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The paper presents a novel hybrid evolutionary algorithm that combines Particle Swarm Optimization (PSO) and Simulated
Annealing (SA) algorithms. When a local optimal solution is reached with PSO, all particles gather around it, and escaping from
this local optima becomes difficult. To avoid premature convergence of PSO, we present a new hybrid evolutionary algorithm,
called HPSO-SA, based on the idea that PSO ensures fast convergence, while SA brings the search out of local optima because of its
strong local-search ability. The proposed HPSO-SA algorithm is validated on ten standard benchmark multimodal functions for
which we obtained significant improvements. The results are compared with these obtained by existing hybrid PSO-SA algorithms.
In this paper, we provide also two versions of HPSO-SA (sequential and distributed) for minimizing the energy consumption in
embedded systems memories. The two versions, of HPSO-SA, reduce the energy consumption in memories from 76% up to 98%
as compared to Tabu Search (TS). Moreover, the distributed version of HPSO-SA provides execution time saving of about 73% up
to 84% on a cluster of 4 PCs.

1. Introduction

Several optimization algorithms have been developed over
last few decades for solving real-world optimization prob-
lems. Among them, we have many heuristics like Simulated
Annealing (SA) [1] and optimization algorithms that make
use of social or evolutionary behaviors like Particle Swarm
Optimization (PSO) [2, 3]. SA and PSO are quite popular
heuristics for solving complex optimization problems, but
they have some strengths and limitations.

Particle Swarm Optimization (PSO) is based on the
social behavior of individuals living together in groups.
Each individual tries to improve itself by observing other
group members and imitating the better ones. This way, the
group members are performing an optimization procedure
which is described in [3]. The performance of the algorithm
depends on how the particles (i.e., potential solutions to

an optimization problem) move in the search space, given
that the velocity is updated iteratively. Large research body
is therefore devoted to the analysis and proposal of different
motion rules (see [4–6] for recent accounts of PSO research).
To avoid premature convergence of PSO, we combine it
with SA: PSO contributes to the hybrid approach in a
way to ensure that the search converges faster, while SA
makes the search jump out of local optima due to its
strong local-search ability. In this paper, we present a hybrid
optimization algorithm, called HPSO-SA, which exploits
intuitively the positive features of PSO and SA. We also
validate HPSO-SA using ten benchmark functions given in
[7] and compare the results with classical PSO, ATREPSO,
QIPSO, and GMPSO algorithms described in [2], TL-PSO
[8], PSO-SA [9], SAPSO and SUPER-SAPSO presented in
[10]. We provide also two versions of HPSO-SA (sequential
and distributed) for minimizing the energy consumption in
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embedded systems memories. The two versions, of HPSO-
SA, reduce the energy consumption in memories from 76%
up to 98% as compared to Tabu Search (TS). Moreover,
the distributed version of HPSO-SA provides execution time
saving of about 73% up to 84% on a cluster of 4 PCs.

The rest of the paper is organized as follows. Section 2
introduces, briefly, PSO and SA algorithms. Section 3 is
devoted to detailed description of HPSO-SA. In Section 4,
benchmark functions are applied on HPSO-SA. In Section 5,
HPSO-SA is used to solve the energy consumption problem
in memory. In addition, simulation results are provided
and compared with those of [11]. Conclusions and further
research aspects are given in Section 6.

2. Background

2.1. Simulated Annealing Algorithm. SA [12] is a probabilistic
variant of the local search method, which can, in contrast to
PSO, escape local optima. SA is based on an analogy taken
from thermodynamics which is as follows: In order to grow a
crystal, we start by heating material until it reaches its molten
state. Then, we reduce the temperature of this crystal melt
gradually, until the crystal structure is formed. A standard
SA procedure begins by generating an initial solution at
random. At initial stages, a small random change is made in
the current solution sc. Then the objective function value of
the new solution sn is calculated and compared with that of
the current solution. A move is made to the new solution if
it has better value or if the probability function implemented
in SA has a higher value than a randomly generated number.
Otherwise a new solution is generated and evaluated. The
probability of accepting a new solution is given as follows:

p =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if f (sn)− f (sc) < 0,

exp

(

−
∣

∣ f (sn)− f (sc)
∣

∣

T

)

, otherwise.
(1)

The calculation of this probability relies on a parameter
T, which is referred to as temperature, since it plays a similar
role as the temperature in the physical annealing process. To
avoid getting trapped at a local minimum point, the rate
of reduction should be slow. In our problem we use the
following method to reduce the temperature: γ = 0.99 and

Ti+1 = γTi, (2)

where i = 0, 1, . . ..
Thus, at the start of SA most worsening moves may be

accepted, but in the end only improving ones are likely to be
allowed, which can help the procedure jump out of a local
minimum. The algorithm may be terminated after a certain
volume fraction of the structure has been reached or after a
prespecified runtime.

2.2. Particle Swarm Optimization. PSO is a population
based stochastic optimization technique developed by [13],
inspired by social behavior patterns of organisms that live
and interact within large groups. In particular, it incorpo-
rates swarming behaviors observed in flocks of birds, schools
of fish, or swarms of bees, and even human social behavior.

Vi(t)

Vi+1(t)
gbest i(t

)− Xi(t)

pbesti(t)− Xi(t)

gbesti(t)
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Figure 1: Movement of each particle.

PSO algorithm is based on an idea that particles move
through the search space with velocities that are dynamically
adjusted according to their historical behaviors. Therefore,
the particles have the tendency to move towards the better
and better search area over the course of search process. PSO
algorithm starts with a group of random (or not) particles
(solutions) and then searches for optima by updating each
generation. Each particle is treated as a volume-less particle
(a point) in the n-dimensional search space. The ith particle
is represented as Xi = (xi1, xi2, . . . , xin). At each generation,
the particles are updated by using following two best values.

(i) The first value is the best solution (fitness) a particle
has achieved so far (the fitness value is also stored).
This value is called pbest.

(ii) The second value is the best value tracked by the
particle swarm optimizer so far (by any particle)
in the population. This best value is a global best
and is called gbest. When a particle takes part of a
population as its topological neighbors, the best value
is a local best and is called lbest.

At each iteration, these two best values are combined to
adjust the velocity along each dimension, which is then used
to compute a new iteration step for the particle. A portion of
adjustment to the velocity is influenced by the individual’s
previous best position (pbest), considered as the cognition
component, and this portion is influenced by the best in
the neighborhood (lbest or gbest), the social component (see
Figure 1). With the addition of the inertia factor, ω, by [14]
(for balancing the global and the local search), the equations
for velocity adjustment are

vi+1 = ωvi + c1 ∗ random(0, 1)∗
(

pbesti − xi
)

+c2 ∗ random(0, 1)∗
(

gbesti − xi
)

,
(3)

xi+1 = xi + vi+1, (4)

where random(0, 1) is a random number independently
generated within the range of [0, 1] and c1 and c2 are two
learning factors which control the influence of the social and
cognitive components (usually, c1 = c2 = 2, see [15]).

In (3), if the sum on the right side exceeds a constant
value, then the velocity on that dimension is assigned to be
Vi min or Vi max. Thus, particle velocities are clamped to
the range of [Vi min;Vi max], which serves as a constraint
to control the global exploration ability of PSO algorithm.
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This also reduces the likelihood of particles leaving the search
space. Note that the values of xi are not restricted to the range
[Vi min;Vi max]; it only limits the maximum distance that a
particle will move during one iteration.

3. HPSO-SA Hybrid Algorithm

This section presents a new hybrid HPSO-SA algorithm
which combines the advantages of both PSO (that has a
strong global-search ability) and SA (that has a strong local-
search ability). Other applications of hybrid PSO and SA
algorithm can be found [9, 10, 16–19].

This hybrid approach makes full use of the exploration
capability of both PSO and SA and offsets the weaknesses
of each. Consequently, through application of SA to PSO,
the proposed algorithm is capable of escaping from a local
optimum. However, if SA is applied to PSO at each iteration,
the computational cost will increase sharply and at the same
time the fast convergence ability of PSO may be weakened.
In order to flexibly integrate PSO with SA, SA is applied
to PSO every K iterations if no improvement of the global
best solution does occur. Therefore, the hybrid HPSO-SA
approach is able to keep fast convergence (most of the time)
thanks to PSO, and to escape from a local optimum with
the aid of SA. In order to allow PSO jump out of a local
optimum, SA is applied to the best solution in the swarm
found so far, each K iterations that is predefined to be 270 ∼
500 (based on our experimentations).

The hybrid HPSO-SA algorithm works as illustrated in
Algorithm 1, where one has the following.

(i) Description of a Particle. Each particle (solution) X ∈
S is represented by its n > 0 components, that is, X =
(x1, x2, . . . , xn), where i = 1, 2, . . . ,n and n represents
the dimension of the optimization problem to solve.

(ii) Initial Swarm. Initial Swarm corresponds to popula-
tion of particles that will evolve. Each particle xi is
initialized with uniform random value between the
lower and upper boundaries of the interval defining
the optimization problem.

(iii) Evaluate Function. Evaluate (or fitness) function
in HPSO-SA algorithm is typically the objective
function that we want to minimize in the problem.
It serves for each solution to be tested for suitability
to the environment under consideration.

(iv) SA Algorithm. If no improvement of the global best
solution occur during the last K iterations, then
it means that the algorithm is trapped in a local
optimum point. To escape out from local optimum,
we apply SA algorithm to global best solution. The
performance of SA depends on the definition of the
several control parameters.

(a) Initial Temperature. Kirkpatrick [20] suggested
that a suitable initial temperature is one that
results in an average probability χ0 of a solution
that increases f being accepted of about 0.8.
The value of T0 will clearly depend on the

scaling of f and, hence, be problem-specific. It
can be estimated by conducting an initial search
(100 iterations in next simulations) in which
all increases in f are accepted and calculating
the average objective increase observed δ f . T0

is then given by

T0 = −
δ f

ln
(

χ0

) . (5)

(b) Accept Function. Function Accept (current solu-
tion, Neighbor, T) is decided by the acceptance
probability given by (1), which is the probabil-
ity of accepting configuration Neighbor.

(c) Generate Function. The neighborhood of each
solution x is generated by using the following
Equation:

x ←− x + dσr, (6)

where d is the direction of the new neighbor-
hood and takes either 1 or −1, σ is random
number with Gaussian (0,1) distribution and r
is a constant that correspond to the radius of
neighborhood generator.

(d) SA Stop Criterion. The stopping criterion of SA
algorithm defines when the system has reached
3000 function evaluations or maximum number
of functions evaluations or Optimal solution are
not attained.

(e) Decrementing the Temperature. The most com-
monly used temperature reducing function is
geometric (see (2)). In next simulations γ =
0.99.

(f) Inner-Loop. The length of each temperature
level determines the number q = 150 of
solutions generated at each temperature, T.

4. Experiments Results

4.1. Benchmark Functions. In order to compare the perfor-
mance of HPSO-SA hybrid algorithm with those described
in [2, 8–10], we use benchmark functions [7] described
in Table 1. These functions provide a good starting point
for testing the credibility of an optimization algorithm. For
each of these functions, there are many local optima in
their solution spaces. The number of local optima increases
with increasing complexity of the functions, that is, with
increasing dimension. In the following experiments, we
used 10-, 20- and 30-dimensional functions except in the
case of Himmelblau and Shubert functions that are two-
dimensional by definition (see Figure 2 for 3D representa-
tion).

4.2. Simulation Results and Discussions. To verify the effi-
ciency and effectiveness of HPSO-SA hybrid algorithm, the
experimental results of HPSO-SA approach are compared
with those obtained by [2, 8–10]. Our HPSO-SA hybrid
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(1) iter←0, cpt ← 0, Initialize swarm size particles
(2) stop criterion←maximum number of function evaluations or Optimal solution is not attained
(3) while Not stop criterion do

(4) for each particle i← 1 to swarm size do

(5) ��������(particle(i)) if the fitness value is better than the best fitness value (cbest) in history then

(6) Update current value as the new cbest.
(7) end

(8) end

(9) Choose the particle with the best fitness value in the neighborhood (gbest)
(10) for each particle i← 1 to swarm size do

(11) Update particle velocity according to Equation (3)
(12) Enforce velocity bounds
(13) Update particle position according to Equation (4)
(14) Enforce particle bounds
(15) end

(16) if there is no improvement of global best solution then

(17) cpt ← cpt + 1
(18) end

(19) Update global best solution
(20) cpt ← 0
(21) if cpt = K then

(22) cpt ← 0
(23) //Apply SA to global best solution
(24) iterSA← 0, Initialize T according to Equation (5)
(25) current solution ← global best solution
(26) current cost ←��������(current solution)
(27) while Not SA stop criterion do

(28) while inner-loop stop criterion do

(29) Neighbor ←��	�
���(current solution)
(30) Neighbor cost ← ��������(Neighbor)
(31) if Accept(current cost, Neighbor cost, T) then

(32) current solution ← Neighbor
(33) current cost ← Neighbor cost
(34) end

(35) iterSA ← iterSA + 1
(36) Update (global best solution)
(37) end

(38) Update(T) according to Equation(2)
(39) Update (SA stop criterion)
(40) end

(41) end

(42) iter ← iter + 1, Update (stop criterion)
(43) end

Algorithm 1: HPSO-SA hybrid algorithm.

algorithm is written in C++ and was compiled using gcc
version 2.95.2 (Dev-cpp) on a laptop with Windows Vista
x64 Premium Home Edition running Intel Core 2 Quad
(Q9000) at 2 GHz and having 4 Gb memory.

4.2.1. Comparison with Results Obtained by Using TL-
PSO Algorithm [8]. In this section we compare HPSO-
SA approach with TL-PSO method [8] that is based on
combining the excellence of both PSO and Tabu Search.
As described in [8], we apply HPSO-SA algorithm to the
four following benchmark problems: Rastrigin, Schwefel,
Griewank and Rosenbrock function. Here, the number of
particles in the swarm is 30. The number of dimension of

searching n = 20 and the number of objective function
evaluations is 60000 (i.e., 2000 × 30). The results obtained
after numerical simulations are shown in Table 2. These
results indicate the Mean, Best, and Worst values obtained
under the same condition over 50 trials. By analyzing Table 2,
we conclude that the results obtained by HPSO-SA algorithm
are preferable in comparison with those obtained by TL-PSO
algorithm.

4.2.2. Comparison with Other PSO Algorithms Described
in [2]. Performance of four Particle Swarm Optimiza-
tion algorithms, namely classical PSO, Attraction-Repulsion
based PSO (ATREPSO), Quadratic Interpolation based PSO
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Table 1: Standard benchmark functions adopted in this work.

Function Problem Range f (x∗) Classification

Sphere
∑n

i=1 x
2
i [−100; 100] 0 Unimodal

Rastrigin
∑n

i=1(x2
i − 10 cos(2πxi) + 10) [−5.12; 5.12] 0 Multimodal

Griewank (1/4000)
∑n

i=1 x
2
i −

∏n
i=1 cos(xi/

√
i) + 1 [−600; 600] 0 Multimodal

Rosenbrock
∑n−1

i=1 (100(xi+1 − x2
i )2 + (xi − 1)2) [−2.048; 2.048] 0 Unimodal

Quartic (
∑n

i=1 ix
4
i ) + rand[0, 1] [−1.28; 1.28] 0 Noisy

Schwefel 420.9687n−
∑n

i=1(xi sin(
√

|xi|) [−500.0; 500.0] 0 Multimodal

Ackley 20 + e − 20e−0.2((1/n)
∑n

i=1 x
2
i )1/2 − e(1/n)

∑n
i=1 cos(2πxi) [−30.0; 30.0] 0 Multimodal

Michalewicz −
∑n

i=1 sin(xi)sin2m((i− x2
i )/π) [−π;π] — Multimodal

Himmelblau (x2 + x2
1 − 11)2 + (x1 + x2

2 − 7)2 + x1 [−5.0; 5.0] −3.78396 Multimodal

Shubert
∑5

i=1 i cos((i + 1)x1 + i)
∑5

i=1 i cos((i+ 1)x2 + i) [−10.0; 100] −186.7309 Multimodal

Table 2: Comparison of hybrid HPSO-SA algorithm with TL-PSO approach [8].

Mean Best Worst

Function TL-PSO HPSO-SA TL-PSO HPSO-SA TL-PSO HPSO-SA

Rastrigin 8.7161 5.23034e− 05 4.0589 4.35994e− 09 17.053 8.15835e− 04

Schwe f el 445.8830 206.693255 0.6748 0 829.4431 355.318

Griewank 0.0228 1.18294e− 03 1.0507e− 5 1.2299e− 15 0.0739 0.0172263

Rosenbrock 19.5580 0.58359742 0.1331 0.0442625 71.5439 1.36171

Table 3: Comparison of mean/standard deviation of solutions obtained by using hybrid HPSO-SA algorithm and approaches described in
[2].

Function PSO QIPSO ATREPSO GMPSO HPSO-SA

Rastrigin
22.339158 11.946888 19.425979 20.079185 0

15.932042 9.161526 14.349046 13.700202 0

Sphere
1.167749e− 45 0.000000 4, 000289e− 17 7, 263579e− 17 5.3656e− 32

5.222331e− 46 0.000000 0.000246 6.188854e− 17 2.98492e− 31

Griewank
0.031646 0.011580 0.025158 0.024462 3, 32255e− 20

0.025322 0.012850 0.028140 0.039304 2.68415e− 20

Rosenbrock
22.191725 8.939011 19.490820 14.159547 0, 227048188

1.615544e + 04 3.106359 3.964335e + 04 4.335439e + 04 0.243978057

Noisy
8.681602 0.451109 8.046617 7.160675 0, 002019998

9.001534 0.328623 8.862385 7.665802 0.000650347

Schwefel
−6178.559896 −6355.586640 −6183.677600 −6047.670898 −8379.66

4.893329e + 02 477.532584 469.611104 482.926738 2.20425e− 19

Ackley
3.483903e− 18 2.461811e− 24 0.018493 1.474933e− 18 7.43546e− 16

8.359535e− 19 0.014425 0.014747 1.153709e− 08 1.09382e− 15

Michalewizc
−18.159400 −18.469600 −18.982900 −18.399800 −19, 62555806

1.051050 0.092966 0.272579 0.403722 0.00926944

Himmelblau
−3.331488 −3.783961 −3.751458 −3.460233 −3, 78396

1.243290 0.190394 0.174460 0.457820 3.16001e− 15

Shubert
−186.730941 −186.730942 −186.730941 −186.730942 −186, 730942

1.424154e− 05 0.000000 1.424154e− 05 1.525879e− 05 8.66746e− 14
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(a) Rastrigin (b) Sphere (c) Griewank

(d) Rosenbrock (e) Schwefel (f) Ackley

(g) Michalewicz (h) Himmelblau (i) Shubert

Figure 2: 3D mathematical benchmark functions.

(QIPSO) and Gaussian Mutation based PSO (GMPSO) is
evaluated in [2]. The algorithms presented in this paper are
guided by the diversity of the population to search the global
optimal solution of a given optimization problem, where
as GMPSO uses the concept of mutation and QIPSO uses
the reproduction operator to generate a new member of the
swarm.

In order to make a fair comparison between classical
PSO, ATREPSO, QIPSO, GMPSO and HPSO-SA approach,
we fixed, as indicated in [2], the same seed for random
number generation so that the initial swarm population is
same for all five algorithms. The number of particles in the
swarm is 30. The algorithms use a linearly decreasing inertia

weight ω which starts at 0.9 and ends at 0.4, with the user
defined parameters c1 = c2 = 2.0. For each algorithm, the
number of objective function evaluations is 300000. A total
of 30 runs for each experimental setting were conducted and
the average fitness of the best solutions throughout the run
was recorded. The mean solution and the standard deviation
(note that the standard deviation indicates the stability of the
algorithms), found by the five algorithms, is listed in Table 3.
The numerical results given in Table 3 show the following.

(i) All the algorithms outperform the classical Particle
Swarm Optimization.
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(ii) HPSO-SA algorithm gives much better performances
in comparison to PSO, QIPSO, ATREPSO, and
GMPSO, out of the Sphere’s and Ackley’s functions.

(iii) On Sphere’s function, QIPSO obtains better results
than those obtained by HPSO-SA approach. But
when the maximum number of iterations is fixed to
1.5× 106, HPSO-SA obtains the optimal value.

(iv) The analysis of the results, obtained for Ackley’s
function, shows that QIPSO obtains better mean
result than HPSO-SA algorithm. However, HPSO-SA
has a much smaller standard deviation.

4.2.3. Comparison with Other PSO Algorithms Described in
[10]. In this section four benchmark functions are used to
compare the relative performance of HPSO-SA algorithm
with SUPER-SAPSO, SAPSO, and PSO algorithms described
in [10].

For all comparisons, the number of particles was set to
30. HPSO-SA algorithm uses a linearly decreasing inertia
weight ω which starts at 0.9 and ends at 0.4, with the user
defined parameters c1 = c2 = 2.0, 20 runs are conducted
for each experimental setting and, for each algorithm, the
average value is given in Table 4.

In all above experiments, HPSO-SA algorithm obtains
better results in comparison to those obtained by both the
standard PSO and SAPSO algorithm [10]. A comparison of
HPSO-SA algorithm and SUPER-SAPSO [10], shows that the
last one converges faster than HPSO-SA.

SUPER-SAPSO uses an expression for the particle move-
ments (xt+1 = (xt + vt+1)T where T ≪ 1) which is well-
adapted to the case where the global optimum is 0. This is
the reason why SUPER-SAPSO needs a very small number of
iterations in this case.

4.2.4. Comparison with PSO-SA Algorithm Described in [9].
In this section performances of HPSO-SA are compared with
these of PSOSA [9], Genetic Algorithm and hybrid algorithm
[21].

Table 5 lists different results obtained for three different
dimensions of each function. The optimum value of Sphere,
Rastrigrin and Griewank was set to be 1e − 10 and the goal
value of Rosenbrock function was set to be 1e − 06 (as
indicated in [9]).

To make a fair comparison, the maximum number
of function evaluations allowed was set to 20000, 30000
and 40000 for HPSO-SA and PSOSA algorithms when the
number of particle was set to 20. HPSO-SA algorithm uses
a linearly decreasing inertia weight ω which starts at 0.9 and
ends at 0.4, with the user defined parameters c1 = c2 = 2.0.

The numerical results given in Table 5 show that:

(i) Over four benchmark functions, HPSO-SA and
PSOSA do better than standard GA and hybrid
algorithm [21].

(ii) For Sphere, Rastrigin and Griewank functions,
HPSO-SA and PSOSA algorithms obtain optimal
solutions within specified constrains (number of
objective function evaluations).

(iii) For Rosenbrock function, PSOSA obtains better
results than HPSO-SA for dimension 20, but for
dimensions 10 and 30, HPSO-SA does better and has
smaller standard deviation.

5. Reducing Memory Energy Consumption in
Embedded Systems

5.1. Description of the Memory Problem. According to trends
in [22], memory will become the major energy consumer
in an embedded system. Indeed, embedded systems must
integrate multiple complex functionalities which needs big-
ger battery and memory. Hence, reducing memory energy
consumption of these systems has never been as topical.
In this paper, we will focus on software techniques for the
memory management. In order to reduce memory energy
consumption, most authors rely on Scratch-Pad Memories
(SPMs) rather than caches [23]. Although cache memory
helps a lot with program speed, it is not the appropriate for
most of the embedded systems. In fact, cache increases the
system size and its energy cost (cache area plus managing
logic). Like cache, SPM consists of small, fast SRAM. The
main difference is that SPM is directly and explicitly managed
at the software level, either by the developer or by the
compiler which makes it more predictable. SPM requires up
to 40% less energy and 34% less area than cache [24]. In
this paper, we will therefore use an SPM in our memory
architecture. Due to the reduced SPM size, we allocate space
for interesting data only whereas, the remaining is placed in
main memory (DRAM). In order to determine interesting
data, we use data profiling to gather memory access frequency
information. The Tabu Search (TS) approach consists of
allocating space for data in SPM based on TS principles [25].
More details about how TS is implemented can be found in
[11].

In order to compute energy cost of the system, we
propose an energy consumption estimation model, for our
memory architecture composed by an SPM, an instruction
cache and a DRAM. Equation (7) gives the energy model
where the three terms refer to the total energy consumed,
respectively, in SPM, in instruction cache and in DRAM.

E = Etspm + Etic + Etdram. (7)

In this model, we distinguish between the two cache write
policies: Write-Through (WT) and Write-Back (WB). In a
WT cache, every write to the cache causes a synchronous
write to DRAM. Alternatively, in a WB cache, writes are not
immediately mirrored to DRAM. Instead, the cache tracks
which of its locations have been written over and then, it
marks these locations as dirty. The data in these locations is
written back to DRAM when that data is evicted from the
cache [26]. In this paper, the aim is to minimize the energy
for the detailed estimation model presented as follows:

E = Nspmr ∗ Espmr (8)

+ Nspmw ∗ Espmw (9)
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Table 4: Performance results of HPSO-SA, SUPER-SAPSO, SAPSO, and PSO algorithms on benchmark functions.

Function Algorithm Number of iterations Average Error

Rastrigin

PSO 2989 0.097814

SAPSO 2168 0.07877

SUPER-SAPSO 5 0.0

HPSO-SA 2022.43 0.0

Sphere

PSO 805 0.094367

SAPSO 503 0.085026

SUPER-SAPSO 4 0.0

HPSO-SA 501.15 7, 92e− 32

Griewank

PSO 2004 0.082172

SAPSO 1517 0.075321

SUPER-SAPSO 3 0.0

HPSO-SA 1496.35 3, 61e− 20

Ackley

PSO 4909 0.099742

SAPSO 3041 0.099461

SUPER-SAPSO 5 0.0

HPSO-SA 3020.65 8, 92e− 16

Table 5: Performance comparison between PSOSA, Sid.GA, Hybrid and HPSO-SA for benchmark functions [9].

Function Dimension PSOSA Std.GA Hybrid HPSO-SA

Sphere

10 0± 0 2.43e− 04± 1.14e− 05 2.42e− 04± 2.17e− 05 0± 0

20 0± 0 0.00145± 6.22e− 05 0.00212± 2.75e− 04 0± 0

30 0± 0 0.00442± 1.78e− 04 0.01203± 6.33e− 04 0± 0

Rastrigin

10 0± 0 3.1667± 0.2237 3.0599± 0.1535 0± 0

20 0± 0 16.8732± 0.6007 11.6590± 0.3602 0± 0

20 0± 0 49.3212± 1.1204 27.8119± 0.8059 0± 0

Griewank

10 0± 0 283.251± 1.812 0.09078± 0.03306 0± 0

20 0± 0 611.266± 3.572 0.00459± 0.01209 0± 0

30 0± 0 889.537± 3.939 0.09911± 0.00106 0± 0

Rosenbrock

10 0.17856± 1.25988 109.810± 6.212 43.521± 16.047 0.146± 0.224193

20 0.00043± 0.00111 146.912± 10.951 169.112± 21.535 0.246897± 0.231982

30 0.57431± 4.05976 199.730± 16.285 187.033± 22.960 0.439149± 0.304347

+
Nicr
∑

k=1

[

hik ∗ Eicr +
(

1− hik
)

∗ [Edramr + Eicw + (1−WPi)

∗ DBik ∗ (Eicr + Edramw)
]]

(10)

+
Nicw
∑

k=1

[

WPi ∗ Edramw + hik ∗ Eicw + (1−WPi)

∗
(

1− hik
)

∗
[

Eicw + DBik ∗ (Eicr + Edramw)
]]

(11)

+ Ndramr ∗ Edramr (12)

+ Ndramw ∗ Edramw. (13)

Equations (8) and (9) represent, respectively, the total
energy consumed during reading and writing from/to
SPM. Equations (10) and (11) represent, respectively, the
total energy consumed during reading and writing from/to
instruction cache. When, Equations (12) and (13) represent,
respectively, the total energy consumed during reading and
writing from/to DRAM. The various terms used in this
energy model are explained in Table 6.

As SPM has got a lot of advantages, it is clearly preferable
to put as much data as possible in it. In other words, we must
maximize terms Nspmr and Nspmw in the model. Hence, the
problem becomes to maximize the number of accesses to the
SPM. It is therefore a combinatorial optimization problem
like knapsack problem [27]. We want to fill SPM that can
hold a maximum capacity of C with some combination
of data from a list of N possible data each with sizei
and access numberi so that the access number of the data
allocated into SPM is maximized. This problem has a single
linear constraint, a linear objective function which sums



Applied Computational Intelligence and Soft Computing 9

Table 6: List of terms.

Term Meaning

Espmr Energy consumed during a reading from SPM.

Espmw Energy consumed during a writing into SPM.

Nspmr Reading access number to SPM.

Nspmw Writing access number to SPM.

Eicr
Energy consumed during a reading from instruction
cache.

Eicw
Energy consumed during a writing into instruction
cache.

Nicr Reading access number to instruction cache.

Nicw Writing access number to instruction cache.

Edramr Energy consumed during a reading from DRAM.

Edramw Energy consumed during a writing into DRAM.

Ndramr Reading access number to DRAM.

Ndramw Writing access number to DRAM.

WPi
The considered cache write policy: WT or WB. In case
of WT, WPi = 1 else in case of WB then WPi = 0.

DBik

Dirty Bit used in case of WB to indicate during the
access k if the instruction cache line has been modified
before (DBi = 1) or not (DBi = 0).

hik
Type of the access k to the instruction cache. In case of
cache hit, hik = 1. In case of cache miss, hik = 0.

the sizes of the data allocated into SPM, and the added
restriction that each data will be in the SPM or not. If N is the
total number of data, then a solution is just a finite sequence
s of N terms such that s[n] is either 0 or the size of the nth

data. s[n] = 0 if and only if the nth data is not selected in
the solution. This solution must satisfy the constraint of not

exceeding the maximum SPM capacity (i.e.,
∑N

i=1 s[i] ≤ C).

5.2. Discrete Sequential Hybrid HPSO-SA Algorithm. This
section should be considered as an attempt to use hybrid
evolutionary algorithms for reducing energy consumption
in embedded systems. Here, the focus is on the use of
HPSO-SA algorithm designed in previous sections. Since
the problem under consideration is dicrete and has specific
features, HPSO-SA needs changes.

solution (Particle). A solution can be represented by an array
having size equal to the number of the data. Each element
from this array denotes whether a data is included in the SPM
(“1”) or not (“0”). The HPSO-SA algorithm starts with an
initial swarm which is randomly initialized.

Evaluate Function. It is the objective function that we want
to minimize in the problem. It serves for each solution to be
tested for suitability to the environment under consideration

Evaluate(solution) = Total Number Access all data

−Number Access(solution).
(14)

Position Update Equation. Each dimension j of the particle i
is updated by using (15):

xi j =

⎧

⎪

⎨

⎪

⎩

1, rand < sigm
(

vi j
)

,

0, otherwise ,
(15)

where sigm(vi j) is the sigmoid function, used to scale the
velocities between 0 and 1, defined as:

sigm
(

vi j
)

= 1

1 + exp
(

−vi j
) (16)

Generate Function. SA uses a notion of neighborhood rela-
tion. Let S be the set of all feasible solutions to the problem
and f : S → � the objective function to be minimized. A
neighborhood relation is a binary relation N ⊆ S × S with
some desired properties. The interpretation of N(s, s′) is that
solution s is a neighbor of solution s′ in the search space of all
solutions S. A neighbor heuristic proceeds in steps. Starting
search at some initial solution s0 and then each step moves
from the current solution to some neighbor according to
rules specific to the heuristic. At each iteration, SA algorithm
generates a random neighbor of the current solution (line
10). The neighborhood relation is defined as follows:

(1) with probability equal to 0.03, the value of each
element of current solution is flipped from 1 to 0 or
from 0 to 1;

(2) validate solution:
while Not feasible (current solution must satisfy the
constraint of not exceeding the maximum SPM
capacity.) (current solution) do
Remove the data j having a low number of access
from current solution: (current solution[ j] ← 0).

Accept Function. the key idea in the SA approach is the
function Accept which specifies the probability of accepting
the move from current solution to a Neighbor solution,
which also depends on so called temperature (T). The
function Accept should satisfy the following conditions:

(1) p = 1 if solution Neighbor is better than
current solution in terms of the cost function f :
(i.e., f (Neighbor) < f (current solution) in a mini-
mization problem);

(2) if Neighbor is worse than current solution the value
of p is positive (i.e., it allows for moving to a
worse solution), but decreases with | f (Neighbor) −
f (current solution)|;

(3) for fixed current solution and Neighbor, when
Neighbor is worse than current solution the value of
p decreases with time and tends to 0.

The function Accept(Ccost ,Ncost ,T) is decided by the proba-
bility of accepting configuration Neighbor. This probability
is given by the following formula:

p =

⎧

⎪

⎨

⎪

⎩

1, Ncost < Ccost ,

1

2
rand ∗

(

1 + e(Ccost−Ncost)/T
)

, otherwise,
(17)
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where T is the temperature and rand is a random number
independently generated within the range of [0, 1].

5.3. Discrete Cooperative Distributed Hybrid HPSO-SA Algo-
rithm. For Distributed hybrid HPSO-SA (HPSO-SA Dist)
algorithm, we use independent subswarms of particles with
their own fitness functions which evolve in isolation, except
for an exchange of some particles (migration). A set of
m = 30 particles is assigned to each of the P processors,
for a total population size of m × P. The set assigned to
each processor is its subswarm. The processors are connected
by an interconnection network with a ring topology. Initial
subswarms consist of a randomly constructed assignment
created at each processor. Each processor, disjointly and
in parallel, executes the HPSO-SA Seq algorithm on its
subswarm for a certain number of generations. Afterwards,
each subswarm exchanges (HPSO − SA Dist runs in Asyn-
chronous mode: at the 100th iteration, each processor sends
its best solution and continues the improvement of its
subswarm and verifies if it does not receive a solution from
its neighbor.) its best particle (migrant) with its neighbors.
We exchange the particles themselves (i.e., the migrant is
removed from one subswarm and added to another). Hence,
the size of the subswarm remains the same after migration
(the worst particle is removed). The process continues
with the separate improvement of each current solution
for a maximum number of iterations. At the end of the
process the best solution that exists constitutes the final
assignment.

5.4. Experimental Results. In order to compute the energy
cost of studied memory architecture composed by an SPM,
an instruction cache and a DRAM, we proposed an energy
consumption estimation model which is explained in [11].
Hybrid HPSO-SA algorithms and TS have been implemented
on a cluster of PCs running under Windows XP Professional
version 2002. The cluster is composed by 4 Pentium (D)
machines running at 3 GHz. Each processor has 1 Gbyte of
memory. Table 7 gives a description of the benchmarks used
and they also can be downloaded from [28].

In experiments, 30 different executions for each heuristic
are performed and the best and average results obtained
on these 30 executions are recorded. In this case, the best
and the average solutions give similar results. Figure 3 shows
that both HPSO-SA Seq and HPSO-SA Dist achieve better
performances than TS on energy savings. In fact, hybrid
HPSO-SA heuristics consume from 76.23% (StatemateCE)
to 98.92% (ShaCE) less energy than TS.

As HPSO-SA Seq and HPSO-SA Dist give similar results,
we decide to experiment their behavior when considering
their execution time. We recorded the average execution
times needed by HPSO-SA Seq and HPSO-SA Dist (running
on a cluster of 4 PCs) to achieve the 30 executions. Figure 4
presents the results obtained on the largest (size) bench-
marks. From this figure, we see that the Distributed HPSO-
SA version (HPSO-SA Dist) is faster than the Sequential
HPSO-SA version (HPSO-SA Seq). In fact, HPSO-SA Dist
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Figure 3: Energy consumed by benchmarks studied in this work.
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Figure 4: Execution time used by HPSO-SA algorithms on bench-
marks studied in this work.

requires 73.16% (AdpcmCE) to 84.65% (CntCE) less exe-
cution time than HPSO-SA Seq. The Distributed HPSO-SA
version is always faster than the Sequential HPSO-SA version.

6. Conclusion and Perspectives

In this paper, we have designed a hybrid algorithm (HPSO-
SA) that combines the exploration ability of PSO with the
exploitation ability of SA, and is capable of preventing
premature convergence. Compared with QIPSO, ATREPSO
and GMPSO [2], Tl-PSO [8], PSO-SA [9] and SUPER-
SAPSO [10] on well-known benchmark functions and for the
problem of reducing energy consumption in embedded sys-
tems memories, it has been shown that HPSO-SA performs
well in terms of accuracy, convergence rate, stability and
robustness. In future, we will also compare the performances
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Table 7: List of Benchmarks.

Benchmark Suite Description

ShaCE MiBench The secure hash algorithm that produces a 160- bit message digest for a given input.

BitcountCE MiBench
Tests the bit manipulation abilities of a processor by counting the number of bits in an array of
integers.

FirCE SNU-RT Finite impulse response filter (signal processing over a 700 items long sample).

JfdctintCE SNU-RT Discrete-cosine transformation on 8× 8 pixel block.

AdpcmCE Mälardalen Adaptive pulse code modulation algorithm.

CntCE Mälardalen Counts nonnegative numbers in a matrix.

CompressCE Mälardalen Data compression using lzw.

DjpegCE Mediabenchs JPEG decoding.

GzipCE Spec 2000 Compression.

NsichneuCE Wcet Benchs
Simulate an extended Petri net.
Automatically generated code with more than 250 if-statements.

StatemateCE Wcet Benchs Automatically generated code.

of HPSO-SA with the above mentioned algorithms on the
embedded systems memory saving problem.

In addition, we will compare HPSO-SA algorithm with
other hybrid algorithms (PSO-GA, PSO-MDP, PSO-TS)
whose design is in progress by the authors. Comparison will
also be done on additional benchmark functions and more
complex problems including functions with dimensionality
larger than 30.
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