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The density-matrix renormalization group (DMRG) technique is used to study the ground-state properties of the one-dimensional half-filled Hubbard model with onsite (nearest-neighbor) repulsive interaction U (V ) and nearest-neighbor hopping t. We calculate the static spin structure factor to consider the spin degrees of freedom. We notice a striking difference of the static spin structure factor among the spindensity-wave, charge-density-wave (CDW), and bond-order-wave (BOW) phases. Based on the results, we identify the BOW-CDW transition at small (large) U value as continuous (of first order). We also calculate the double occupancy to consider the charge degrees of freedom. For large U , the double occupancy show a discontinuous jump at the BOW-CDW critical point and it implies first order transition. With decreasing U , the jump becomes smaller and vanishes at the tricritical point U t ≈ 5.961t. This value is close to our previous estimation U t = 5.89t obtained with other quantities. Consequently, the results of static spin structure factor and double occupancy support the accuracy of our ground-state phase diagram.

In recent years, the research of quasi-one-dimensional (1D) materials has come once again to the fore in the field of condensed matter physics [START_REF] Giamarchi | Quantum Physics in One Dimension[END_REF]. From the theoretical point of view, one of the simplest models for the materials is the 1D Hubbard model. The ground-state properties of the 1D Hubbard model is well-understood using the exact Bethe-ansatz solution: for any finite on-site repulsion U > 0 at half band-filling, the charge sector is gapped because of the Mott-Hubbard transition and the spin sector is gapless with the dominant 2k Fspin-density-wave (SDW) correlation. It is known, however, that the Coulomb interaction is not sufficiently screened in the 1D materials [START_REF] Egger | [END_REF]3]. And, we also
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add the nearest-neighbor Coulomb interaction V (> 0). Then a rich phase diagram may be expected due to the competition between the effects of U and V : within the g-ology scheme, the system is (basically) insulating with the 2k F -SDW correlation for V U/2 and with the 2k F -charge-density-wave (CDW) correlation for V U/2; furthermore, the existence of a bond-orderwave (BOW) phase between the SDW and CDW phases has been proposed on the basis of non-perturbative numerical results [4]. The system is called as the 1D half-filled extended Hubbard model (EHM), of which Hamiltonian is given by

H = -t i,σ (c † iσ c i+1σ + H.c.) + U i n i↑ n i↓ + V iσσ n iσ n i+1σ , (1) 
where c † iσ (c iσ ) is creation (annihilation) operator of an electron with spin σ at site i, and

n iσ = c † iσ c iσ is number operator. t is nearest-neighbor hopping integral and U (V ) is on-site (nearest-neighbor) Coulomb interaction. 0 2 4 6 8 10 U / t 0 1 2 3 4 5 V / t CDW (É c 6 =0; É s 6 =0) BOW (É c 6 =0; É s 6 =0) SDW (É c 6 =0; É s = 0)
Fig. 1. Ground-state phase diagram of the 1D half-filled EHM. The symbols represent the DMRG results as follows: the SDW-BOW phase boundary (filled circles), the continuous BOW-CDW phase boundary (empty squares), the first-order BOW-CDW phase boundary (filled squares), the tricritical point (filled triangle), and the critical end point (empty triangle). The solid and dotted lines correspond to the strong-coupling [7] and the weak-coupling [9] results, respectively.

The ground-state phase diagram of the 1D half-filled EHM is still controversial, though there are a number of analytical [5][6][7][8][9][10] and numerical [11][12][13][14][15] studies. Quite recently, in order to put an end to the controversy, we have reexamined the phase diagram using the density-matrix renormalization group (DMRG) method with considerable accuracy [16]; we determined the SDW-BOW and BOW-CDW phase boundaries based on the results of various physical quantities such as the charge gap, spin gap, Luttinger exponents, and
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BOW order parameter (see Fig. 1). As for the phase boundaries, our results agree quantitatively with the renormalization-group results [9] in the weakcoupling regime (U 2t), with the perturbation results [7] in the strongcoupling regime (U 6t), and with the quantum Monte Carlo results [13] in the intermediate-coupling regime. In addition, we obtained the tricritical point (U t , V t ) = (5.89t, 3.10t) where the BOW-CDW transition changed from continuous to first order, and the critical end point (U c , V c ) = (9.25t, 4.76t) where the BOW phase disappears. In this paper, we calculate the static spin structure factor as well as the double occupancy of the 1D half-filled EHM and show that these results support our previous study [16]. First, we calculate the static spin structure factor S(q) to evaluate the spin degrees of freedom. A drastic change of S(q) could be driven by the phase transitions because the spin structures are quite different among the three phases (see Fig. 1). The static spin structure factor is defined as

0 π/2 π q 0 1 2 3 S(q) : V / t = 1.0 V / t = 2.0 : V / t = 3.0 U / t = 4.0
S(q) = 1 L j,k e iq(j-k) (S z j -S z j )(S z k -S z k ) , (2) 
where the sum runs over all sites of the system and • • • denotes the groundstate expectation value. We apply the periodic boundary conditions which are preferred for calculations of the momentum-dependent quantities [17] and study systems up to chain length L = 34. The number of density-matrix eigenstates kept is m = 3000 and the maximum truncation error is 1.0 × 10 -6 . In Fig. 2, we show the calculated results of the static spin structure factor S(q) for U = 4t and L = 34. At U = 4t, the SDW-BOW (BOW-CDW) transition occurs at V ≈ 1.877t (2.164t) [16]. Thus, the three curves in the figure represent results for three different phases; namely, the results for V = t,
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2t, and 3t correspond to the SDW, BOW, and CDW phases, respectively. In the SDW phase, S(q) is basically the same as that of the 1D Heisenberg model [18] and it can be approximately fitted by the 'gross' curve S(q) ≈ ln(1 -q π ). In the BOW phase, one might expect much reduction of S(q) in association with the exponential decay of (S z j -S z j )(S z k -S z k ) with |j -k| driven by the appearance of the spin gap. Indeed, S(q) is just slightly reduced around q = π relative to that in the SDW phase. Since the spin gap is still very small (∆ s ∼ 10 -3 t), the short-range spin-spin correlations must be hardly affected. In the CDW phase, the antiferromagnetic spin-spin correlation seems to be fairly suppressed due to the formation of on-site spin-singlet bound state, though S(q) has still the maximum at q = π. Each the spin-singlet pair is increasingly isolated with increasing V /t and S(q) approaches to zero for all q in the limit of V /U → ∞. Note the zero derivative of S(q) at q = 0 indicates the existence of the spin gap. It is also interesting that the shape of S(q) is similar to that of a gas of bound state, i.e., S(q) ∝ 1cos(q) [19]. Next, we focus on the behavior of S(π) with V to investigate how the antiferromagnetic spin-spin correlation is suppressed. In Fig. 3, we show the system-size dependence of S(π) in the vicinity of the BOW-CDW transition, as a function of V /t with fixed U = 4t and 8t. When U = 4t, we can see gradual decreases of S(π) for all system sizes with increasing V /t, reflecting the rapid development of the spin gap. Although the shape of S(π) becomes steeper as L increases, the transition seems to be continuous in the thermodynamic limit. To confirm it, we scale the inverse slope of S(π) at the critical point with the inverse system size, as shown in the inset of Fig. 3. The extrapolated value to 1/L → 0 is 0.00039. It means that the slope of S(π) at the BOW-CDW transition remains finite in the thermodynamic limit and the transition is continuous. Let us then turn to the case of U = 8t. Differently from the case of U = 4t, S(π) decreases rapidly around the BOW-CDW transition and changes slowly otherwise. The slope of S(π) at the critical point becomes sharper quickly with increasing L and the inverse slope is extrapolated to zero in L → ∞, i.e., the slope diverges
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in the thermodynamic limit. Thus, the BOW-CDW transition for U = 8t must be of first order. The discontinuous transition is concerned with the abrupt charge redistribution from the BOW to CDW phases. We also note that the slow decrease of S(π) below (above) the transition point is associated with very small spin gap (strong charge disproportionation) in the BOW (CDW) phase. Finally, we consider the double occupancy d to confirm that the BOW-CDW transition changes continuous to first order between U = 4t and 8t. We apply the open boundary conditions which allows us to calculate physical quantities quite accurately for very large systems with the DMRG method. We study systems with L ≤ 256 and carry out the finite-size scaling analysis. The number of density-matrix eigenstates kept is m = 2000 and the maximum truncation error is 1.0 × 10 - 9 . With the open boundary conditions, the CDW is a state with a broken translational symmetry and one of two degenerate ground states is picked out by initial conditions of the calculation. Thus, the double occupancy is defined as the average value for central two sites,

d = 1 2 lim L→∞ d L/2 + d L/2+1 , (3) 
where d i = n i↑ n i↓ . In the strong-coupling limit U, V t, we find d = 0 in the SDW state and d = 1/2 in the CDW state; in the weak-coupling limit U, V t, we find d = 1/4. If U and V completely cancel each other out, we also find d = 1/4. In Fig. 4, we show the L → ∞ extrapolated results of the double occupancy d as a function of V /t for U = 6t. We can see an increase of d with increasing V /t and a discontinuous jump at the BOW-CDW critical point. The discontinuity clearly indicates that the transition is of first order. We also note that d crosses 1/4 at the critical point. It is consistent
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with the fact that the BOW-CDW transition is derived by the competition between the effects of U and V . Recently, it has been suggested that the double occupancy has no discontinuity for U = 6t using the DMRG algorithm applied to transfer matrices (TMRG) [15]. In the TMRG study, the interval between the calculated points around the critical point is still wider than our estimation of the jump, so that it may possibly include the discontinuity.

Let us now investigate the U-dependence of the discontinuous jump ∆ d . In Fig. In summary, the ground-state properties of the 1D half-filled EHM are studied using the DMRG method. First, we calculate the static spin structure factor to consider the spin degrees of freedom. We notice a striking difference of the static spin structure factor among the three phases with distinct spin structures. Next, we identify the BOW-CDW transition at U = 4t (8t) as continuous (of first order) from the behavior of S(π) near the critical point. Finally, the double occupancy is calculated to consider the charge degrees of freedom. For U = 6t, a discontinuous jump of the double occupancy at the BOW-CDW critical point is found and it implies first order transition. We estimate the tricritical point U t ≈ 5.961t as a point where the discontinuous jump shrinks to zero. This value is quite close to our previous estimation U t = 5.89t obtained with other quantities. Consequently, all the results shown 
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 2 Fig. 2. Static spin structure factor S ( q) for U = 4t and L = 34. The dotted lines are guides to the eye.
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 43 Fig. 3. S(π) as a function of V/t at U = 4t (left) and U = 8t (right) for several kinds of chain lengths. The dotted line denotes the BOW-CDW transition point for each U/t values.
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 4 Fig. 4. Extrapolated data for the double occupancy d as a function of V/t for U = 6t. The dotted line denotes the BOW-CDW critical point. The dashed line is a guide to the eye.
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 5 Fig. 5. Extrapolated data for the jump ∆ d in the double occupancy at the phase transition. The line is a fit ∆ d = 0.139(U -5.961) 0.594 .
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  in this paper support the accuracy of our ground-state phase diagram.

  5, we plot the L → ∞ extrapolated values of the discontinuous jump ∆ d at the BOW-CDW critical point as a function of U/t. For U/t → ∞, doubly occupied sites are alternated with empty sites with no charge fluctuation and, thus, ∆ d is exactly 1/2. With decreasing U/t from U/t → ∞, the charge fluctuation is increasingly allowed and ∆ d decreases. We find ∆ d vanishes just below U/t = 6. Near the vanishing point, the data is well-fitted by a function ∆ d = α(Uβ) γ with α = 0.139, β = 5.961, and γ = 0.594. It leads to the tricritical point U t ≈ 5.961t and it is consistent with our another estimation[16].