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Optimal and robust control for a small-area FLL

C. Albea, D. Puschini, S. Lesecq and E. Beigné

Abstract—Fine-grain Dynamic Voltage and Frequency Scaling
(DVFS) is becoming a requirement for Globally-Asynchronous
Locally-Synchronous (GALS) architectures. However, the area
overhead of adding voltage and frequency control engines in
each voltage and frequency island must be taken into ac-
count to optimize the circuit. A small-area fast-reprogrammable
Frequency-Locked Loop (FLL) engine is a suited option, since
its implementation in 32nm represents0.0016mm

2, being 4 to
20 times smaller than classical techniques used such as a Phase-
Locked Loop (PLL) in the same technology. Another relevant
aspect with respect to the FLL is the control design, which must
be suited for low area hardware. In this paper, an analytical
model of the system is deduced from accurate Spice simulations.
It also takes into account the delay introduced by the sensor.
From this model, an optimal and robust control law with a
minimum implementation area is developed. The closed-loop
system stability is also ensured.

Keywords– Nano systems, FLL, robust control, optimiza-
tion, disturbance rejection, LMIs.

I. I NTRODUCTION

The continuous increase in clock frequency together with
technology scaling has generated the distribution of a single
global clock over a large digital chip tremendously difficult. A
Globally Asynchronous Locally Synchronous (GALS) design
alleviates the problem of clock distribution by having multiple
clocks, each one being distributed on a small area of the
chip. A system with different clock frequency domains appears
as a natural enabler for fine-grain power-aware architectures.
Actually, power consumption is a limiting factor in VLSI
integration, especially for mobile applications. DynamicVolt-
age and Frequency Scaling (DVFS) [4] has proven to be
highly effective to reduce the power consumption of the chip
while meeting the performance requirements [8]. The key idea
behind local DVFS is to control at fine grain the supply voltage
and the frequency of an island at runtime to minimize the
power consumption of the considered island while satisfying
the computation/throughput constraints [3].

The DVFS techniques mainly rely on two ‘actuators’. These
actuators need to be dynamically controlled in order to reduce
the power consumption while maintaining the required perfor-
mance. More precisely, the control policy must be carefully
designed in order to achieve high power efficiency at low
area cost. The voltage actuator fixes the supply voltage of the
Voltage and Frequency Island (VFI). It can be a classical buck
converter [9] or a discrete Vdd-hopping converter [1, 10]. On
the other side, the frequency actuator is a Clock Generator.
Its frequency control is related to the supply voltage control
in order to avoid timing faults [14]. This Clock Generator
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is classically based on a Phase Locked Loop (PLL) or a
Frequency Locked Loop (FLL).

Another consequence of technology scaling is the in-die and
die-to-die process variability (P-variability). From a practical
viewpoint, it is becoming increasingly difficult to manufacture
integrated circuits with tight parametric values [10]. As a
consequence, in-die process variation means that the optimum
functional and energetic point of the whole circuit can be
found if VFI numberi has its functioning frequency in the
range[Fmin,i, Fmax,i] [13]. If the clock is generated for the
whole circuit, and distributed in each VFI, the maximum
acceptable frequency (i.e. the one that will ensure no timing
fault for any VFI) will beFmax,i = min{Fmax,i ∀i}, leading
to a suboptimal circuit functioning, some VFI being under-
clocked. Therefore, in order to obtain the best possible circuit
performance, the clock must be locally generated and con-
trolled according to Process, Voltage and Temperature (PVT)
variations. Recently, control techniques have been applied to
the problem of DVFS (for instance, see [1, 2]). However, these
works address the closed-loop control of the voltage actuator,
this latter implementing a Vdd-hopping technique.

In the context of the industrial French project LoCoMoTiV1

circuit, an FLL is selected as second actuator due to the area
constraint: in a fine-grain GALS context, the FLL can indeed
be replicated in each VFI of the size of a processor in a many-
core architecture. The FLL has been implemented in a32nm
STMicrolectronics technology. The layout presented in Fig. 1
is fully compatible with the standard cell methodology, to be
easily integrated at GALS System on Chip (SoC) level. Its
area is about0.0016mm2; it is 4 to 20 times smaller than a
classical PLL in the same technology.

Fig. 1: FLL layout.

1Local Compensation of Modern Technology Induced Variability (LoCo-
MoTiV) is a CEA-Leti Minatec Project



The main objective of this paper is to design a control
law for the FLL (see Fig.2) taking into account the following
objectives:

• closed-loop stability;
• robustness with respect to PVT variations;
• suited performance (no overshoot, no static error, short

transient period);
• low area cost and
• exogenous disturbance rejection.

Therefore, the designed controller must not only guaranty the
set-point stabilization, but also other criterions.

From accurate Spice simulations, it has been seen that the
DCO can be modeled with a linear model. Moreover, the
sensor introduces a delay that must be taken into account and
it is remarked that the system characteristic can change due
to PVT effects.

A simple integral controller that requires a minimum im-
plementation area is proposed for this system. For the tuning
of the control gain, a robust and optimal control problem is
formulated, for which a functional must be minimized. In order
to solve this problem some Linear Matrix Inequalities (LMIs)
are defined. Satisfying these LMIs within the optimal problem,
all objectives above are fulfilled by the closed-loop system.
Consequently, an optimal and robust control law for the FLL
is reached.
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uk
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z
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Fig. 2: FLL block diagram.

Some simulations under the Matlab/Simulink environment
show the powerfulness of the proposed controller. Moreover,
the closed-loop system was implemented in RTL, obtain-
ing similar simulation results to the ones obtained by Mat-
lab/Simulink. The resulting layout (shown in Fig. 1) was
implemented in the LoCoMoTiV circuit in CMOS 32nm.

The rest of this paper is organized as follows: in Section
II, the circuit model of the FLL is presented as well as
their properties and the error equation. An optimal and robust
problem formulation is stated in Section III. Likewise, in
Section IV, this problem is solved by providing an approach
to tune the control gain. In Section V, the control gain is
computed, being tested and implemented in Section VI. The
paper ends with conclusions and future work.

Notation. For a givenS, the notationCo(S) denotes the
convex hull of the setS. ∆η , η+ − η−, whereη+ and η−

respectively areη(k+1) andη(k), i.e., the value ofη in two
consecutive sampling times. Finally,L2 is the space of{xk}
with the norm:‖xk‖

2
2 ,

∑

∞

k=0 x
T
k xk < ∞.

II. FLL CONCEPT

The main blocks of a FLL are modeled through design
considerations and accurate simulations. The main blocks
are a Digitally-Controlled Oscillator (DCO) that providesa
frequency, a sensor (i.e. a counter) to measure this frequency
and a controller that contains a frequency comparator between
the targeted frequency and the output frequency and some
‘intelligent controller’. In Fig. 3, a sketch of the FLL is shown.
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+
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Fig. 3: FLL architecture.

Digitally-Controlled Oscillator. In order to obtain a DCO
model some accurate simulations were performed in Spice.
Figure 4 shows the frequency characteristics of the post-
layout DCO (with extracted R& C parasitcs) in function
of the input 8-bits binary word. The Y-axis corresponds to
the measured raw frequency: this frequency must be divided
by 2 to obtain a usable clock frequency with a50% duty
ratio. The ‘nominal’ case (curve in the middle) is measured
at 25oC with a 1.1V supply voltage. The ‘best’ case (top
curve) is obtained with best case parasitic extract (minimum
R, minimum C), ‘FastFast’ transistors, a supply voltage of
1.2V and a temperature of125oC. The ‘worst’ case simulation
is performed with worst case parasitic extract (maximum R,
maximum C), ’SlowSlow’ transistors, at1.0V supply voltage
and a temperature of0oC.

Fig. 4: DCO characteristics (measured raw frequency vs. input
word)

From accurate Spice simulations, it can be assumed that the
DCO has a linear model, that evolves with respect to Process
variation but also to Temperature and Voltage changes (PVT)
over time.



The DCO model is

fk = b+KDCOuk +Bwwk

fk ∈ R
1 is the analog frequency output,uk ∈ N is coded

over 8 bits between 0 and 255, respectively.b is the DC-
offset, KDCO is a gain.wk is an energy-bounded signal to
take account any disturbance, andBw is a constant that defines
the disturbance magnitude. In order to take into account the
PVT variation effects, it is assumed that parametersKDCO, b
andBw can change in the interval

• KDCO ∈ [Km
DCO,K

M
DCO],

• Bw ∈ [Bm
w , BM

w ] ,
• b ∈ [bm, bM ].
Sensor.The sensor, which is a counter, measures the DCO

output frequency. This sensor introduces a delay of one-
sampling period. The delay is present in the feedback loop

Mk , Ksfk−1.

Control. Define ek , Ksfr − fk, wherefr is the signal
reference andKs is a positive constant that represents the
sensor gain. Then, the error equation is

ek = −b−KDCOuk −Bwwk +Ksfr. (1)

In order to limit the Silicon area and taking into account
the control objectives given above, a simple digital integral
controller is defined

uk = uk−1 +K(Ksfr −Mk) = uk−1 +KKsek−1 (2)

whereK is a the controller constant gain to be tuned.
From Eq. (1), it follows

uk−1 =
−ek−1 − b−Bwwk−1 +Ksfr

KDCO

which gives the closed-loop system

ek = ek−1 −KDCOKsKek−1 +Bwwk−1 −Bwwk

This can be rewritten in the following linear form:

ek+1 = Aek +Būk+1 +Bwwk −Bwwk+1, (3)

where
A = 1, B = −KDCOKs

and
ūk+1 = Kek. (4)

Note thatb does not change the system response.

III. PROBLEM STATEMENT

Equation (3) can be rewritten in the following explicit
closed-loop form, in such a way that aH∞ problem can be
formulated:

ek+1 = Aek +BKek +Bwwk −Bwwk+1, (5)

zk+1 = ek+1. (6)

Problem 1: The problem is to find the optimal gainK, such
that the control law (2) is robust and the system response is the

shortest possible without overshooting. Besides, there exists a
Lyapunov functionalVk > 0, such thatVk+1 − Vk along the
solution of (5) fulfills

Vk+1 − Vk < 0, (7)

and for any disturbance input, there exists a minimum distur-
bance attenuationγ∗ ≥ 0, such that, for allγ ≥ γ∗, the L2

gain between the disturbance vectorswk andwk+1, and the
output vectorzk+1 is less or equal toγ, i.e.

‖zk+1‖
2
2 − γ2(‖wk‖

2
2 + ‖wk+1‖

2
2) < 0, ∀wk, wk+1 ∈ L2.

(8)
The solution to this problem guarantees a suited perfor-

mance as well as a robust stability and robust disturbance
rejection for system (5)–(6).

IV. OPTIMAL H∞ CONTROL DESIGN

In order to cope with Problem 1 a mathematical manipula-
tion of Eq. (5) is performed via a variable change. This allows
obtaining feasible LMIs for a robustness problem [7].

A. Model transformation

Consider
yk , ek+1 − ek.

Then, Eq. (5) is rewritten in the form [5]:
[

ek+1

0

]

=

[

yk + ek
−yk +Aek − ek +BKek +Bwwk −Bwwk+1

]

.

This system can be compactly written as:

Eēk+1 = Āēk +

[

0
Bw

]

wk −

[

0
Bw

]

wk+1,

where

Ā ,

[

1 1
A+BK − 1 −1

]

,

E , diag{1, 0}, ēk ,

[

ek
yk

]

.

B. Control design

Problem 1 can be formulated in terms of Linear Matrix
Inequalties (LMIs) [6].

Assumption 1: There exists a Lyapunov functionVk, with
condition (7) and aγ, such that,

Vk+1−Vk+zTk+1zk+1−γ2(wT
k wk+wT

k+1wk+1) ≤ ζTΓζ < 0.
(9)

where ζ , [ēk wk wk+1]
T is an augmented state vector

andΓ ∈ R
4×4 is a symmetric matrix.

Vk is defined by the Lyapunov function

Vk = ēTkEPEēk, (10)

whereP ,

[

P1 P2

PT
2 0

]

, beingP ∈ R
2×2, P2 6= 0 andP1 > 0.

Next, a sufficient condition for asymptotic stability and
disturbance rejection is derived.



Theorem 1: Consider system (5)–(6) withK ∈ R
1×1 and

energy-boundedwk and wk+1. If the following LMIs are
satisfied:

P1 > 0 (11)

Γ < 0 (12)

whereΓ is defined in Eq. (13) found at the top of the next
page, then the equilibrium of the closed-loop system (5)–(6)
is asymptotically stable and there exists a valueγ∗, such that
for γ < γ∗ condition (8) is fulfilled.

Proof: The goal is to satisfyVk+1 − Vk + zTk+1zk+1 −
γ2(wk

Twk +wk+1
Twk+1 < 0) for both disturbance rejection

and asymptotic stability of the equilibrium for system (5)–(6).
Lyapunov method yields:

Vk+1 − Vk = ēTk+1EPEēk+1 − ēTkEPEēk

=
{

ēTk Ā
T + wk[0 BT

w ]− wk+1[0 BT
w ]
}

× P

×

{

Āēk +

[

0
Bw

]

wk −

[

0
Bw

]

wk+1

}

− ēTkEPEēk

= ēTk [Ā
TPĀ− EPE]ēk

+ēTk Ā
TP

[

0
Bw

]

wk − ēTk Ā
TP

[

0
Bw

]

wk+1

+wk[0 BT
w ]PĀēk − wk+1[0 BT

w ]PĀēk,

This developed expression is applied to inequality (9), in
such a way that the LMI (13) is obtained.

C. Robust control

Now, the uncertain parameters given in Section II are taken
into account in order to guarantee the system robustness, atthe
same time that the closed-loop stability as well as disturbance
rejection for the FLL system are also ensured. This means that
a robust control under parameter uncertainties is designedFor
this reason, Theorem 1 is extended in the case of polytopic
uncertainties.

Denote
Ω , [BK Bw]

and assume thatΩ ∈ Co{Ωj , j = 1, 2, 3, 4} namely

Ω =
n
∑

j=1

λjΩj , for some, 0 ≤ λj ≤ 1,
n
∑

j=1

λj = 1

being the vertices of the polytope described byΩj =

[B(j)K B
(j)
w ] for j = 1, 2, 3, 4.

Pre- and post-multiplying the LMI (13) byQ =
diag{Q1, Q1, 1, 1} and takingQ1 = P−1

2 > 0 and P̄1 =
Q1P1Q1, the following sufficient condition is achieved.

Theorem 2: Consider system (5)–(6) with energy-bounded
wk andwk+1, andK ∈ R

1×1. If there existT ∈ R
1×1 and

Q1 ∈ R
1×1 with K = TQ−1

1 and∈ R
1×1 such that

P̄1 > 0

Γ̄(j) =









Γ̄
(j)
1 Γ̄

(j)
2 B

(j)
w Q1 −B

(j)
w Q1

∗ P̄1 − 2Q1 B
(j)
w Q1 −B

(j)
w Q1

∗ ∗ −γ2 0
∗ ∗ ∗ −γ2









< 0,

where

Γ̄
(j)
1 , 2Q1(A− 1) + 2B(j)T + 1

Γ̄
(j)
2 , P̄1 +Q1A− 2Q1 + TB(j), j = 1, 2, 3, 4,

then, in the verticesj, the equilibrium is asymptotically stable
as well as the disturbances are rejected in the entire polytope.

Proof: This is an extension of Theorem 1 for polytopic
uncertainties with some mathematical manipulations. There-
fore, this theorem proof is straightforward.

D. Optimal and robust control

In order to satisfy all items of Problem 1, some assumptions
are performed.

Assumption 2: For wk ≡ 0 andwk+1 ≡ 0, the poles of the
closed-loop system (5) are

Z = 1 +BK.

If Z > 0 is chosen, overshoots are avoided. In addition, if K
is maximized, the response time is the shortest possible one
[12]. Remind the control structure (2).

Assumption 3: There exists a functional cost

J , ‖uk+1‖
2
2 + ‖zk+1‖

2
2 − γ2(‖wk‖

2
2 + ‖wk+1‖

2
2) (14)

The first term on the right hand side quantifies the response
time. Likewise, the other terms (on the right hand side)
quantify the disturbance attenuation.

Lemma 1: Suppose that Assumptions 1, 2 and 3 are fulfilled
andZ̄(i) , QT

1 Z
(i)Q1. Then the optimal controller gain K for

Problem 1 can be found by:
Minimize −J
subject to:

Γ̄(j) < 0 j = 1, 2, 3, 4.

Z̄(i) > 0 i = 1, 2

whereZ̄(i) = Q1 +B(i) i = 1, 2.
Proof: The optimal Problem 1 is solved by Lemma 1 if

condition (8) is fulfilled [11].
Forwk 6= 0 andwk+1 6= 0 and under zero initial conditions

Vk+1 − Vk ≤ −zTk+1zk+1 + γ2(wT
k wk + wT

k+1wk+1).

The summation of both sides is

Vk+1−V0 ≤ −

k
∑

k=0

zTk+1zk+1+γ2
k

∑

k=0

wT
k wk+γ2

k
∑

k=0

wT
k+1wk+1.

For k → ∞, under the zero initial conditionV0 = 0 and the
positive definitiveness of the Lyapunov function, it is proved

∞
∑

k=0

zTk+1zk+1 ≤ γ2
∞
∑

k=0

wT
k wk + γ2

∞
∑

k=0

wT
k+1wk+1

‖zk+1‖
2
2 ≤ γ2(‖wk‖

2
2 + ‖wk+1‖

2
2).

Corollary 1: The optimal gain K obtained applying
Lemma 1 guaranties both robust stability and robust dis-
turbance rejection. It also provides a short transient period
without overshoots.



Γ ,









ĀTPĀ− EPE + diag{1, 0} ĀTP

[

0
Bw

]

−ĀTP

[

0
Bw

]

∗ −γ2 0
∗ ∗ −γ2









< 0, (13)

V. OPTIMAL ROBUST CONTROL RESULT

In this section, an optimal and robust control is computed
for the FLL by employing the approach presented above.

Digitally-Controlled Oscillator. The DCO parameters can
change within the following intervals:

KDCO ∈ [10, 30] · 10−3GHz/LSB

The disturbance parameter is given by

Bw ∈ [0.1, 0.4]

Sensor.The maximum frequency at the input of the sensor
is supposed equal to5GHz andKs = 85 (LSB/GHZ).

The optimal control problem (Problem 1) is solved, dealing
to

K = 0.392, (15)

together withγ = 1.8 andP1 = 0.2663.

VI. SIMULATION AND IMPLEMENTATION RESULTS

In this section, some simulations in the Matlab environment
show the robustness of the control law proposed for the FLL.
For these simulations, the data above are reported and a
sampling period of60ns is taken.

Remind that the FLL characteristic curve can change due
to PVT variations as shown in Fig. 4. In order to validate the
system robustness with respect these changes, three different
models are considered (see Fig. 5):

syst 1: KDCO = 19.83 · 10−3GHz
LSB

, b = −0.0315GHz,
syst 2: KDCO = 14.25 · 10−3GHz

LSB
, b = 4.5785GHz,

syst 3: KDCO = 25.50 · 10−3GHz
LSB

, b = 2.0785GHz.
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Fig. 5: Variation of the characteristic curves.

Figure 6 shows the closed-loop response of ‘syst 1’, ‘syst
2’ and ‘syst 3’ to a change in the reference frequency,fr.
These tests show that the equilibrium is robust with respect

to the uncertainty in the characteristic curve. Note that the
response time at5% is achieved before the7th sampling time.
Figure 7 shows the frequency output, when the characteristic
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Fig. 6: Evolution of the output frequency for three different
systems (blue), reference frequency (red) and response time at
5% (green).

curve changes (‘syst 1’, ‘syst 2’ and ‘syst 3’) and when there
is some exogenous disturbances in the output of the system.
This example shows the great robustness of the system when
the optimal robust control tuning is employed.
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Fig. 7: Evolution of the output frequency with disturbance and
for three different systems.

The FLL with the controller was implemented in VHDL,
obtaining the layout shown in Fig. 1. The signal evolutions are
presented in Fig. 8. Note thatuk presents a delay with respect
to fr, this is due to asynchronous issues of the chip, and it is
not relevant in the closed-loop system. The delay presentedby
the sensor is seen infk−1. The system response is consistent
with Fig. 6, and the real output,f , is also reported.



K

fr
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fk−1
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Fig. 8: VHDL Simulation of syst 1.

VII. C ONCLUSION

In this paper, a small-area Frequency-Locked Loop (FLL)
engine is employed to implement a DVFS in GALS architec-
ture. The use of a simple control law has allowed a fully
digital implementation in standard cells, attaining a small
area. Implemented in a32nm technology, the proposed design
represents0.0016mm2, i.e. from 4 to 20 times smaller than
classical techniques used such as a Phase-Locked Loop (PLL)
in the same technology. Likewise, this control law is optimal
with respect to system performance (short transient period
and no overshoot) and disturbance attenuation. Another suited
property offered by the control law is the robustness with
respect to PVT variations. In addition, the closed-loop system
stability is guaranteed. Some simulations under Matlab show
the closed-loop system robustness. Likewise, the FLL with the
controller was implemented in VHDL in order to obtain the
implementation layout.

First version of the FLL (included the control law proposed
in this paper) has been implemented in a 32nm technology.
The circuit is currently under founder and performance at-
tained on the real chip will be show during the oral presenta-
tion.
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