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crossover and entropy behavior
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We show that the coexistence of Fermi arcs and metal-insulator crossover of the in-plane resistivity
can give a hint of a peculiar “gauge compositeness” of the electron in hole-doped high Tc cuprates and
a similar hint also comes from the negative intercept at T = 0 of the electronic entropy extrapolated
from moderate temperatures in the “pseudogap phase”. An implementation of this “compositeness”
within the spin-charge gauge approach is outlined and is employed to discuss the above phenomena.

PACS numbers: 71.10.Hf, 71.27.+a, 74.25.Fy, 74.25.Gz

HINTS OF “GAUGE COMPOSITENESS”

We point out two experimental phenomena which sug-
gest, or at least are fully compatible with, a peculiar
“compositeness” of the low-energy electron excitation of
hole-doped high Tc cuprates. This “composite” structure
should involve a gapful bosonic constituent and a gapless
fermionic constituent, one carrying spin and the other
charge, together with a gauge interaction binding them
into a resonance. Such a construction is accomplished in
particular in the spin-charge gauge approach, developed
by us in recent years [1].

The relevant phenomena are:
1) The metal-insulator crossover (MIC) found in the

in-plane resistivity decreasing T in heavily underdoped
samples, in particular of LSCO and YBCO [2], [3], and
in underdoped samples of a variety of cuprates in the
presence of a strong magnetic field suppressing super-
conductivity [4].

2) The negative intercept at T = 0 of the electronic
entropy S extrapolated from moderate temperatures in
the “pseudogap phase”(PG) [5].

Let us explain why these phenomena suggest a “spin-
charge gauge compositeness” of the electron.

We start from the MIC. Often this crossover is at-
tributed to disorder-induced localization. However, this
interpretation is at odds with the following facts: i) The
adiabaticity suggests that MIC with and without mag-
netic field have the same origin. Including higher dop-
ing samples exhibiting MIC, denoting with � the mean
free path, kF � at MIC ranges from 0.1 to 10, i.e. from
far below to far above the Ioffe-Regel limit kF � ≈ 1,

which should characterize a MIC due to disorder local-
ization. ii) In LSCO and YBCO samples with a − b in-
plane anisotropy the MIC temperature of ρa is different
from that of ρb [6] contradicting the ”unique” localiza-
tion temperature, characteristic of the standard theory
of localization. iii) It has been observed a universality of
suitably normalized resistivity, ρn, in terms of T/T ∗ [3]
[7], where T ∗ can be identified as the PG temperature.
If MIC is intrinsic to the cuprate physics, as follows from
the above considerations, it is rather difficult in conven-
tional Fermi–liquid–like theories to reconcile an insulat-
ing (semiconducting) behavior of the resistivity with the
presence of a Fermi surface (FS), or better Fermi arcs,
as detected by ARPES [8]. In fact, the appearance of
Fermi arcs suggests the presence of a gapless fermionic
excitation, which should produce a metallic in-plane re-
sistivity ρ. The coexistence of FS and insulating behavior
of ρ is instead easily accommodated in a slave–particle
gauge theory which implies a “gauge compositeness” of
the electron. In these approaches, due to the gauge string
binding together fermionic and bosonic constituents of
the “electron”, the velocity of the electron resonance de-
termining the conductivity is dominated by the slowest
constituent (Ioffe-Larkin rule [9]). Since the fermionic
constituent shows a metallic behavior, exhibiting a FS,
the electron resonance has a metallic/insulating behavior
if the bosonic constituent does. Furthermore if the domi-
nant contribution is due to the bosonic constituent, it can
explain both the insensitivity to details of the FS allow-
ing universality and the negligible effect of non-magnetic
impurities affecting only the fermionic constituent (fol-
lowing an original intuition by Anderson [10]).
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Let us turn to the negative intercept of the extrapo-
lated electronic entropy. A negative intercept suggests
a negative contribution to entropy of a “constraint field”
reducing the low-energy degrees of freedom. Such a nega-
tive contribution naturally arises in a slave-particle gauge
approach from the scalar component of the gauge field
in two dimensions (in the Coulomb gauge) which does
not carry dynamical degrees of freedom[11]. The ap-
proximate linear in T behavior of S is consistent with
a standard Fermi-liquid contribution and thus can be at-
tributed to the fermionic constituent of the “electron”.
Ultimately the presence of the gauge field is due to the
Gutzwiller projection coming from the strong on-site
Coulomb repulsion, hence it should be responsible for
the “compositeness”.

IMPLEMENTATION IN THE SPIN-CHARGE
GAUGE APPROACH

We now outline how the above ideas are actually im-
plemented in the spin-charge gauge approach. In this
approach the (approximate) model Hamiltonian for the
CuO layers in high Tc cuprates is given by the 2D t-
J model on a square lattice. The global symmetries of
the t-J model corresponding to the SU(2)-spin-rotation
and U(1)-charge groups are gauged, i.e. one converting
them into local symmetries by coupling the fermion of
the model to a spin (SU(2)) and a charge (U(1))(Chern-
Simons) gauge fields, carrying no dynamical degrees of
freedom, thus obtaining an equivalent model. A good fea-
ture of introducing these gauge fields is that they allow
a more flexible treatment of charge and spin responses
within a spin-charge decomposition scheme. At the end
they will disappear from the game due to a kind of Mean
Field treatment, but leaving behind sign of their presence
crucial for the low-energy physics, as outlined below. The
Gutzwiller projection permits to apply to the fermion of
the so obtained gauged t-J model the spin-charge decom-
position: One rewrites it as a product of a charged spin-
less holon and a spin 1/2 neutral spinon (actually via a
semionic decomposition [12], [13]). An additional “slave
particle” gauge field appears for a correct counting of de-
grees of freedom. Therefore, treating in “mean-field” the
spin and charge gauge fields, the basic dynamical fields
of the approach are:

1) Fermionic holons with a finite FS, dressed by spin
vortices originating from the spin gauge field, with Fermi
momenta kF ∼ δ in PG and ∼ 1 − δ in the “strange-
metal phase”(SM) at higher T or δ, where δ denotes the
doping concentration. This change is a remnant of the
charge gauge field, which introduces a π flux in PG, thus
reducing the Fermi momenta via Hofstädter mechanism.
A direct evidence of this small FS might come from a
recent experiment on Shubnikov-de Haas oscillations[14].

2) Antiferromagnetic (AF) bosonic spinons with a gap

Jm ∼ J
√

δ| ln δ| due to the interaction with the spin
vortices, consistent with AF correlation length at small
δ derived from neutron experiments [15].

3) Slave-particle gauge fluctuations (in the normal
state) dominated by the Reizer singularity [16], due to
the finite FS of holons, with an anomalous skin mo-
mentum scale Q ∼ (T/t)1/3k

2/3
F . For the appearance

of Reizer singularity the presence of a gap for spinons is
crucial, because gapless spinons would condense at low
T thus gapping the gauge field through the Anderson-
Higgs mechanism. Gauge fluctuations renormalize holon
and spinon lifetimes, renormalizing in particular m to
M = (m2 + ickF T/t)1/2 in PG. They further bind to-
gether spinon-antispinon into a magnon resonance, and
holon-spinon into an electron resonance in a momentum
slab Q around the FS, with inverse life-time Γ ∼ �M
in PG, TQ/(tm2) in SM. In PG one has a further re-
duction of the spectral weight of the electron resonance
outside the magnetic Brillouin zone, which bears some
resemblance with the appearance of Fermi arcs.

To summarize, in this approach the electron exhibits
a “spin-charge gauge compositeness” with the fermionic
constituent given by the spinless holon and the bosonic
constituent given by the bosonic spin 1/2 spinon.

Let us explain how one recovers the MIC. The in-plane
resistivity is calculated via the Ioffe-Larkin addition rule:
ρ = ρs + ρh, where ρs is the resistivity of the spinon-
gauge subsystem and ρh of the holon-gauge subsystem.
ρ is dominated by the spinon-gauge scattering and in PG

ρ ∼ ρs ∼ |M |1/2

sin(arg M
2 )

.

This formula shows that the spinon gap m combined with
the diffusion ∼ T caused by the gauge fluctuations is
able to reproduce the MIC. For m2 >> ckF T/t one finds
ρ ∼ T−1, insulating due to dominating short range AF
order. For m2 < ckF T/t one finds ρ ∼ T α, α ∼ 1/4
metallic, due to dominating diffusion. The above equa-
tion implies the universality of the normalized resistivity
ρn = (ρ(T ) − ρ(TMIC))/(ρ(T ∗) − ρ(TMIC)) as a func-
tion of T/T ∗ ∼ (kF T )/(tm2) . Since in PG kF ∼ δ and
m2 ∼ |δ ln δ|), one obtains a slow decrease of T/T ∗ ∼
T/(|t ln δ|). Here T ∗ can be identified as the tempera-
ture of the inflection point in ρ and TMIC of the min-
imum. The shape of the universal curve derived above
agrees semi-quantitatively with the experimental obser-
vations [17]. Furthermore the structure of M produces
an approximate T 2 behaviour of ρ immediately above the
MIC [18], as found experimentally in lightly doped LSCO
[19].

Let us turn now to the electronic entropy S. In the
spin-charge gauge approach S is the sum of four terms:
the contribution of free spinons, Ss, of free holons, Sh

and the fully renormalized contribution of transverse and
scalar gauge fluctuations, S⊥, S0 [20]. The spinons are
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massive and thus Ss � 0 for T lower than the spinon gap
(few hundreds K). The holons are described by a Fermi
Liquid, therefore the standard result applies: Sh ∼ mhT
with mh the holon mass ∼ kF , thus Sh ∼ δT in PG.
S⊥ and S0 are estimated using the (approximate) fully
renormalized retarded Green function of the gauge field,
following [21] and obtaining: S⊥ ≈ Q2

0 ∼ T 2/3 and
S0 ≈ − Λ

vF
T + 1

v2
F

T 2 with Λ ∼ J , an UV cutoff. One can
see that the scalar contribution contains a negative term,
as discussed in general terms above. In this approach the
approximately linear behavior of S is basically due to the
holons, renormalized by gauge fluctuations. The increase
of the slope of S at low δ and its saturation at higher T
or δ found experimentally [5] are due to the transition
from mh ∼ δ characteristic of PG to mh ∼ 1 − δ char-
acteristic of SM. The negative intercept is due to the
negative scalar gauge contribution and it appears in PG
due to the “effective” rather small Fermi temperature, a
consequence of the π-flux characteristic of a 2D system,
suppressing the positive S⊥ contribution. The experi-
mentally observed upturn in S/T or γ [5] decreasing T
at very low T and above T ∗ are due to the contribution
of transverse gauge fluctuations, respectively in PG and
in SM. These enhancements of entropy are due to the
presence of the gapless transverse gauge mode.

To conclude, we have shown that the “gauge compos-
iteness” of the low-energy electron excitation appearing
in the spin-charge gauge approach to the t-J model is
able to explain the very unusual phenomena of metal-
insulator crossover and negative intercept of electronic
entropy, including a number of peculiar experimentally
observed features.
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