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Abstract

The density-matrix renormalization group (DMRG) technique is used to study the
ground-state properties of the one-dimensional half-filled Hubbard model with on-
site (nearest-neighbor) repulsive interaction U (V ) and nearest-neighbor hopping t.
We calculate the static spin structure factor to consider the spin degrees of freedom.
We notice a striking difference of the static spin structure factor among the spin-
density-wave, charge-density-wave (CDW), and bond-order-wave (BOW) phases.
Based on the results, we identify the BOW-CDW transition at small (large) U value
as continuous (of first order). We also calculate the double occupancy to consider the
charge degrees of freedom. For large U , the double occupancy show a discontinuous
jump at the BOW-CDW critical point and it implies first order transition. With
decreasing U , the jump becomes smaller and vanishes at the tricritical point Ut ≈

5.961t. This value is close to our previous estimation Ut = 5.89t obtained with
other quantities. Consequently, the results of static spin structure factor and double
occupancy support the accuracy of our ground-state phase diagram.

Key words: extended Hubbard model, quantum phase transition, bond order wave
PACS: 71.10.Fd, 71.10.Pm, 71.30.+h

In recent years, the research of quasi-one-dimensional (1D) materials has come
once again to the fore in the field of condensed matter physics [1]. From the
theoretical point of view, one of the simplest models for the materials is the
1D Hubbard model. The ground-state properties of the 1D Hubbard model is
well-understood using the exact Bethe-ansatz solution: for any finite on-site
repulsion U > 0 at half band-filling, the charge sector is gapped because of the
Mott-Hubbard transition and the spin sector is gapless with the dominant 2kF-
spin-density-wave (SDW) correlation. It is known, however, that the Coulomb
interaction is not sufficiently screened in the 1D materials [2,3]. And, we also
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add the nearest-neighbor Coulomb interaction V (> 0). Then a rich phase
diagram may be expected due to the competition between the effects of U
and V : within the g-ology scheme, the system is (basically) insulating with
the 2kF-SDW correlation for V � U/2 and with the 2kF-charge-density-wave
(CDW) correlation for V � U/2; furthermore, the existence of a bond-order-
wave (BOW) phase between the SDW and CDW phases has been proposed
on the basis of non-perturbative numerical results [4]. The system is called as
the 1D half-filled extended Hubbard model (EHM), of which Hamiltonian is
given by

H = −t
∑

i,σ

(c†iσci+1σ + H.c.) + U
∑

i

ni↑ni↓ + V
∑

iσσ′
niσni+1σ′ , (1)

where c†iσ (ciσ) is creation (annihilation) operator of an electron with spin σ
at site i, and niσ = c†iσciσ is number operator. t is nearest-neighbor hopping
integral and U (V ) is on-site (nearest-neighbor) Coulomb interaction.
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Fig. 1. Ground-state phase diagram of the 1D half-filled EHM. The symbols rep-
resent the DMRG results as follows: the SDW-BOW phase boundary (filled cir-
cles), the continuous BOW-CDW phase boundary (empty squares), the first-order
BOW-CDW phase boundary (filled squares), the tricritical point (filled triangle),
and the critical end point (empty triangle). The solid and dotted lines correspond
to the strong-coupling [7] and the weak-coupling [9] results, respectively.

The ground-state phase diagram of the 1D half-filled EHM is still controver-
sial, though there are a number of analytical [5–10] and numerical [11–15]
studies. Quite recently, in order to put an end to the controversy, we have re-
examined the phase diagram using the density-matrix renormalization group
(DMRG) method with considerable accuracy [16]; we determined the SDW-
BOW and BOW-CDW phase boundaries based on the results of various phys-
ical quantities such as the charge gap, spin gap, Luttinger exponents, and
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BOW order parameter (see Fig. 1). As for the phase boundaries, our results
agree quantitatively with the renormalization-group results [9] in the weak-
coupling regime (U � 2t), with the perturbation results [7] in the strong-
coupling regime (U � 6t), and with the quantum Monte Carlo results [13]
in the intermediate-coupling regime. In addition, we obtained the tricritical
point (Ut, Vt) = (5.89t, 3.10t) where the BOW-CDW transition changed from
continuous to first order, and the critical end point (Uc, Vc) = (9.25t, 4.76t)
where the BOW phase disappears. In this paper, we calculate the static spin
structure factor as well as the double occupancy of the 1D half-filled EHM
and show that these results support our previous study [16].
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Fig. 2. Static spin structure factor S(q) for U = 4t and L = 34. The dotted lines
are guides to the eye.

First, we calculate the static spin structure factor S(q) to evaluate the spin
degrees of freedom. A drastic change of S(q) could be driven by the phase
transitions because the spin structures are quite different among the three
phases (see Fig. 1). The static spin structure factor is defined as

S(q) =
1

L

∑

j,k

eiq(j−k)〈(Sz
j − 〈Sz

j 〉)(Sz
k − 〈Sz

k〉)〉, (2)

where the sum runs over all sites of the system and 〈· · ·〉 denotes the ground-
state expectation value. We apply the periodic boundary conditions which
are preferred for calculations of the momentum-dependent quantities [17] and
study systems up to chain length L = 34. The number of density-matrix
eigenstates kept is m = 3000 and the maximum truncation error is 1.0×10−6.
In Fig. 2, we show the calculated results of the static spin structure factor
S(q) for U = 4t and L = 34. At U = 4t, the SDW-BOW (BOW-CDW)
transition occurs at V ≈ 1.877t (2.164t) [16]. Thus, the three curves in the
figure represent results for three different phases; namely, the results for V = t,
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2t, and 3t correspond to the SDW, BOW, and CDW phases, respectively. In
the SDW phase, S(q) is basically the same as that of the 1D Heisenberg
model [18] and it can be approximately fitted by the ‘gross’ curve S(q) ≈
− ln(1 − q

π
). In the BOW phase, one might expect much reduction of S(q)

in association with the exponential decay of 〈(Sz
j − 〈Sz

j 〉)(Sz
k − 〈Sz

k〉)〉 with
|j − k| driven by the appearance of the spin gap. Indeed, S(q) is just slightly
reduced around q = π relative to that in the SDW phase. Since the spin gap
is still very small (∆s ∼ 10−3t), the short-range spin-spin correlations must be
hardly affected. In the CDW phase, the antiferromagnetic spin-spin correlation
seems to be fairly suppressed due to the formation of on-site spin-singlet bound
state, though S(q) has still the maximum at q = π. Each the spin-singlet pair
is increasingly isolated with increasing V/t and S(q) approaches to zero for
all q in the limit of V/U → ∞. Note that the zero derivative of S(q) at q = 0
indicates the existence of the spin gap. It is also interesting that the shape of
S(q) is similar to that of a gas of bound state, i.e., S(q) ∝ 1 − cos(q) [19].
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Fig. 3. S(π) as a function of V/t at U = 4t (left) and U = 8t (right) for several
kinds of chain lengths. The dotted line denotes the BOW-CDW transition point for
each U/t values.

Next, we focus on the behavior of S(π) with V to investigate how the antiferro-
magnetic spin-spin correlation is suppressed. In Fig. 3, we show the system-size
dependence of S(π) in the vicinity of the BOW-CDW transition, as a function
of V/t with fixed U = 4t and 8t. When U = 4t, we can see gradual decreases of
S(π) for all system sizes with increasing V/t, reflecting the rapid development
of the spin gap. Although the shape of S(π) becomes steeper as L increases,
the transition seems to be continuous in the thermodynamic limit. To confirm
it, we scale the inverse slope of S(π) at the critical point with the inverse sys-
tem size, as shown in the inset of Fig. 3. The extrapolated value to 1/L → 0 is
0.00039. It means that the slope of S(π) at the BOW-CDW transition remains
finite in the thermodynamic limit and the transition is continuous. Let us then
turn to the case of U = 8t. Differently from the case of U = 4t, S(π) decreases
rapidly around the BOW-CDW transition and changes slowly otherwise. The
slope of S(π) at the critical point becomes sharper quickly with increasing L
and the inverse slope is extrapolated to zero in L → ∞, i.e., the slope diverges
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in the thermodynamic limit. Thus, the BOW-CDW transition for U = 8t must
be of first order. The discontinuous transition is concerned with the abrupt
charge redistribution from the BOW to CDW phases. We also note that the
slow decrease of S(π) below (above) the transition point is associated with
very small spin gap (strong charge disproportionation) in the BOW (CDW)
phase.

3.1 3.12 3.14 3.16 3.18 3.2
V / t

0.1

0.2

0.3

0.4
d

U / t = 6.0

Fig. 4. Extrapolated data for the double occupancy d as a function of V/t for U = 6t.
The dotted line denotes the BOW-CDW critical point. The dashed line is a guide
to the eye.

Finally, we consider the double occupancy d to confirm that the BOW-CDW
transition changes continuous to first order between U = 4t and 8t. We apply
the open boundary conditions which allows us to calculate physical quantities
quite accurately for very large systems with the DMRG method. We study sys-
tems with L ≤ 256 and carry out the finite-size scaling analysis. The number
of density-matrix eigenstates kept is m = 2000 and the maximum trunca-
tion error is 1.0 × 10−9. With the open boundary conditions, the CDW is a
state with a broken translational symmetry and one of two degenerate ground
states is picked out by initial conditions of the calculation. Thus, the double
occupancy is defined as the average value for central two sites,

d =
1

2
lim

L→∞

∣∣∣〈dL/2 + dL/2+1〉
∣∣∣ , (3)

where di = ni↑ni↓. In the strong-coupling limit U, V 	 t, we find d = 0 in
the SDW state and d = 1/2 in the CDW state; in the weak-coupling limit
U, V 
 t, we find d = 1/4. If U and V completely cancel each other out,
we also find d = 1/4. In Fig. 4, we show the L → ∞ extrapolated results
of the double occupancy d as a function of V/t for U = 6t. We can see an
increase of d with increasing V/t and a discontinuous jump at the BOW-CDW
critical point. The discontinuity clearly indicates that the transition is of first
order. We also note that d crosses 1/4 at the critical point. It is consistent
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with the fact that the BOW-CDW transition is derived by the competition
between the effects of U and V . Recently, it has been suggested that the
double occupancy has no discontinuity for U = 6t using the DMRG algorithm
applied to transfer matrices (TMRG) [15]. In the TMRG study, the interval
between the calculated points around the critical point is still wider than our
estimation of the jump, so that it may possibly include the discontinuity.

Let us now investigate the U-dependence of the discontinuous jump ∆d. In
Fig. 5, we plot the L → ∞ extrapolated values of the discontinuous jump ∆d

at the BOW-CDW critical point as a function of U/t. For U/t → ∞, doubly
occupied sites are alternated with empty sites with no charge fluctuation and,
thus, ∆d is exactly 1/2. With decreasing U/t from U/t → ∞, the charge
fluctuation is increasingly allowed and ∆d decreases. We find ∆d vanishes
just below U/t = 6. Near the vanishing point, the data is well-fitted by a
function ∆d = α(U − β)γ with α = 0.139, β = 5.961, and γ = 0.594. It
leads to the tricritical point Ut ≈ 5.961t and it is consistent with our another
estimation [16].
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Fig. 5. Extrapolated data for the jump ∆d in the double occupancy at the phase
transition. The line is a fit ∆d = 0.139(U − 5.961)0.594.

In summary, the ground-state properties of the 1D half-filled EHM are studied
using the DMRG method. First, we calculate the static spin structure factor
to consider the spin degrees of freedom. We notice a striking difference of
the static spin structure factor among the three phases with distinct spin
structures. Next, we identify the BOW-CDW transition at U = 4t (8t) as
continuous (of first order) from the behavior of S(π) near the critical point.
Finally, the double occupancy is calculated to consider the charge degrees of
freedom. For U = 6t, a discontinuous jump of the double occupancy at the
BOW-CDW critical point is found and it implies first order transition. We
estimate the tricritical point Ut ≈ 5.961t as a point where the discontinuous
jump shrinks to zero. This value is quite close to our previous estimation
Ut = 5.89t obtained with other quantities. Consequently, all the results shown
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in this paper support the accuracy of our ground-state phase diagram.
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