseteq \bar{Y}$: "for all $a \in N$, if a appears in k sets Y_{i} 's, then it appears in at most k sets X_{i} 's". The essence of the next lemma is that this is also sufficient. It can be seen as yet another variant of Hall's celebrated "marriage theorem" [3].
Lemma 3. We have $\bar{X} \sqsubseteq \bar{Y}$ iff $f(u) \stackrel{\text { def }}{=} \bigvee_{\chi_{\bar{Y}}(a) \leq u} \chi_{\bar{X}}(a)$ satisfies $|f(u)| \leq|u|$ for all u 's.
The function f is the least (for the extensional order) increasing boolean function satisfying $f\left(\chi_{\bar{Y}(a)}\right) \geq \chi_{\bar{X}}(a)$. When the function $a \mapsto \chi_{\bar{Y}}(a)$ is bijective from N to $\mathbf{B}^{n} \backslash\{0 \cdots 0\}$ and the function $\chi_{\bar{Y}}(a) \mapsto \chi_{\bar{X}}(a)$ is increasing (i.e., "when a appears in more Y_{i} 's than b, then a appears in more X_{i} 's than b ' $)$, the condition of the lemma simplifies to $\left|\chi_{\bar{X}}(a)\right| \leq\left|\chi_{\bar{Y}}(a)\right|$, for each a. This what happens in the example of $(\{3\},\{1,2,3\}) \sqsubseteq(\{2,3\},\{1,3\})$, where the function f is $\left(b_{1}, b_{2}\right) \mapsto\left(b_{1} \wedge b_{2}, b_{1} \vee b_{2}\right)$:

$a:$	1	2	3
$\chi_{\bar{Y}}(a):$	01	10	11
$\chi_{\bar{X}}(a):$	01	01	11

Proof. For the " \Leftarrow " implication, suppose that $\bar{a} \in \bar{X}$. We want to show that $\sigma \cdot \bar{a} \in \bar{Y}$ for some permutation σ. If we look at the bipartite graph

with an edge between a_{i} and Y_{j} when $a_{i} \in Y_{j}$, finding a σ s.t. $\sigma \cdot \bar{a} \in \bar{Y}$ is equivalent to finding a perfect matching in the bipartite graph. By Hall's marriage theorem, this is equivalent to "every subset of the a_{i} 's of cardinality c has at least c neighbors among the Y_{j} 's".

Take some subset $U \subseteq\left\{a_{1}, \ldots, a_{n}\right\}$ of cardinality c. Because \bar{a} is a section of \bar{X}, by the marriage theorem, this set has at least c neighbors in the corresponding \bar{a} / \bar{X} bipartite graph. By the construction, we have

$$
c \leq \underbrace{\left|\bigvee_{a \in U} \chi_{\bar{X}}(a)\right|}_{\begin{array}{c}
\text { \# of neighboors } \\
\text { of } U \text { in } \bar{a} / \bar{X} .
\end{array}} \leq\left|f\left(\bigvee_{a \in U} \chi_{\bar{Y}}(a)\right)\right| \leq \underbrace{\left|\bigvee_{a \in U} \chi_{\bar{Y}}(a)\right|}_{\begin{array}{c}
\text { \# of neighboors } \\
\text { of } U \text { in } \bar{a} / \bar{Y}
\end{array}}
$$

where the second inequality follows from the definition of f, and the third inequality follows from the hypothesis. This concludes the " \Leftarrow " implication.

For the " \Rightarrow " implication, let $\bar{X} \sqsubseteq \bar{Y}$ and $c=|u|<|f(u)|$. We can find $\left\{a_{1}, \ldots, a_{k}\right\} \subseteq N$ which satisfies $\bigvee_{i \leq k} \chi_{\bar{X}}\left(a_{i}\right) \leq u$ and $\left|\bigvee_{i \leq k} \chi_{\bar{X}}\left(a_{i}\right)\right|>c$. In particular, we have

$$
\left|\bigvee_{1 \leq i \leq k} \chi_{\bar{Y}}\left(a_{i}\right)\right| \leq c \quad<\left|\bigvee_{1 \leq i \leq k} \chi_{\bar{X}}\left(a_{i}\right)\right|
$$

For each 1 in $\bigvee_{i \leq k} \chi_{\bar{X}}\left(a_{i}\right)$ take one of the a_{i} 's which has a 1 in the same position. Call the resulting tuple \bar{a}. Note that this tuple has length strictly greater than c and may contain repetitions. This is a partial section of \bar{X} : take those X_{j} 's s.t. $\bigvee_{i \leq k} \chi_{\bar{X}}\left(a_{i}\right)$ contains a 1 on the j-th coordinate. To complete this tuple into a section of the whole \bar{X}, add one element from each of the remaining sets to obtain a section $\left(\bar{a}, \bar{a}^{\prime}\right)$ of \bar{X}. This is also a section of \bar{Y} and in particular, each element of \bar{a} needs to find its place into one of the Y_{i} 's. This is impossible because there are at most c sets Y_{i} that can contain the elements of the tuple \bar{a}. Contradiction!

Lemma 3 does characterize the \sqsubseteq preorder but still looks a little ad-hoc. To give a more concise answer, we will use strictly increasing boolean functions.
3. Interlude: strictly increasing boolean functions. The next notion is quite natural, but the literature is scarce on the subject. While they are a natural generalization of increasing boolean functions, neither the big book [9] nor the survey [2] seem to mention them. Note that in computer science, a boolean function is implicitly a function from some \mathbf{B}^{n} to \mathbf{B}. What we are interested in here are functions from some \mathbf{B}^{n} to some \mathbf{B}^{m}, i.e., boolean functions with several outputs.

Ultra Simple Lemma. If $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{m}$ is strictly increasing, then $n \leq m$.
Proof. Just note that chains in \mathbf{B}^{n} have length at most n and that a strictly increasing function preserves the cardinality of chains.

This might be the reason why the notion doesn't appear much in the literature: it is not possible to decompose a strictly increasing function $\mathbf{B}^{n} \rightarrow \mathbf{B}^{m}$ into an m-tuple of strictly increasing functions $\mathbf{B}^{n} \rightarrow \mathbf{B}$. In other words, the outputs of a strictly increasing boolean function cannot be treated independently.

Simple Lemma. An increasing function $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$ is strictly increasing iff it is weight preserving: $|f(u)|=|u|$ for all $u \in \mathbf{B}^{n}$.

In particular, the values of $f(0 \cdots 0)$ and $f(1 \cdots 1)$ are fixed to $0 \cdots 0$ and $1 \cdots 1$.

Examples of such functions are the permutations $u \mapsto \sigma \cdot u$: they are exactly the invertible strictly increasing boolean functions. Less trivial and more interesting is the "and/or" function: $\left(b_{1}, b_{2}\right) \mapsto\left(b_{1} \wedge b_{2}, b_{1} \vee b_{2}\right)$ whose full graph is

$$
\left\{\begin{array}{lll}
00 & \mapsto & 00 \\
10 & \mapsto & 01 \\
01 & \mapsto & 01 \\
11 & \mapsto & 11
\end{array}\right.
$$

Applying this "and/or" function repeatedly yields many more examples, including the function pushing all the 1's to the right:

$$
u \quad \mapsto \quad 00 \cdots 00 \underbrace{11 \ldots 11}_{|u|} .
$$

Unfortunately, strictly increasing boolean functions aren't generated by those two families. For example, it can be shown that the next function cannot be obtained by composing permutations with "and/or" functions:

$$
\left\{\begin{array}{ccc}
0000 & \mapsto & 0000 \\
0001,0010,0100,1000 & \mapsto & 0001 \\
1100,0110,0011 & \mapsto & 0011 \\
1010,0101,1001 & \mapsto & 0101 \\
1110,1101,1011,0111 & \mapsto & 0111 \\
1111 & \mapsto & 1111
\end{array}\right.
$$

We will see in Section 5 that strictly increasing boolean functions aren't even finitely generated.

Because of global constraints, not every partial weight preserving function can be promoted to a total one. For example,

$$
\left\{\begin{array}{lll}
1100 & \mapsto & 1100 \\
1010 & \mapsto & 0011
\end{array}\right.
$$

cannot appear in the graph of a strictly increasing: it would imply $1110 \mapsto 1111$, which contradicts the "simple lemma". In general, to check if a partial weight-preserving function f can be extended to a total one, compute $f^{\prime}: u \mapsto \bigvee_{v \leq u} f(v)$, the least increasing total function agreeing with f. For f to be part of a total strictly increasing function, it is necessary (by the "simple lemma") to have $\left|f^{\prime}(u)\right| \leq|u|$ for all $u \in \mathbf{B}^{n}$. The next lemma shows that this is also sufficient.

Lemma 4. An increasing function $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$ is extensionally smaller than a strictly increasing function if and only if $|f(u)| \leq|u|$ for all $u \in \mathbf{B}^{n}$.

Proof. The implication " \Rightarrow " follows directly from the "simple lemma". For the converse, we define a new function f^{\prime} from f in such a way that:

- $f \leq f^{\prime}$,
- f^{\prime} is increasing and weight preserving.

We define $f^{\prime}(u)$ inductively by looking at u 's with decreasing weights. Whenever $|f(u)|=|u|$, we put $f^{\prime}(u) \stackrel{\text { def }}{=} f(u)$. Otherwise, we look at $\bigwedge_{u<v} f^{\prime}(v)$. Note that because we start with the "heavy" u 's, this is well defined. There are two possibilities:

- $\left|\bigwedge_{u<v} f^{\prime}(v)\right|=|u|$, in this case we use $\bigwedge_{u<v} f^{\prime}(v)$ for the value of $f^{\prime}(u)$,
- $\left|\bigwedge_{u<v} f^{\prime}(v)\right|=1+|u|$, in that case we choose a " 1 " in $\bigwedge_{u<v} f^{\prime}(v)$ that is not in $f(u)$ and replace it with a " 0 ".
Provided no other case appears, this defines a weight-preserving increasing function greater than f.

Claim. During the construction, we always have

$$
|u| \leq\left|\bigwedge_{u<v} f^{\prime}(v)\right| \leq 1+|u|
$$

Note that the infimum can be obtained by looking at the successors* of u, whose weight is always $1+|u|$. Since f^{\prime} is weight preserving, we have $\left|\bigwedge_{u<v} f^{\prime}(v)\right| \leq 1+|u|$. Suppose by contradiction that $\left|\bigwedge_{u<v} f^{\prime}(v)\right|<|u|$. By enumerating the successors v_{1}, \ldots, v_{k} of u and expanding the infimum as

$$
\bigvee_{v<u} f^{\prime}(v)=\underbrace{\overbrace{f^{\prime}\left(v_{1}\right) \vee \cdots \vee f^{\prime}\left(v_{i}\right)}^{|\cdots| \leq|u|} \vee \cdots \vee f^{\prime}\left(v_{j}\right)}_{|\cdots|<|u|} \vee \cdots
$$

with minimal i and j, we can find some w_{1} and w_{2} s.t.

- w_{1} and w_{2} are successors of v,
- $\left|f^{\prime}\left(w_{1}\right) \wedge f^{\prime}\left(w_{2}\right)\right|<|u|$.

It is easy to see that either " $w_{1} \stackrel{\text { def }}{=} v_{1}$ and $w_{2} \stackrel{\text { def }}{=} v_{j}$ " or " $w_{1} \stackrel{\text { def }}{=} v_{i}$ and $w_{2} \stackrel{\text { def }}{=} v_{j}$ " will work. We obtain a contradiction because

$$
\begin{aligned}
2+|u| & =\left|f^{\prime}\left(w_{1} \vee w_{2}\right)\right| \\
& \geq\left|f^{\prime}\left(w_{1}\right) \vee f^{\prime}\left(w_{2}\right)\right| \\
& =\left|f^{\prime}\left(w_{1}\right)\right|+\left|f^{\prime}\left(w_{2}\right)\right|-\left|f^{\prime}\left(w_{1}\right) \wedge f^{\prime}\left(w_{2}\right)\right| \\
& >1+|u|+1+|u|-|u| \\
& =2+|u| .
\end{aligned}
$$

This finishes the proof.
4. Back to the preorder. We can now give a more elegant answer to the original question. First note that we can lift any function $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{m}$ to a function $\mathcal{P}_{*}(N)^{n} \rightarrow \mathcal{P}_{*}(N)^{m}$:

Definition 6. Suppose $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{m}$, define $\widehat{f}: \mathcal{P}_{*}(N)^{n} \rightarrow \mathcal{P}_{*}(N)^{m}$ as

$$
\widehat{f}(\bar{Y}) \quad \stackrel{\text { def }}{=} \quad \bar{X} \quad \text { with } a \in X_{i} \text { iff } f\left(\chi_{\bar{Y}}(a)\right) \text { contains a } 1 \text { at coordinate } i .
$$

This transformation is, in a precise categorical sense, natural. It amounts to lifting the boolean operations \wedge and \vee to their set theoretic versions \cap and \cup in a way that is compatible with function composition. For example, with the "and/or" function $\left(b_{1}, b_{2}\right) \mapsto\left(b_{1} \wedge b_{2}, b_{1} \vee b_{2}\right)$ we obtain "intersection/union" $\left(Y_{1}, Y_{2}\right) \mapsto\left(Y_{1} \cap Y_{2}, Y_{1} \cup Y_{2}\right)$. Putting Lemma 3 and Lemma 4 together, we can now answer the initial question:

Proposition 2. For any \bar{X} and \bar{Y}, we have

$$
\bar{X} \sqsubseteq \bar{Y} \quad \Leftrightarrow \quad \bar{X} \subseteq \widehat{g}(\bar{Y}) \quad \text { for some strictly increasing } g: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}
$$

Proof. We know that $\bar{X} \sqsubseteq \bar{Y}$ is equivalent to having $|f(u)| \leq|u|$ for all u in \mathbf{B}^{n}, where f is defined as in Lemma 3. By Lemma 4, this is equivalent to saying that there is a strictly increasing g s.t. $f \leq g$. The two following points are thus equivalent:

- $\bar{X} \sqsubseteq \bar{Y}$,
- there is a strictly increasing $g: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$ s.t. $\chi_{\bar{Y}}(a) \leq u$ implies $\chi_{\bar{X}}(a) \leq g(u)$.

The second point implies that $\bar{X} \subseteq \widehat{g}(\bar{Y})$: use $u \stackrel{\text { def }}{=} \chi_{\bar{Y}}(a)$ to check that $a \in X_{i}$ is an element of the i-th set of $\widehat{g}(\bar{Y})$. For the converse, suppose g is strictly increasing s.t. $\bar{X} \subseteq \widehat{g}(\bar{Y})$ and let $\chi_{\bar{Y}}(a) \leq u$. Suppose that $\chi_{\bar{X}}(a)$ contains a 1 in position i, this means that $a \in X_{i}$ and thus a is in the i-th set of $\widehat{g}(\bar{Y})$, i.e., $g\left(\chi_{\bar{Y}}(a)\right)$ contains a 1 in position i. This implies that $g(u)$ also contains a 1 in position i.

[^2]5. Strictly increasing functions are not finitely generated. If one had a simple representation of strictly increasing boolean functions from \mathbf{B}^{n} to itself, then Proposition 2 would give a simple representation of the \sqsubseteq preorder. It is well known that all boolean functions $\mathbf{B}^{n} \rightarrow \mathbf{B}^{m}$ with n inputs and m outputs can be represented by a boolean circuit using only "and", "or" together with "not" gates. Strictly speaking, we also need constant values and need a way to forget or duplicate inputs:

where the last cells are:

- constants 0 and 1 (zero input, one output),
- drop (one input, zero output),
- duplicate (one input, two outputs),
- crossing (two inputs, two outputs).

These cells, together with a finite set of relations expressing properties of the operations (associativity, etc.), give a finite presentation of the monoidal category of boolean functions.* We can generate the subcategory of increasing functions by removing the "not" cell from the generators. Unfortunately, no such thing is possible for strictly increasing boolean functions.

Proposition 3. Strictly increasing boolean functions are not finitely generated.
Proof. First note that because of the "ultra simple lemma", we cannot use cells with more inputs than outputs as they wouldn't be strictly increasing on their own. In particular, any strictly increasing boolean function from \mathbf{B}^{n} to itself must be represented using cells with just as many inputs as outputs. An example of such cell could be $\left(b_{1}, b_{2}\right) \mapsto\left(b_{1} \wedge b_{2}, b_{1} \vee b_{2}\right)$, with two inputs and two outputs.

We will prove Proposition 3 by contradiction: suppose there is a finite set of cells that generates all strictly increasing boolean functions, and write A for the maximal arity of the cells in this set.

Any function has a representation

where

- the topmost rectangle contains only crossing (or invertible cells),
- the cell C is not invertible,
- and the lowermost rectangle contains the rest of the circuit.

The cell C has arity less than A and is not a bijection. It implies that it has at least two input wires a and b s.t. C gives the same value on the two elements of \mathbf{B}^{n} consisting of 0 's and a single 1 in position a or b. Because this is independent of the remaining wires, the whole function must give the same result when:

- a takes value 1 , all other inputs to C (including b) take value 0 and the rest takes value \bar{v},

[^3]- b takes value 1 , all other inputs to C (including a) take value 0 and the rest takes value \bar{v}. This will be true for any tuple of values \bar{v} for the remaining wires.

We will find a rather large n and construct a function $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$ that contradicts this fact: whenever we choose input wires a and b and put $A-2$ other input wires to 0 , we can complete the other input wires in such a way that putting $a \stackrel{\text { def }}{=} 0$ and $b \stackrel{\text { def }}{=} 1$, or putting $b \xlongequal{\text { def }} 0$ and $a \stackrel{\text { def }}{=} 1$ makes a difference in the output of the function. Thus, this function will not be representable using the given set of cells.

Given a large n, define $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$ as:

$$
f(u) \stackrel{\text { def }}{=} \begin{cases}0^{n} & \text { if }|u|=0 \\ 10^{n-1} & \text { if }|u|=1 \\ 1^{k} 0^{n-k} & \text { if }|u|=k \text { is even } \\ 11010^{n-4} & \text { if } u=0 \cdots 0110^{l} 10 \cdots 0, \text { with } l>0 \\ 11100^{n-4} & \text { if }|u|=3 \text { but } u \text { not of the previous shape } \\ 2^{2^{k}} 010^{n-2^{k}-2} & \text { if } u=0 \cdots 01^{2^{k}} 0^{2^{k}} 10 \cdots 0, \text { with } k>1 \\ 1^{2^{k}} 010^{n-2^{k}-2} & \text { if } u=0 \cdots 010^{2^{k}} 1^{2^{k}} 0 \cdots 0, \text { with } k>1 \\ 1^{2 k} 100^{n-2 k-2} & \text { if }|u|=2 k+1>3 \text { but } u \text { not of the previous shapes. }\end{cases}
$$

This function is strictly increasing because whenever v is a successor of u, we have $f(v)>f(u)$:

- $f(u)=1^{2 k} 0 \cdots$ when $|u|=2 k$
- $f(u)=1^{2 k} 100 \cdots$ or $f(u)=1^{2 k} 010 \cdots$ when $|u|=2 k+1$.

Suppose input wires i_{1}, \ldots, i_{A-2} are fixed to 0 and we want to differentiate between input wires a and b, with $a<b$. By putting some 1's in the remaining wires, we can make f give different results when " $a \stackrel{\text { def }}{=} 0, b \stackrel{\text { def }}{=} 1$ " and " $a \stackrel{\text { def }}{=} 1, b \stackrel{\text { def }}{=} 0$ ".

- If there are two consecutive wires between a and b (but not touching b) which are not among i_{1}, \ldots, i_{A-2}, we put those two wires to 1 and all the other wires to 0 . By lines 4 and 5 from the definition of f, we will get two different results.
- If not, the wires a and b cannot be too far apart. (There are at most $2 A-2$ wires between them...) If we can find a sequence of 2^{k} consecutive wires at distance 2^{k} to the left of a, or a sequence of 2^{k} consecutive wires at distance 2^{k} to the right of b, we can put those wires to 1 and the rest to 0 . By lines 6 and 8 or 7 and 8 of the definition of f, we will also get different results.
For this to work, we have to make sure n is big enough. At worst, the wires i_{1}, \ldots, i_{A-2} can prevent us from finding an appropriate sequence $A-2$ times. In particular, if a is big enough (bigger than 2^{A+1}), such a sequence is bound to happen. The same is true when b is small enough compared to n. In the end, choosing n bigger than, say, $2^{2 A+2}$ plus an additional ε will guarantee that we can differentiate any a and b among any set of A wires. A more careful analysis shows that it is in fact enough to take $n \stackrel{\text { def }}{=} 2^{A+1}+4$. This finishes the proof.

∞. Further questions.

There are more questions one can ask about this preorder, or more generally about strictly increasing boolean functions. Readers will probably come up with more examples but the most immediate ones are:

- Strictly increasing boolean functions aren't finitely generated, but how many cells are needed to generate those functions that are in $\mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$? (Asymptotic bounds etc.) Can we give canonical minimal generating families? If so, what can be said about the complexity of strictly increasing boolean functions expressed with those cells?
- How many strictly increasing boolean functions from \mathbf{B}^{n} to itself are there? The first four values of this sequence are " $1,4,66,7128$ " or " $1,2,11,297$ " if one divides each number by $n!$ to take symmetries on the outputs into account. Neither of them appears in Sloane's
encyclopedia [8]. This question is a variant of Dedekind's problem from [1] of counting the number of increasing boolean functions form \mathbf{B}^{n} to \mathbf{B}. Besides some asymptotic bounds, only the first eight Dedekind numbers are known [10]. The global nature of strict monotonicity makes it unlikely that the answers to these two questions are related.

References

None of the references in this bibliography is directly concerned with either the preorder " \sqsubseteq " or strictly increasing boolean functions. Any reference to papers or books mentioning them would be most welcome. Moreover, besides [3] or any book covering Hall's theorem, none of them is actually a prerequisite to this note.
[1] Richard Dedekind, "Ueber Zerlegungen von Zahlen durch ihre grössten gemeinsamen Teiler", Gesammelte mathematische Werke, vol. II, pp. 103-148, 1897.
[2] Aleksej Dmitrievich Korshunov , "Monotone Boolean Functions", Russian Mathematical Survey, 58-929, 2003.
[3] Philip Hall, "On Representatives of Subsets", Journal of the London Mathematical Society 10 (1), 1935.
[4] Pierre Hyvernat, "Predicate Transformers and Linear Logic: yet another Denotational Model", Lecture Notes in Computer Science, vol. 3210, 2004, Springer.
[5] Donald E. Knuth, "Generating all Combinations and Partitions", volume 4 / fascicle 3 of "The Art of Computer Programming", Addison-Wesley, 2005.
[6] Yves Lafont, "Towards an Algebraic Theory of Boolean Circuits", Journal of Pure and Applied Algebra, 184 (2-3), 2003
[7] Leonid Mirksy, "Transversal theory: an account of some aspects of combinatorial mathematics", Mathematics in Science and Engineering, vol. 75, Academics Press, 1971
[8] Neil J. A. Sloane et al. "The On-Line Encyclopedia of Integer Sequences", web address: http://oeis.org
[9] Ingo Wegener, "The Complexity of Boolean Functions", Wiley-Teubner publishing, 1987.
[10] Doug Wiedemann, "A computation of the eighth Dedekind number", Order 8 (1), 1991, Springer.

Appendix: an algorithm.

Proposition 2 is more elegant but Lemma 3 has an interesting byproduct: it gives a concrete algorithm to check if $\bar{X} \sqsubseteq \bar{Y}$. For that, construct the function f from Lemma 3 and check that it satisfies the condition. Just as a proof of concept, here is the main part of the algorithm, in the Python programming language. Minor alterations have been made to make it more readable. The most difficult (and fun) part was to write the function "combinations" that generates all the vectors of length n and weight w using one of the subtle algorithms from [5]!*

```
def check(N,n,X,Y): # N is a set, n is an integer, X / Y are tuples of sets
    def combinations(w):
        # generates all vectors of weight w
        # omitted (see Knuth, or use you favorite method)
    def sup(u,v): # complexity: O(n)
        # computes the pointwise "or" on n-tuples
        # omitted (simple)
    def weight(u): # complexity: O(n)
        # computes the weight of an n-tuple
        # omitted (simple)
    def chi(a,Z): # complexity: O(n log(z)) (z is cardinality of Z)
        for i in range(n): # we use Python builtin "set" type
            if a in Z[i]: # so that "a in Z[i]" mean "a belongs to Z[i]"
                u[i] = 1
        return u
    F = {} # F is a finite map with at most 2^n elements,
            # access is logarithmic: O(log(2^n)) = O(n)
                        # complexity: c *
    for a in N:
        chiX = chi(a,X)
        # n log(x)
        chiY = chi(a,Y) # # + n + Nog(y)
        F[chiY] = sup(F[chiY] , chiX)
        # generating all tuples
    for w in range(n+1):
        for u in combinations(w): # complexity : about 2^n *
            v = F[u]
                # + n *
            for i in range(n):
                if u[i] == 1:
                    #
                    u[i] = 0 #
                    v = sup(v,F[u]) #
                    u[i] = 1
                        #
            F[u] = v
            if weight(v) > w: # + n
            return False
    return True # if we reached this far, the condition is satisfied
```

If N has cardinality c and the sets X_{i} 's and Y_{i} 's have cardinalities at most x and y; and if we suppose that the standard operations on sets and finite functions have logarithmic complexity, the hints in the comments give a total complexity of roughly $O\left(\operatorname{cn}(\log (x)+\log (y))+2^{n} n^{3}\right)$. Because $x=O(c)$ and $y=O(c)$, we get a complexity of $O\left(n c \log (c)+2^{n} n^{3}\right)$. If c is fixed, this is $O\left(n^{3} 2^{n}\right)$; if n is fixed, this is $O(c \log (c))$. In almost all cases, this is better (and much easier to write) than the naive approach that checks if each $\bar{a} \in \bar{X}$ is a section of \bar{Y}, even if we are allowed to use an oracle to guess the permutations.

[^4]
[^0]: * Université de Savoie, Laboratoire de Mathématiques, 73376 Le Bourget-du-Lac Cedex, France

[^1]: * This problem comes from a very different area: denotational models of linear logic. In [4], the relation $\mathcal{S}(\bar{X}) \subseteq \mathcal{U}$ played an important role, where the set \mathcal{U} was an arbitrary collection of n-multisets. Thinking about the preorder " \sqsubseteq " was a natural step from there.

[^2]: * successors of u are those v 's with $v>u$ and $|v|=|u|+1$.

[^3]: * All of this has a precise algebraic meaning, see [6] for details.

[^4]: * The file is available from http://lama.univ-savoie.fr/~hyvernat/research.php

