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Discrete Time Markovian Agents Interacting Through a Potential

A. Budhiraja ∗ P. Del Moral † S. Rubenthaler ‡

June 16, 2011

Abstract

A discrete time stochastic model for a multiagent system given in terms of a large collection of
interacting Markov chains is studied. The evolution of the interacting particles is described through
a time inhomogeneous transition probability kernel that depends on the ‘gradient’ of the potential
field. The particles, in turn, dynamically modify the potential field through their cumulative input.
Interacting Markov processes of the above form have been suggested as models for active biological
transport in response to external stimulus such as a chemical gradient. One of the basic mathematical
challenges is to develop a general theory of stability for such interacting Markovian systems and for
the corresponding nonlinear Markov processes that arise in the large agent limit. Such a theory would
be key to a mathematical understanding of the interactive structure formation that results from the
complex feedback between the agents and the potential field. It will also be a crucial ingredient in
developing simulation schemes that are faithful to the underlying model over long periods of time.

The goal of this work is to study qualitative properties of the above stochastic system as the number
of particles (N) and the time parameter (n) approach infinity. In this regard asymptotic properties of a
deterministic nonlinear dynamical system, that arises in the propagation of chaos limit of the stochastic
model, play a key role. We show that under suitable conditions this dynamical system has a unique
fixed point. This result allows us to study stability properties of the underlying stochastic model. We
show that as N → ∞, the stochastic system is well approximated by the dynamical system, uniformly

over time. As a consequence, for an arbitrarily initialized system, as N → ∞ and n → ∞, the potential
field and the empirical measure of the interacting particles are shown to converge to the unique fixed
point of the dynamical system. In general, simulation of such interacting Markovian systems is a
computationally daunting task. We propose a particle based approximation for the dynamic potential
field which allows for a numerically tractable simulation scheme. It is shown that this simulation
scheme well approximates the true physical system, uniformly over an infinite time horizon.

Key words: Interacting Markov chains, agent based modeling, multi-agent systems, propagation of chaos,
non-linear Markov processes, stochastic algorithms, stability, particle approximations, swarm simulations,
chemotaxis, reinforced random walk.

MSC2000 subject classification. 60J05, 60K35, 92C45, 70K20, 60K40.

1 Introduction.

In recent years there has been a significant interest in agent based modeling for complex systems. Examples
of such models abound in physical and social sciences and include problems of biological aggregation
[11], chemotactic response dynamics [6], self organized networks [9], communication systems [7], opinion
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dynamics[8], multi-target tracking [3],etc. See [10, 7] for a comprehensive list of references. One popular
model for interacting multi-agent systems (see [10] and references therein) consists of a large number
of particles that influence each other indirectly through a dynamic potential field and can formally be
described through the following system of equations.

dXi(t) = ∇h(Xi(t), t)dt+ dWi(t), Xi(0) = xi ∈ R
d, i = 1, · · ·N.

∂

∂t
h(t, x) = −αh(t, x) +D∆h(t, x) + β

N
∑

i=1

g(Xi(t), x), h(0, x) = h0(x). (1.1)

Here Wi, i = 1 · · ·N are independent Brownian motions which drive the state processes Xi of the N inter-
acting particles. The interaction between the particles arises indirectly through the underlying potential
field h which changes continuously according to a diffusion equation and through the aggregated input
of the N particles. One example of such an interaction is in chemotactic cell response dynamics where
cells preferentially move towards a higher chemical concentration and themselves release chemicals into
the medium, in response to the local information on the environment, thus modifying the potential field
dynamically over time. In this context, h(t, x) represents the concentration of a chemical at time t and
location x. Diffusion of the chemical in the medium is captured by the Laplacian in (1.1) and the constant
α > 0 models the rate of decay or dissipation of the chemical. Contribution of the agents to the chemical
concentration field is given through the last term in the equation. The function g captures the agent
response rules and can be used to model a wide range of phenomenon [10]. The first equation in (1.1)
describes the motion of a particle in terms of a diffusion process with drift in the direction of the gradient
of the chemical concentration. Many variations of this basic model with applications to a wide range
of fields can be found in [10]. A precise mathematical treatment of (1.1) presents significant technical
obstacles and existing results in literature are limited to simulation and formal asymptotic approximations
of the system. In the current work we will study a discrete time model which captures essential features of
the dynamics in (1.1) and is also amenable to a rigourous mathematical treatment. The time evolution of
the agents will be described through a time inhomogeneous transition probability kernel, where the kernel
at time instant n is determined in terms of the “gradient of the potential field" at time instant n− 1. The
agents in turn affect and contribute to the potential field dynamically over time. Thus as in the formal
continuous time setting described above, the N -agent dynamics is strongly coupled and describes a (time
inhomogeneous) Markov chain in EN where E (a compact subset of Rd) is the state space of a typical
agent. Although the model description is considerably simpler in discrete time, our objective here is to go
beyond formal heuristics (as is the current state of the art for the continuous time model in (1.1)) and to
formulate and study precise mathematical properties of the system. We will establish convergence of the
stochastic model to the solution of a non-linear dynamical system, over an arbitrary fixed time horizon, as
the number of agents approach infinity and as a consequence obtain a propagation of chaos result(Theorem
1.1 and Corollary 1.2). We are particularly interested in the stability of the system as N → ∞, over long
periods of time. A mathematical understanding of the stability behaviour is key to the study of long term
structure formation resulting from the complex interactions between the agents and the potential field.
Stability results for the system are also crucial ingredients for studying the behaviour of approximate
simulation schemes over long intervals of time. Denoting by n the time parameter, we will give conditions
under which, as N → ∞ and n → ∞ (in any order) the potential field and the empirical measure of the
N particles converges to limits that are independent of the initial configuration (Corollary 1.5). These
limits are characterized as the unique fixed point of the limit deterministic non-linear dynamical system
(Theorem 1.3). Uniform in time convergence of the stochastic model to the non-linear deterministic dy-
namics is established as well (Theorem 1.4). In general, simulation of interacting Markovian systems is
a computationally daunting task. We propose a particle based approximation for the dynamic potential
field which allows for a numerically tractable simulation scheme. Using the above stability results we show
that this simulation scheme well approximates the true physical system, uniformly over an infinite time
horizon (Theorem 1.9).
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Before we give a formal description of the model, we list some common notation that will be used
in this work. For a Polish space S, B(S) will denote the Borel sigma field on S and P(S) the space of
probability measures on (S,B(S)). For x ∈ S, δx will denote the element in P(S) that puts unit mass at
the point x. For µ ∈ P(S) and a µ-integrable real measurable map f on (S,B(S)), we denote

´

S fdµ as
µ(f) or 〈µ, f〉. Similar notations will be used for signed measures. For µ ∈ P(S), SN (µ) denotes a random
measure defined as 1

N

∑N
k=1 δξk , where {ξk}Nk=1 are i.i.d S valued random variables. We denote the space of

real bounded measurable maps on (S,B(S)) as BM(S) and for f ∈ BM(S), define ‖f‖∞ = supx∈S |f(x)|.
The space {f ∈ BM(S) : ‖f‖∞ ≤ 1} will be denoted as B1(S). For a signed measure µ on (S,B(S)), we
define the total variation norm of µ as supf∈B1(S) |µ(f)| and denote it by ‖µ‖TV . A real function f on
S is said to be b-Lipschitz if, for all x, y ∈ S, |f(x) − f(y)| ≤ b d(x, y), where d is the metric on S. A
transition probability kernel (also referred to as a Markov kernel) on S is a map T from S×B(S) to [0, 1]
such that for all x ∈ S, T (x, ·) ∈ P(S) and for all A ∈ B(S), T (·, A) ∈ BM(S). For f ∈ BM(S) and a
transition probability kernel T on S, define T f ∈ BM(S) as T f(·) =

´

S f(y)T (·, dy). For a closed subset
S0 of S, µ ∈ P(S0) and a transition kernel T on S, we define µT ∈ P(S) as µT (A) =

´

S0
T (x,A)µ(dx).

For d ≥ 1, Rd will denote the d-dimensional Euclidean space, the standard norm on which will be denoted
by | · |. N [resp. N0] will denote the space of positive [resp. nonnegative] integers. Cardinality of a finite
set G will be denoted by |G|.

1.1 Model for Interacting Markovian Agents.

The system consists of N particles whose states at time k ∈ N0 denoted as X1(k), · · ·XN (k) take value
in a compact set E ⊂ R

d with a non-empty interior. Given that the j-th particle is at location x at
time instant k − 1, it transitions, independently of other particles, to a set A ⊂ B(E) with probability
Mηk−1(x,A). Here Mηk−1 is a transition probability kernel determined by a nonnegative function ηk−1

which represents the “potential field” at time instant k − 1. Specifically, for any nonnegative function
Ψ : E → R

+, the Markov kernel MΨ is defined as follows.

MΨ(x, dy) = Q(x, dy)e−λ(Ψ(x)−Ψ(y))+ +Q0(x, dy)

(

1−
ˆ

z∈E
Q(x, dz)e−λ(Ψ(x)−Ψ(z))+

)

. (1.2)

Here λ ∈ (0,∞) and Q, Q0 are two transition probability kernels on E. Roughly speaking, to generate a
sample from MΨ(x, ·) one follows the following steps:

• A sample Y is drawn from Q(x, ·) and a sample Ỹ is drawn from Q0(x, ·).

• If Ψ(Y ) ≥ Ψ(x) the sample point Y is accepted. This corresponds to preferential motion in the
direction of the gradient of the potential field.

• If Ψ(Y ) < Ψ(x) we accept the sample point Y with probability e−λ(Ψ(x)−Ψ(Y )) and take Ỹ with
probability 1− e−λ(Ψ(x)−Ψ(Y )).

The kernel Q captures particle dynamics in absence of the potential field, while Q0 can be regarded as the
perturbation to the nominal dynamics against the concentration gradient, caused by the potential field.
Note that the effect of Q0 increases as λ becomes larger.

We now describe the evolution of the potential field and its interaction with the particle system. This
evolution will aim to capture the essential features of the PDE in (1.1) which are: diffusion, dissipation and
dynamic agent input. Let P and P ′ be transition probability kernels on R

d having density with respect
to some fixed reference measure ℓ on R

d (for example, the Lebesgue measure). Throughout, we will speak
of densities as with respect to ℓ. Given m ∈ P(E), define a transition probability kernel Rm on R

d as

Rm(x,A) = (1− ǫ)P (x,A) + ǫmP ′(A), x ∈ R
d, A ∈ B(Rd). (1.3)
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Then given that the potential field at time k − 1 is described by a nonnegative function ηk−1 on R
d

satisfying
´

Rd ηk−1(x)dx = 1, and the state values of the N particles are Xi(k − 1), i = 1, · · ·N , ηk is
defined by the relation.

ηk(y) =

ˆ

Rd

ηk−1(x)Rmk−1
(x, y)ℓ(dx), mk−1 =

1

N

N
∑

j=1

δXj(k−1). (1.4)

In this description, diffusion and advection of the chemical is captured by the kernel P , dissipation by
the factor (1− ǫ) and contributions by the agents through the term ǫmk−1P

′. We remark that unlike the
continuous time setting, here we introduce a single parameter ǫ rather than two distinct parameters α and
β. This parametrization ensures that the concentration function ηk, for each k is a probability density
on R

d. The more general setting can be considered as well (although not pursued here) by considering
suitably normalized concentration fields.

Thus summarizing, analogous to (1.1), the coupled system of equations describing the evolution of the
potential field and particle states is given as follows. Denote by P∗(Rd) the space of probability measures
on R

d that are absolutely continuous with respect to ℓ. We will identify an element in P∗(Rd) with its
density and denote both by the same symbol. For N ≥ 1, define ΠN : EN → P(E) by the relation

ΠN (y1, · · · yN ) =
1

N

N
∑

i=1

δyi , (y1, · · · yN) ∈ EN . (1.5)

Fix random variables X1, · · · ,XN with values in E and ηN0 ∈ P∗(Rd). Let mN
0 = ΠN (X1, · · · ,XN ). The

interacting system of particles and the potential field is described as a family (XN (k),mN
k , ηNk )k∈N0 of

EN × P(E) × P∗(Rd) valued random variables on a probability space (Ω,F ,P), defined recursively as
follows. Let XN (0) = (X1, · · · ,XN ) and define F0 = σ{XN (0)}. For k ≥ 1



























P(XN (k) ∈ A | Fk−1) =
⊗N

j=1

(

δXN
j (k−1)M

ηN
k−1

)

(A), A ∈ B(EN )

mN
k = ΠN (XN (k)) = 1

N

∑N
j=1 δXN

j (k)

ηNk = ηNk−1RmN
k−1

Fk = σ(ηNk ,XN (k)) ∨ Fk−1 .

(1.6)

Along with the N particle system we will also consider the non-linear Markov model which formally
corresponds to the N → ∞ limit of (1.6). Define the map Φ : P(E) × P∗(Rd) → P(E) × P∗(Rd) by the
relation

Φ(m, η) = (mMη, ηRm), (m, η) ∈ P(E) × P∗(Rd).

Define a sequence of probability measures (mn, ηn) on R
d by the following recurrence formula. Fix

(m0, η0) ∈ P(E) × P∗(Rd). For n ∈ N0

mn+1 = mnM
ηn , (1.7)

ηn+1 = ηnRmn . (1.8)

In other words,
(mn+1, ηn+1) = Φ(mn, ηn) . (1.9)

Such a coupled system is similar to what can be found in [2, 3].

1.2 Main Results.

We now summarize the main results of this work. For measures (m, η), (m′, η′) ∈ P(E) × P∗(Rd), we
define the norm

‖(m, η) − (m′, η′)‖ = ‖m−m′‖TV + ‖η − η′‖TV .

We begin with an assumption on the kernels P,P ′.
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Assumption 1. The kernel P ′ is uniformly bounded on R
d × R

d and P ′(·, y) is Lipschitz, uniformly in
y ∈ R

d, namely, for some MP ′ , lP ′ ∈ (0,∞)

sup
(x,y)∈Rd×Rd

P ′(x, y) ≤ MP ′ , sup
y∈Rd

|P ′(x, y)− P ′(x′, y)| ≤ lP ′ |x− x′|, ∀x, x′ ∈ R
d.

The kernel P satisfies, for some M̄P ∈ (0,∞),

sup
y∈Rd

ˆ

x∈Rd

P (x, y)ℓ(dx) ≤ M̄P .

The following result establishes the convergence of the stochastic system to the non-linear deterministic
dynamical system over any fixed time horizon.

Theorem 1.1. Suppose that Assumption 1 holds. Also suppose that

||ηN0 − η0||∞ → 0 and sup
f∈B1(E)

E(|〈m0 −mN
0 , f〉|) → 0 as N → ∞.

Then, ∀k ∈ N0,
sup

f∈B1(E)
E(|〈mN

k −mk, f〉|+ ‖ηNk − ηk‖∞) −→
N→+∞

0 . (1.10)

We remark that E‖ηNk −ηk‖∞ → 0 implies, by an application of Scheffe’s theorem, that E‖ηNk −ηk‖TV →
0. This observation will be used in the proof of Theorem 1.4

As an immediate consequence of this result we obtain the following propagation of chaos result. For
p ≥ 1, denote by m

N,p
k the probability law of (XN

1 (k), · · ·XN
p (k)) on Ep.

Corollary 1.2. Under Assumption 1, for every p ∈ N, mN,p
k converges weakly to m

⊗p
k , as N → ∞.

We now study time asymptotic properties of the system. We begin with two basic assumptions. The
first is on the kernel Q.

Assumption 2. There exist ǫQ ∈ (0, 1) and ℓ1 ∈ P(E) such that ∀x ∈ E, ∀ A ∈ B(E), Q(x,A) ≥ ǫQℓ1(A).

It is well known that under Assumption 2, Q is (1− ǫQ)-contracting for the total variation norm (see
Lemma 3.1 in Appendix for a proof), i.e

‖µQ− µ′Q‖TV ≤ (1− ǫQ)‖µ− µ′‖TV ,∀µ, µ′ ∈ P(E).

Next, we will make the following assumption on the kernels P,P ′.

Assumption 3. 1. There exists β(P ′) ∈ (0, 1) such that for all m,m′ ∈ P(E),

‖mP ′ −m′P ′‖TV ≤ β(P ′)‖m−m′‖TV .

2. The kernel P is uniformly bounded on R
d × R

d, i.e. for some MP ∈ (0,∞)

sup
(x,y)∈Rd×Rd

P (x, y) ≤ MP .

We begin with the following result on the fixed points of the dynamical system (1.9).

Theorem 1.3. Suppose that Assumptions 1, 2 and 3 hold. Then there are λ0, ǫ0 ∈ (0,∞) such that for
all λ ≤ λ0 and ǫ ≤ ǫ0, Φ has a unique fixed point in P(E) × P∗(Rd).
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Recall the sequence (mn, ηn) defined through equation (1.9) recursively with a fixed initial pair
(m0, η0) ∈ P(E) × P∗(Rd). Also recall the collection of random variables (XN (k),mN

k , ηNk )k∈N0 with
values in EN × P(E)× P∗(Rd) defined in (1.6) starting with a fixed ηN0 ∈ P∗(Rd) and X1, . . . ,XN ∈ E.

We now consider uniform in time convergence of the stochastic system to the non-linear dynamical
system. For that we will make the following additional assumptions.

Assumption 4. 1. P (·, y) is Lipschitz uniformly in y ∈ R
d namely, for some lP ∈ (0,∞)

sup
y∈Rd

|P (x, y)− P (x′, y)| ≤ lP |x− x′|, ∀x, x′ ∈ R
d.

2. There exist p ∈ P(Rd) and l̃P ′ such that ∀x, x′ ∈ E, A ∈ B(Rd),

|P ′(x,A)− P ′(x′, A)| ≤ l̃P ′ |x− x′|p(A).

3. P (x, ·), P ′(x, ·) are Lipschitz uniformly in x ∈ R
d namely, for some l̄P.P ′ ∈ (0,∞)

sup
x∈Rd

max{|P (x, y) − P (x, y′)|, |P ′(x, y)− P ′(x, y′)|} ≤ l̄P,P ′|y − y′|, ∀y, y′ ∈ R
d.

4. For some M̄P,P ′ ∈ (0,∞)

sup
y∈Rd

max{
ˆ

x∈Rd

P (x, y)l(dx),

ˆ

x∈Rd

P ′(x, y)l(dx)} ≤ M̄P,P ′ .

Denote by ℓE the restriction of the measure l to E.

Assumption 5. For all x ∈ E, Q(x, .) and Q0(x, .) have densities with respect to ℓE. The densities are
bounded on E × E, namely for some MQ,Q0 ∈ (0,∞)

sup
(x,y)∈E×E

max{Q(x, y), Q0(x, y)} ≤ MQ,Q0 .

Furthermore, for some lQ,Q0 ∈ (0,∞) and p̄ ∈ P(E)

max{|Q(x,A) − Q(x′, A)|, |Q0(x,A) − Q0(x
′, A)|} ≤ lQ,Q0 |x − x′|p̄(A) ∀x, x′ ∈ E,A ∈ B(E).

Theorem 1.4. Suppose that Assumptions 1 2, 3, 4 and 5 hold. Let ǫ0, λ0 be as in Theorem 1.3. Then,
whenever ǫ ≤ ǫ0 and λ ≤ λ0, we have:

(i) For some c0 ∈ (0,∞),

∀δ > 0 , ∃N0, n0 ∈ N such that ∀n ≥ n0 and N ≥ N0 , sup
‖f‖∞≤1

E(|〈mN
n −mn, f〉|+‖ηNn −ηn‖TV ) ≤ c0δ .

(ii) If ||ηN0 − η0||∞ → 0 and supf∈B1(E) E(|〈m0 −mN
0 , f〉|) → 0 as N → ∞, then for some c1 ∈ (0,∞)

∀δ > 0 , ∃N0 ∈ N such that ∀n and N ≥ N0 , sup
‖f‖∞≤1

E(|〈mN
n − mn, f〉| + ‖ηNn − ηn‖TV ) ≤ c1δ .

As an immediate consequence of Theorems 1.3 and 1.4 we have that under suitable conditions (mN
k , ηNk )

approaches the unique fixed point of Φ as k → ∞ and N → ∞. Namely,
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Corollary 1.5. Suppose that Assumptions 1 2, 3, 4 and 5 hold. Let ǫ0, λ0 be as in Theorem 1.3. Fix
ǫ ∈ (0, ǫ0) and λ ∈ (0, λ0). Denote the corresponding unique fixed point of Φ by (m∞, η∞). Then,

lim sup
n→∞

lim sup
N→∞

sup
‖f‖∞≤1

E(|〈mN
n −m∞, f〉|+ ‖ηNn − η∞‖TV )

= lim sup
N→∞

lim sup
n→∞

sup
‖f‖∞≤1

E(|〈mN
n −m∞, f〉|+ ‖ηNn − η∞‖TV )

= 0.

Simulation of the stochastic system in (1.6) or numerical computation of the paths of the deterministic
dynamical system (1.9) can in general be quite hard and so it is of interest to develop good approximation
schemes. One flexible and appealing approach is to approximate the measures, ηNn in the first case and the
measures (ηn,mn) in the second case, by discrete probability distributions through a collection of evolving
particles. We will consider one such particle scheme in this work and show that, under conditions, the
error between the dynamical system in (1.9) and the one obtained through a particle approximation can be
controlled uniformly in time. We will also prove a similar result for the error between the actual physical
stochastic system and the one obtained through particle approximations of ηNn . For these results we will
make the following additional assumption.

Assumption 6. P,P ′ are Gaussian kernels and ℓ is the Lebesgue measure on R
d.

Note that if P,P ′ satisfy Assumption 6, then they also satisfy Assumptions 1, 3 and 4 (for Assumption
3 see Lemma 3.6).

We propose the following particle system for the system (1.9) that starts from (m0, η0) ∈ P(E) ×
P∗(Rd). We assume that we can draw samples from (m0, η0). We remark that although for Gaussian
kernels, the integral in (1.4) can be computed analytically as a mixture of Gaussian densities, the com-
putation becomes numerically unfeasible since the number of terms in this mixture grows linearly over
time.

Denote by (X̃N
1 (0), · · · X̃N

N (0)) a sample of size N from m0. Let m̃N
0 = ΠN (X̃N

1 (0), · · · X̃N
N (0)). The

approximating particle system is given as a family (X̃N (k),mN
k , ηNk )k∈N0 of EN × P(E) × P∗(Rd) val-

ued random variables on some probability space (Ω,F ,P), defined recursively as follows. Set X̃N (0) =
(X̃N

1 (0), · · · X̃N
N (0)), η̃N0 = η0, F0 = σ(X̃N (0)). For k ≥ 1



























P(X̃N (k) ∈ A | Fk−1) =
⊗N

j=1

(

δX̃N
j (k−1)M

η̃N
k−1

)

(A), A ∈ B(EN )

m̃N
k = 1

N

∑N
j=1 δX̃N

j (k)

η̃Nk = (1− ǫ)(SN (η̃Nk−1)P ) + ǫ(m̃N
k−1P

′)

Fk = σ(X̃N (k), η̃Nk ) ∨ Fk−1 .

(1.11)

Here SN (η̃Nk−1) is the random probability measure defined as 1
N

∑N
i=1 δY N

i (k) where Y N
1 (k), · · · Y N

N (k),

conditionally on Fk−1, are i.i.d. distributed according to η̃Nk−1.

Notice that under the above Gaussian assumption, η̃Nk is a mixture of 2N - Gaussian random variables
for any k ≥ 1, so we can compute numerically its density at any point. So (1.11) defines an implementable
particle scheme. We first consider convergence over a fixed time horizon.

Theorem 1.6. Under Assumption 6, we have for all k,

sup
f∈B1(E)

E(|〈m̃N
k −mk, f〉|+ ‖η̃Nk − ηk‖TV + ‖η̃Nk − ηk‖∞) −→

N→+∞
0 . (1.12)

We now consider uniform in time convergence of the approximation scheme.
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Theorem 1.7. Suppose that Assumptions 2, 5 and 6 hold. Then there exists c1 ∈ (0,∞) such that for
ǫ ≤ ǫ0, λ ≤ λ0 and (η0,m0) ∈ P∗(Rd)× P(E), the sequences defined in (1.11) are such that

∀δ > 0 , ∃N0 such that ∀n and N ≥ N0 , sup
f∈B1(E)

E(|〈m̃N
n −mn, f〉|+ ‖η̃Nn − ηn‖TV ) < c1δ .

As corollaries of Theorems 1.1, 1.4, 1.6 and 1.7 we have the following results.

Theorem 1.8. Under Assumption 2 and assumptions of Theorem 1.1, we have for all k ≥ 0,

sup
f∈B1(E)

E(|〈mN
k − m̃N

k , f〉|+ ‖ηNk − η̃Nk ‖TV ) −→
N→+∞

0 .

Theorem 1.9. Under assumptions 2, 5 and 6 there exists c1 ∈ (0,∞) such that for ǫ ≤ ǫ0, λ ≤ λ0,

∀δ > 0 , ∃N0, n0 ∈ N such that ∀n ≥ n0 and N ≥ N0 , sup
‖f‖∞≤1

E(|〈mn − m̃N
n , f〉|+ ‖ηNn − η̃Nn ‖TV ) < c1δ .

We remark that in approximating ηk by η̃Nk and mk by m̃N
k we have taken for simplicity N particles

for both approximations. Although not pursued here, one can similarly analyse particle schemes where
the number of particles for approximating ηk is different from that used for approximating mk.

2 Proofs.

2.1 Convergence over a finite time horizon.

In this subsection we prove Theorem 1.1 and Corollary 1.2. We begin with a lemma that will be used
several times in this work. Proof is immediate from Ascoli-Arzela theorem.

Lemma 2.1. Let K be a compact subset of Rd and let for a, b ∈ (0,∞), Fa,b(K) be the collection of all
functions f : K → R such that ‖f‖∞ ≤ a and f is b-Lipschitz. Then for every δ > 0 there exists a finite
subset F δ

a,b(K) of Fa,b(K) such that for every signed measure µ on K

sup
f∈Fa,b(K)

|〈µ, f〉|) ≤ max
g∈F δ

a,b
(K)

|〈µ, g〉| + δ‖µ‖TV .

Frequently, when clear from context, we will suppress K in the notation when writing F,F δ. The
following elementary estimate will be used several times.

Lemma 2.2. For all x, y, x′, y′ ∈ R,
∣

∣

∣
e−λ(x−y)+ − e−λ(x′−y′)+

∣

∣

∣
≤ λ|x− x′|+ λ|y − y′| .

Proof of Theorem 1.1. We proceed recursively. Note that, by assumption, (1.10) holds for k = 0. Suppose
now that (1.10) holds for some fixed k ∈ N0. Then

mN
k+1 −mk+1 = mN

k+1 −mN
k MηN

k +mN
k MηN

k −mN
k Mηk +mN

k Mηk −mkM
ηk .

From Lemma 3.5 in the Appendix

sup
f∈B1(E)

E(|〈mN
k+1 −mN

k MηN
k , f〉|) ≤ 2√

N
−→

N→+∞
0 .
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Note that for all f ∈ B1(E), m ∈ P(E) and η, η′ ∈ P∗(Rd)

|mMη(f)−mMη′(f)|

=

∣

∣

∣

∣

ˆ

x,y∈E
m(dx)Q(x, dy)(e−λ(η(x)−η(y))+ − e−λ(η′(x)−η′(y))+)f(y)

+

ˆ

m(dx)Q0(x, dy)

×
(
ˆ

z∈E
Q(x, dz)(−e−λ(η(x)−η(z))+ + eλ(η

′(x)−η′(z))+

)

f(y)

∣

∣

∣

∣

. (2.1)

Thus by Lemma 2.2 and since (1.10) holds for k, we have, ∀f ∈ B1(E),

E

(

|〈mN
k MηN

k −mN
k Mηk , f〉|

)

≤ 4λE
(

‖ηNk − ηk‖∞
)

−→
N→+∞

0 .

Also, for f ∈ B1(E),

〈mN
k Mηk −mkM

ηk , f〉 = 〈mN
k −mk,M

ηkf〉 .
Since f ∈ B1(E), we have that Mηkf ∈ B1(E) and so

E(|〈mkM
ηk −mN

k Mηk , f〉|) ≤ sup
g∈B1(E)

E(|〈mk −mN
k , g〉) .

Once again using the fact that (1.10) holds for k, we have from the above inequality, that

sup
f∈B1(E)

E(|〈mkM
ηk −mN

k Mηk , f〉|) −→
N→+∞

0 ,

and combining the above convergence statements

sup
f∈B1(E)

E(|〈mN
k+1 −mk+1, f > |) −→

N→+∞
0 .

Next
ηNk+1(x)− ηk+1(x) = (1− ǫ)(P ⋆ (ηNk − ηk))(x) + ǫ(P ′ ⋆ (mN

k −mk))(x), x ∈ R
d,

where for µ ∈ P(Rd), P ⋆ µ is a function on R
d defined as P ⋆ µ(x) =

´

Rd P (y, x)µ(dy), x ∈ R
d. P ′ ⋆ µ for

µ ∈ P(E) is defined similarly. Using Assumption 1 we have

E
(

‖P ⋆ (ηNk − ηk)‖∞
)

≤ M̄PE
(

‖ηNk − ηk‖∞
)

−→
N→+∞

0 .

Finally, for an arbitrary δ > 0, we have from Lemma 2.1 and Assumption 1 that

‖P ′ ⋆ (mN
k −mk)‖∞ = sup

y∈Rd

∣

∣

∣

∣

ˆ

x∈E
(mN

k (dx) −mk(dx))P
′(x, y)

∣

∣

∣

∣

≤



 max
g∈F δ

M
P ′ ,lP ′

∣

∣〈mN
k −mk, g〉

∣

∣ + 2δ



 ,

where F δ is the finite family as in Lemma 2.1 associated with K = E. Recalling that (1.10) holds for
k and noting that δ > 0 is arbitrary and the family F δ(MP ′ , lP ′) is finite, we have from the above two
estimates that

E(‖ηNk+1 − ηk‖∞) −→
N→+∞

0 .

The result follows.

Proof of Corollary 1.2. We can apply Proposition 2.2 (i) p. 177 of [12] to get that ∀k, p ∈ N, ∀φ1, . . . , φp ∈
Cb(E), E(mN,p

k (φ1 ⊗ · · · ⊗ φp)) −→
N→+∞

m
⊗p
k (φ1 ⊗ · · · ⊗ φp). We conclude by a denseness argument.
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2.2 Existence and Uniqueness of Fixed Points.

In this section we will prove Theorem 1.3. Some of the techniques in this section are comparable to what
can be found in [3].

For g : Rd → R, let osc(g) = supx,y∈Rd |g(x)−g(y)|. For n > 1, define Φn recursively as Φn = Φ◦Φn−1,
where Φ1 = Φ. Let MP,P ′ = max{MP ,MP ′}. We begin with the following lemma.

Lemma 2.3. Suppose that Assumptions 1, 2 and 3 hold. There are ǫ0, λ0 ∈ (0, 1) such that for any ǫ ≤ ǫ0
and λ ≤ λ0 there exists θ ∈ (0, 1) such that ∀n

‖(Φn(m0, η0)− Φn(m′
0, η

′
0)‖ ≤ 4θn−1,

for all (m0, η0), (m
′
0, η

′
0) ∈ P(E) × P∗(Rd).

Proof. Note that from Assumption 3 (1), for any (m, η) ∈ P(E) × P∗(Rd)

‖ηRm − η′Rm′‖TV ≤ (1− ǫ)‖η − η′‖TV + ǫβ(P ′)‖m−m′‖TV . (2.2)

and by Lemma 3.2 in the Appendix,

‖mMη −m′Mη‖TV ≤ (1− ǫQe
−λosc(η))‖m−m′‖TV . (2.3)

Fix (m0, η0), (m
′
0, η

′
0) ∈ P(E) × P∗(Rd) and let (mn, ηn) = Φn(m0, η0), (m′

n, η
′
n) = Φn(m′

0, η
′
0). From

Assumptions 1 and 3, we have ∀n ≥ 1,

osc (ηn) ≤ MP,P ′ , osc(η′n) ≤ MP,P ′ . (2.4)

and therefore for k ≥ 2,

‖mk−1M
η′
k−1 −m′

k−1M
η′
k−1‖TV ≤ (1− ǫQe

−λMP,P ′ )‖mk−1 −m′
k−1‖TV . (2.5)

For k ≥ 2 the measures mk−2P
′ and m′

k−2P
′ have densities and these densities satisfy ∀y

∣

∣mk−2P
′(y)−m′

k−2P
′(y)
∣

∣ =

∣

∣

∣

∣

ˆ

x∈E
mk−2(dx)P

′(x, y)−m′
k−2(dx)P

′(x, y)

∣

∣

∣

∣

≤ MP,P ′‖mk−2 −m′
k−2‖TV . (2.6)

The measures ηk−2P and η′k−2P have densities as well and these densities satisfy ∀y,

∣

∣ηk−2P (y)− η′k−2P (y)
∣

∣ =

∣

∣

∣

∣

ˆ

x∈E

(

ηk−2(dx)P (x, y) − η′k−2(dx)P (x, y)
)

∣

∣

∣

∣

≤ MP,P ′‖ηk−2 − η′k−2‖TV . (2.7)

So, ∀x, y ∈ R
d, using (1.8), (2.6), (2.7),

∣

∣

∣
e−λ(ηk−1(x)−ηk−1(y))+ − e−λ(η′

k−1(x)−η′
k−1(y))+

∣

∣

∣
≤ λ|ηk−1(x)− η′k−1(x)|+ λ|ηk−1(y)− η′k−1(y)|

≤ 2λMP,P ′((1 − ǫ)‖ηk−2 − η′k−2‖TV + ǫ‖mk−2 −m′
k−2‖TV ) . (2.8)

By (2.1) we then have, for f ∈ B1(E),

|mk−1M
ηk−1(f) − mk−1M

η′
k−1(f)| ≤ 4λMP,P ′((1 − ǫ)‖ηk−2 − η′k−2‖TV + ǫ‖mk−2 − m′

k−2‖TV ) . (2.9)
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By (2.5), (2.9), we get

‖mk −m′
k‖TV ≤ ‖mk−1M

ηk−1 −mk−1M
η′
k−1‖TV + ‖mk−1M

η′
k−1 −m′

k−1M
η′
k−1‖TV

≤ 4λMP,P ′((1 − ǫ)‖ηk−2 − η′k−2‖TV + ǫ‖mk−2 −m′
k−2‖TV )

+ (1− ǫQe
−λMP,P ′ )‖mk−1 −m′

k−1‖TV ,

and combining this with (2.2), we have

‖(mk, ηk)− (m′
k, η

′
k)‖ ≤ 4λMP,P ′((1− ǫ)‖ηk−2 − η′k−2‖TV + ǫ‖mk−2 −m′

k−2‖TV )

+ (1− ǫQe
−λMP,P ′ )‖mk−1 −m′

k−1‖TV

+ (1− ǫ)‖ηk−1 − η′k−1‖TV + ǫβ(P ′)‖mk−1 −m′
k−1‖TV .

(2.10)

We can find ǫ0 ∈ (0, 1), λ0 ∈ (0,∞) such that for all ǫ ∈ (0, ǫ0), λ ∈ (0, λ0), there exists a θ ≡ θ(ǫ, λ) ∈
(0, 1), such that

sup((1 − ǫ), (1− ǫQe
−λMP,P ′ ) + ǫβ(P ′))

θ
+

4λMP,P ′

θ2
≤ 1 . (2.11)

Note that

‖(m0, η0)− (m′
0, η

′
0)‖ ≤ 4θ−1 ,

‖(m1, η1)− (m′
1, η

′
1)‖ ≤ 4 .

We then have by recurrence that for ǫ ∈ (0, ǫ0), λ ∈ (0, λ0), ‖(mn, ηn)− (m′
n, η

′
n)‖ ≤ 4θn−1, ∀n ∈ N0.

With ǫ0, λ0 and θ(ǫ, λ) ≡ θ as in the above lemma, let κ =
4λMP,P ′

θ . Then from the estimate in (2.11)
it follows that, for all k ≥ 2 and ǫ ∈ (0, ǫ0), λ ∈ (0, λ0),

αk + καk−1 ≤ θ (αk−1 + καk−2) , (2.12)

where αk = ‖(mk, ηk) − (m′
k, η

′
k)‖. As an immediate consequence we have the following corollary which

will be used in Subsection 2.3.

Corollary 2.4. Suppose that Assumptions 1, 2 and 3 hold. Let ǫ0, λ0 ∈ (0, 1) be as in Lemma 2.3. Then
with θ ∈ (0, 1) as in Lemma 2.3 associated with a fixed choice of ǫ ≤ ǫ0, λ ≤ λ0, we have, for each k ≥ 2

‖(mk, ηk)− (m′
k, η

′
k)‖+ κ‖(mk−1, ηk−1)− (m′

k−1, η
′
k−1)‖

≤ θk−1
(

‖(m1, η1)− (m′
1, η

′
1)‖+ κ‖(m0, η0)− (m′

0, η
′
0)‖
)

. (2.13)

Suppose further that Assumption 5 holds and that m0 has a density with respect to ℓE that is bounded by
Mm0 . Then, for k ≥ 1,

‖(mk, ηk)− (m′
k, η

′
k)‖ ≤ θk−1 (2 + κ+ 2λ(Mm0 +MQ,Q0))

(

‖(m0, η0)− (m′
0, η

′
0)‖
)

.

Proof. Equation (2.13) comes directly from (2.12). Next note that

‖η1 − η′1‖TV ≤ ‖m0 −m′
0‖TV + ‖η0 − η′0‖TV .

Also, recalling (2.1),

‖m0M
η0 −m0M

η′0‖TV

≤ 2

ˆ

x,y∈E
m0(dx)Q(x, dy)λ(|η0(x)− η′0(x)|+ |η0(y)− η′0(y)|)

≤ 2λ(Mm0 +MQ,Q0)‖η0 − η′0‖TV ,
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and
‖m0M

η′0 −m′
0M

η′0‖TV ≤ ‖m0 −m′
0‖TV .

Combining these estimates

‖(m1, η1)− (m′
1, η

′
1)‖ ≤ (1 + sup(1, 2λ(Mm0 +MQ,Q0))‖(m0, η0)− (m′

0, η
′
0)‖ .

Proof of Theorem 1.3. Take ǫ0, λ0 as in Lemma 2.3 and fix ǫ ∈ (0, ǫ0) and λ ∈ (0, λ0). The uniqueness
is immediate from Lemma 2.3. For existence, take any (m0, η0) ∈ P(E) × P∗(Rd) and define recursively
∀k ≥ 1, (mk, ηk) = Φ(mk−1, ηk−1). We have for all k ≥ 1, p ≥ 1, using the θ given by Lemma 2.3,

‖Φk+p(m0, η0)− Φk(m0, η0)‖ ≤ 4θk−1 . (2.14)

So the sequence (mk, ηk) is a Cauchy sequence in (P(E)×P∗(Rd), ‖ · ‖) and thus it has a limit (m∞, η∞).
By taking p → +∞ in (2.14), we see that (mk, ηk) −→

k→+∞
(m∞, η∞).

2.3 Uniform Convergence over the infinite time horizon.

In this subsection we will prove Theorem 1.4 and Corollary 1.5.

Proof of Theorem 1.4. Fix δ > 0. For k ∈ N, we take ΦN
k+1 to be a (random) operator such that

ΦN
k+1(m

N
k , ηNk ) = (mN

k+1, η
N
k+1). By convention, we take ΦN

1 (m0, η0) = (mN
1 , ηN1 ). Let us denote

for 1 ≤ j , ΦN
1:j(m0, η0) = ΦN

j ◦ ΦN
j−1 ◦ · · · ◦ ΦN

1 (m0, η0) and for j = 0 , ΦN
1:j(m0, η0) = (m0, η0) .

Also, recall that, for i < j, Φ(j−i) = Φ ◦ · · · ◦Φ (j − i times). We set Φ(0) = Id . Note that for n ≥ 1,

(mN
n , ηNn ) − (mn, ηn) =

n
∑

k=1

[

Φ(n−k) ◦ ΦN
k ◦ ΦN

1:k−1(m0, η0)− Φ(n−k) ◦ Φ ◦ΦN
1:k−1(m0, η0)

]

. (2.15)

We set ∀k ∈ N,

(

mN
k,k, η

N
k,k

)

= ΦN
1:k(m0, η0), (mk,k, ηk,k) = Φ ◦ΦN

1:k−1(m0, η0),

(mN
k,k+1, η

N
k,k+1) = Φ(mN

k,k, η
N
k,k), (mk,k+1, ηk,k+1) = Φ(mk,k, ηk,k).

Then

(mN
n , ηNn )− (mn, ηn) =

n−1
∑

k=2

(

Φ(n−k−1)(mN
k,k+1, η

N
k,k+1)− Φ(n−k−1)(mk,k+1, ηk,k+1)

)

+
(

(mN
n,n, η

N
n,n)− (mn,n, ηn,n)

)

+
(

Φ(n−1)(mN
1 , ηN1 )− Φ(n−1)(m1, η1)

)

. (2.16)

Notice that
ηNk,k = ηk,k for al k > 1. (2.17)

Now fix a k ∈ {2, . . . , n− 1}. The signed measure ηNk,k+1 − ηk,k+1 has the following density

(ηNk,k+1 − ηk,k+1)(y) = ǫ

ˆ

x∈E
(mN

k (dx)−mk,k(dx))P
′(x, y), y ∈ R

d .
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From Assumption 4 (2), for all f ∈ B1(R
d),

x ∈ E 7→
ˆ

y∈Rd

P ′(x, dy)f(y)

is l̃P ′-Lipschitz. By Lemma 2.1 we then have, for every f ∈ B1(R
d), δ > 0,

|ηNk,k+1(f)− ηk,k+1(f)| =

∣

∣

∣

∣

ǫ

ˆ

x∈E
(mN

k,k(dx)−mk,k(dx))

ˆ

y∈Rd

P ′(x, dy)f(y)

∣

∣

∣

∣

≤ ǫ

(

2δ + sup
g∈F δ

1

|〈mN
k,k −mk,k, g〉|

)

. (2.18)

where F δ
1 = F δ

1,l̃P ′
(E). Now by Lemma 3.5, with C1(δ) = |F δ

1 |,

E(‖ηNk,k+1 − ηk,k+1‖TV ) ≤ 2ǫ

(

δ +
C1(δ)√

N

)

. (2.19)

Using (2.17) once again
mN

k,k+1 −mk,k+1 = mN
k,kM

ηk,k −mk,kM
ηk,k .

For any f ∈ B1(E), we have

〈mN
k,k+1 −mk,k+1, f〉 = 〈mN

k,k −mk,k,M
ηk,kf〉 . (2.20)

From Lemmas 3.3 and 3.4 in the Appendix we see that the function x ∈ E 7→ Mηk,kf(x) is lQ,Q0-Lipschitz
and bounded by 1 where l̄Q,Q0 = lQ,Q0(3 + 2λl̄P,P ′). So using Lemma 2.1 once again, we have, for δ > 0,

E(‖mN
k,k+1 −mk,k+1‖TV ) ≤ 2δ + E( sup

g∈F δ
2

∣

∣〈mN
k,k −mk,k, g〉

∣

∣

≤ 2

(

δ +
C2(δ)√

N

)

. (2.21)

where F δ
2 = F δ

1,l̄Q,Q0

(E) and C2(δ) = |F δ
2 |. We will now apply Corollary 2.4. Note that, from Assumption

5, for every k, mN
k,k+1 has a density on E with respect to lE that is bounded by 2MQ,Q0 . This, in view of

Corollary 2.4, along with (2.19) and (2.21) yields ∀k ∈ {2, . . . , n− 2},

E

(∥

∥

∥
Φn−k−1(mN

k,k+1, η
N
k,k+1)− Φn−k−1(mk,k+1, ηk,k+1)

∥

∥

∥

TV

)

≤ C̄θn−k−2

(

4δ +
C1(δ) + C2(δ)√

N

)

,

where C̄ = (2 + κ+ 6λMQ,Q0). Note that the above inequality holds trivially if k = n − 1. For the term
in the second line of (2.16), note that, for n > 1,

sup
f∈B1(E)

E(|〈mN
n,n −mn,n, f〉|) ≤

2√
N

, ηNn,n = ηn,n .

The norm of the term in the third line of (2.16), using Lemma 2.3, can be bounded by 4θn−2. Combining
these estimates, for all n > 1

sup
f∈B1(E)

E(|〈mN
n −mn, f〉|+ ‖ηNn − ηn‖TV )

≤ 2√
N

+
n−1
∑

k=2

θn−k−2C̄

(

4δ +
C1(δ) + C2(δ)√

N

)

+ 4θn−2

≤ 2√
N

+ C̄

(

4δ +
C1(δ) + C2(δ)√

N

)

θ−1

1− θ
+ 4θn−1 .

The result now follows on combining the above estimate with Theorem 1.1.
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Proof of Corollary 1.5. Fix δ > 0. From Theorem 1.3, there exist (m∞, η∞) ∈ P(E) × P∗(Rd) and n0

such that ∀n ≥ n0,
‖(mn, ηn)− (m∞, η∞)‖ < δ .

From Theorem 1.4, there exist N0, n1 ∈ N such that ∀n ≥ n1, ∀N ≥ N0,

sup
f∈B1(E)

E(|〈mN
n −mn, f〉|+ ‖ηn − ηNn ‖TV ) < δ .

And so

lim sup
n→+∞

lim sup
N→+∞

sup
f∈B1(E)

E(|〈mN
n −m∞, f〉|+ ‖ηNn − η∞‖TV ) < 2δ ,

lim sup
N→+∞

lim sup
n→+∞

sup
f∈B1(E)

E(|〈mN
n −m∞, f〉|+ ‖ηNn − η∞‖TV ) < 2δ .

2.4 Proof of Theorem 1.6.

In this subsection we will take Assumption 6 to hold. Recall that under Assumption 6, we have that
Assumptions 1, 3 and 4 hold automatically.

Proof of Theorem 1.6. We proceed recursively. Since η̃N0 = η0, we have using Lemma 3.5 that (1.12) holds
for k = 0. Suppose now that (1.12) holds for some k ∈ N0. Fix δ > 0. We have ∀y ∈ E,

η̃Nk+1(y) = (1− ǫ)(P ⋆ SN (η̃Nk ))(y) + ǫ(P ′ ⋆ m̃N
k )(y) . (2.22)

By Assumption 1 and Lemma 2.1, we can write, for δ > 0,

E( sup
y∈Rd

|(P ′ ⋆ m̃N
k )(y)− (P ′ ⋆ mk)(y)|) = E( sup

y∈Rd

|〈m̃N
k −mk, P

′(., y)〉|)

≤ E( sup
g∈F δ

3

|〈m̃N
k −mk, g〉| + 2δ)

≤
∑

g∈F δ
3

E(|〈m̃N
k −mk, g〉|) + 2δ, (2.23)

where F δ
3 = F δ

MP ′ ,lP ′
(E). By Lemma 3.7, there exists K(δ) compact such that

ηk(K(δ)c) < δ , E(η̃Nk (K(δ)c)) < δ , ∀k,N .

Using Assumption 3, 4(1) and Lemma 2.1, we can write,

E( sup
y∈Rd

|(SN (η̃Nk )P (y)− (η̃Nk P )(y)|)

≤ E( sup
y∈Rd

|〈SN (η̃Nk )− η̃Nk , P (., y)1K(δ)(.)〉| + |〈SN (η̃Nk )− η̃Nk , P (., y)1K(δ)c(.)〉|)

≤
∑

g∈F δ
4

E(|〈SN (η̃Nk )− η̃Nk , g1K(δ)(.)〉|) + 2δ(1 +MP )

≤ 2

(

C4(δ)MP√
N

+ δ(1 +MP )

)

, (2.24)

where F δ
4 = F δ

MP ,lP
(K(δ)), C4(δ) = |F δ

4 | and the last inequality is a consequence of Lemma 3.5.
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In a similar manner

E( sup
y∈Rd

|η̃Nk P (y)− ηkP (y)|) ≤
∑

g∈F δ
4

E(|〈η̃Nk − ηk, g1K(δ)(.)〉|) + 2δ(1 +MP ) . (2.25)

And so, by (2.22), (2.23), (2.24), (2.25),

E(‖η̃Nk+1 − ηk+1‖∞) ≤
(

2C4(δ)MP√
N

+ 6δ(1 +MP )

)

+
∑

g∈F δ
3

E(|〈m̃N
k −mk, g〉|)

+ 2
∑

g∈F δ
4

E(|〈η̃Nk − ηk, g1K(δ)〉|) . (2.26)

Recalling that (1.12) is assumed for k, we have that, as N → ∞,

E(‖η̃Nk+1 − ηk+1‖∞) → 0.

An application of Scheffe’s Theorem now shows that, as N → ∞,

E(‖η̃Nk+1 − ηk+1‖TV ) → 0.

Next, for any f ∈ B1(E), we have

E(|〈m̃N
k+1 −mk+1, f〉|) ≤ E(|m̃N

k+1 − m̃N
k M η̃N

k , f〉|)
+ E(|〈m̃N

k M η̃N
k − m̃N

k Mηk , f〉|) + E(|〈m̃N
k Mηk −mkM

ηk , f〉|)

≤ 2√
N

+ 4λE(‖η̃Nk − ηk‖∞) + E(|〈m̃N
k −mk,M

ηkf〉|), (2.27)

where the last inequality uses (2.1) and Lemma 3.5. Once again using the recurrence assumption, we now
have that

sup
f∈B1(E)

E(|〈m̃N
k+1 −mk+1, f〉|) −→

N→+∞
0.

Thus we have proved that (1.12) holds for k + 1. The result follows.

2.5 Proof of Theorem 1.7.

Proof. For k ∈ N, we take Φ
N
k+1 to be a (random) operator such that Φ

N
k+1(m̃

N
k , η̃Nk ) = (m̃N

k+1, η̃
N
k+1). By

convention we take Φ
N
1 (m0, η0) = (m̃N

1 , η̃N1 ). Following the proof of Theorem 1.4, we define

for 1 ≤ j , Φ
N
1:j(m0, η0) = Φ

N
j ◦ΦN

j−1 ◦ · · · ◦Φ
N
1 (m0, η0) , and for j = 0 , Φ

N
1:j(m0, η0) = (m0, η0).

We define ∀k ∈ N,

(

mN
k,k, η

N
k,k

)

= Φ
N
1:k(m0, η0), (mk,k, ηk,k) = Φ ◦ ΦN

1:k−1(m0, η0),

(mN
k,k+1, η

N
k,k+1) = Φ(mN

k,k, η
N
k,k), (mk,k+1, ηk,k+1) = Φ(mk,k, ηk,k).

We use the same symbols as in the proof of Theorem 1.4 in order to keep notations simple. We have the
following telescopic decomposition

(m̃N
n , η̃Nn ) − (mn, ηn) =

n
∑

k=1

[

Φ(n−k) ◦ ΦN
k ◦ ΦN

1:k−1(m0, η0)− Φ(n−k) ◦ Φ ◦ΦN
1:k−1(m0, η0)

]

. (2.28)
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The proof is very similar to the proof of Theorem 1.4, except that now ηNk,k 6= ηk,k. The strategy remain

the same; we want to bound the ‘local error term’ Φ(2) ◦ΦN
1:k−1 −Φ ◦ΦN

1:k in total variation and then use
the contraction property of Lemma 2.3 to bound the telescopic sum uniformly in N . Fix (ǫ, λ) ∈ (0,∞)
such that ǫ ≤ ǫ0 and λ ≤ λ0, where ǫ0, λ0 are as in Lemma 2.3. Let θ = θ(ǫ, λ). Also, fix δ > 0. Consider
a k ∈ {2, . . . , n− 1}. Note that

ηNk,k − ηk,k = (1− ǫ)(SN (η̃Nk−1)− η̃Nk−1)P.

Therefore, from (2.24)

E(‖ηNk,k − ηk,k‖∞) ≤ 2

(

C4(δ)MP√
N

+ δ(1 +MP )

)

. (2.29)

In the same way as (2.21) in the proof of Theorem 1.4 (see also (2.20)), we get

E(‖mN
k,kM

ηk,k −mk,kM
ηk,k‖TV ) ≤ 2

(

δ +
C2(δ)√

N

)

. (2.30)

Also from (2.1) and Lemma 2.2, we have ∀f ∈ B1(E)

|〈mN
k,kM

ηN
k,k −mN

k,kM
ηk,k , f > | ≤ 4‖ηNk,k − ηk,k‖∞ . (2.31)

Equations (2.29), (2.30), (2.31) yield

E(‖mN
k,k+1 −mk,k+1‖TV ) ≤

8C4(δ)MP + 2C2(δ)√
N

+ δ(10 + 8MP ). (2.32)

Next, with K(δ) as in the proof of Theorem 1.6, ∀f ∈ B1(R
d)

|ηNk,k(f)− ηk,k(f)| =

∣

∣

∣

∣

(1− ǫ)

ˆ

x∈Rd,y∈Rd

P (x, y)f(y)dy(SN (η̃Nk−1)− η̃Nk−1)(dx)

∣

∣

∣

∣

≤
∣

∣〈SN (η̃Nk−1)− η̃Nk−1, Pf(·)1K(δ)(·)〉
∣

∣ + |SN (η̃Nk−1)(K(δ)c)| (2.33)

+|η̃Nk−1(K(δ)c)| .

Also, using the Gaussian property of the kernel P , it follows that Pf is Lipschitz on K(δ), uniformly in
f ∈ B1(R

d). Denote the uniform bound on the Lipschitz norm by lK(δ). Then

|〈SN (η̃Nk )− η̃Nk , Pf1K(δ)〉| ≤ max
g∈F δ

6

|〈SN (η̃Nk )− η̃Nk , g1K(δ)〉|+ 2δ, (2.34)

where F δ
6 = F δ

1,lK(δ)
(K(δ)). Thus

E|ηNk,k(f)− ηk,k(f)| ≤ Emax
g∈F δ

6

|〈SN (η̃Nk−1)− η̃Nk−1, g1K(δ)〉|+ 4δ .

Next, for all f ∈ B1(R
d)

E|ηNk,k+1(f)− ηk,k+1(f)| = E
∣

∣〈(1− ǫ)(ηNk,k − ηk,k)P + ǫ(mN
k,k −mk,k)P

′, f〉
∣

∣

≤ E|〈ηNk,k − ηk,k, Pf〉|+ E|〈mN
k,kP

′ −mk,kP
′, f〉|

≤ E(max
g∈F δ

6

|〈SN (η̃Nk−1)− η̃Nk−1, g1K(δ)〉|) + 4δ + E‖mN
k,kP

′ −mk,kP
′‖TV .

Using C1(δ) introduced in the proof of Theorem 1.4, we have

E(‖mN
k,kP

′ −mk,kP
′‖TV ) ≤ 2

(

δ +
C1(δ)√

N

)

.
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We then get

E(‖ηNk,k+1 − ηk,k+1‖TV ) ≤ 2

(

3δ +
C1(δ) + C6(δ)√

N

)

,

where C6(δ) = |F δ
6 |. Also, by (2.33)

E(‖ηNn,n − ηn,n‖TV ) ≤ 2

(

2δ +
C6(δ)√

N

)

,

and using the definitions of mN
n,n and mn,n, we get from Lemma 3.5

sup
f∈B1(E)

E(|〈mN
n,n −mn,n, f〉|) ≤

2√
N

.

Thus as in the proof of Theorem 1.4 we get, for n > 1,

sup
f∈B1(E)

E(|〈m̃N
n −mn, f〉|+ ‖η̃Nn − ηn‖TV )

≤ 2√
N

+ 2

(

2δ +
C6(δ)√

N

)

+ C̄

(

δ(3 +MP ) +
2C1(δ) + 2C2(δ) + 2C6(δ) + 8C4(δ)√

N

)

θ−2

1− θ
+ 4θn−1 .

3 Appendix: auxiliary results

Lemma 3.1. Let M be a transition probability kernel on E such that for some ǫ ∈ (0, 1) and ℓ1 ∈ P(E),

M(x,A) ≥ ǫℓ1(A),∀ A ∈ B(E), x ∈ E.

Then, for all µ1, µ2 ∈ P(E),

‖µ1M − µ2M‖TV ≤ (1− ǫ)‖µ1 − µ2‖TV .

Proof. This result comes from Dobrushin’s Theorem and the proof of this theorem can be found in [1], p.
183 and p. 192 (see useful definitions on p. 181). Dobrushin’s Theorem can also be found in [4], p. 70,
with the corresponding proof in [5], p. 332.

Lemma 3.2. Suppose that Assumption 2 holds. Then, for any m,m′ ∈ P(Rd) and η ∈ P∗(Rd),

‖mMη −m′Mη‖TV ≤ (1− ǫQe
−λosc(η))‖m−m′‖ .

Proof. The proof can be found in [1], p. 195. Since this book is written in French, we give a quick proof.
Note that ∀x, y ∈ E,

Mη(x, dy) = Q(x, dy)e−λ(η(x)−η(y))+ +Q0(x, dy)

(

1−
ˆ

z∈E
Q(x, dz)e−λ(η(x)−η(z))+

)

.

Then by Assumption 2
Mη(x, dy) ≥ ǫQe

−λosc(η)l1(dy) .

The result now follows from Lemma 3.1.

Lemma 3.3. Let η′ ∈ P(Rd), m ∈ P(E), and let η = η′Rm. Suppose that Assumption 4 (3) holds. Then,
η has a l̄P,P ′- Lipschitz density.
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Proof. Under Assumption 4 (3), the density of η is

x 7→ (1− ǫ)

ˆ

y∈Rd

η′(dy)P (y, x) + ǫ

ˆ

y∈Rd

m(dy)P (y, x).

And for x, x′ ∈ R
d,

∣

∣η(x)− η(x′)
∣

∣ ≤ (1− ǫ)

ˆ

y∈Rd

η′(dy)l̄P,P ′ |x− x′|+ ǫ

ˆ

y∈Rd

m(dy)l̄P,P ′ |x− x′|

= l̄P,P ′ |x− x′| .

Lemma 3.4. Take η ∈ P(Rd) having a lη-Lipschitz density and let f ∈ B1(R
d). Under Assumption 5, the

function x ∈ E 7→ Mηf(x) is lQ,Q0-Lipschitz with

lQ,Q0 = lQ,Q0 (3 + 2λlη) .

Proof. Note that for x ∈ E

Mηf(x) =

ˆ

y∈E
Q(x, dy)e−λ(η(x)−η(y))+ f(y)

+

ˆ

y∈E
Q0(x, dy)f(y)×

(

1−
ˆ

z∈E
Q(x, dz)(1 − e−λ(η(x)−η(z))+

)

.

So for x, x′ ∈ E, using Assumption 5

|Mηf(x)−Mηf(x′)| ≤ lQ,Q0 |x− x′|

+

ˆ

y∈E
Q(x′, dy)|e−λ(η(x)−η(y))+ − e−λ(η(x′)−η(y))+ |

+

∣

∣

∣

∣

ˆ

y∈E
(Q0(x, dy)−Q0(x

′, dy))f(y)

∣

∣

∣

∣

×
(

1−
ˆ

z∈E
Q(x, dz)(1 − e−λ(η(x)−η(z))+

)

+

ˆ

y∈E
Q0(x

′, dy)×
∣

∣

∣

∣

ˆ

z∈E
Q(x, dz)e−λ(η(x)−η(z))+ −Q(x′, dz)e−λ(η(x′)−η(z))+

∣

∣

∣

∣

≤ lQ,Q0|x− x′|+
ˆ

y∈E
Q(x′, dy)λ|η(x) − η(x′)|

+ lQ,Q0|x− x′|

+ lQ,Q0|x− x′|+
ˆ

y∈E
Q(x′, dy)λ|η(x) − η(x′)|

≤ lQ,Q0 |x− x′| (3 + 2λlη) .

Lemma 3.5. (1) Let E0 be a closed subset of Rd and let µ ∈ P(E0). Then for all f ∈ B1(E0)

E(|〈SN (µ)− µ, f〉|) ≤ 2√
N

.

(2) Let G be a transition probability kernel on a closed subset E0 of R
d. Let x1, · · · xN ∈ E0 for some

N ∈ N and let ξ1, · · · ξN be mutually independent random variables distributed as δx1G, · · · δxN
G. Define

mN
0 = 1

N

∑N
i=1 δxi

and mN
1 = 1

N

∑N
i=1 δξi . Then for all f ∈ B1(E0)

E(|〈mN
1 −mN

0 G, f〉|) ≤ 2√
N

.
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Proof. We will only show (2). Proof of (1) is similar. Fix f ∈ B1(E0). Then

E(|〈mN
1 −mN

0 G, f〉|) = E

∣

∣

∣

∣

∣

1

N

N
∑

i=1

f(ξi)− δxi
G(f)

∣

∣

∣

∣

∣

≤



E

(

1

N

N
∑

i=1

f(ξi)− δxi
G(f)

)2




1/2

=

(

E
1

N2

N
∑

i=1

(f(ξi)− δxi
G(f))2

)1/2

≤ 2√
N

.

Lemma 3.6. Suppose P,P ′ satisfy Assumption 6, then they satisfy Assumption 3(1).

Proof. Let m0,m
′
0 ∈ P(E). We can write

{

m0 = m+ m̃

m′
0 = m+ m̃′

where m, m̃, m̃′ are finite measures on E and ‖m0 −m′
0‖TV = ‖m̃− m̃′‖TV = ‖m̃‖+ ‖m̃′‖TV . We set

{

P ′
E(x, dx

′) = P ′(x, dx′)1x′∈E

P ′
Ec(x, dx′) = P ′(x, dx′)1x′∈Ec .

Since E is compact, we can find p ∈ P(E) and δ > 0 such that

P ′
E(x, dx

′) = δp(dx′) +M(x, dx′) , ∀x ∈ E. (3.1)

where M is some nonnegative kernel. Then

‖m0P
′ −m′

0P
′‖TV = ‖m̃P ′

E − m̃′P ′
E‖TV + ‖m̃P ′

Ec − m̃′P ′
Ec‖TV

≤ ‖m̃M − m̃′M‖TV + m̃P ′(Ec) + m̃′P ′(Ec)

≤ m̃M(E) + m̃′M(E) + m̃P ′(Ec) + m̃′P ′(Ec) .

From (3.1) we have

m̃M(E) + m̃P ′(Ec) = m̃P ′(E)− δm̃(E) + m̃P ′(Ec)

≤ (1− δ)m̃P ′(E) + m̃P ′(Ec)

= (1− δ)m̃P ′(E) + (m̃(E) − m̃P ′(E)).

Since E has a non-empty interior, we can find α > 0 such that ∀m ∈ P(E), mP ′(E) ≥ α. In particular
we have m̃P ′(E) ≥ αm̃(E). Using this property in the above display

m̃M(E) + m̃P ′(Ec) ≤ (1− δ)αm̃(E) + (1− α)m̃(E)

= (1− αδ)m̃(E) ,

Also, the same formula holds with m̃ replaced by m̃′. So

‖m0P
′ −m′

0P
′‖TV ≤ (1− αδ)(m̃(E) + m̃′(E))

= (1− αδ)‖m0 −m′
0‖TV .

19



Lemma 3.7. Suppose that Assumption 4 (2) holds. Fix (m0, η0) ∈ P(E) × P∗(Rd). Let ηk be as defined
in (1.9) and let η̃Nk be as defined in (1.11). Then, for any δ > 0, ∃ a compact subset of Rd, K(δ), such
that ∀k, ∀N ,

ηk(K(δ)c) < δ , E(η̃Nk (K(δ)c) < δ .

Proof. We can prove by recurrence that ∀n,

ηn+1 =
n
∑

k=0

[

ǫ(1− ǫ)kmn−kP
′P k
]

+ (1− ǫ)n+1η0P
n+1 .

Fix δ̃ > 0. Let k0 such that
∑

k≥k0+1(1− ǫ)k < δ̃. Since E is compact, we can find a finite family (xj)j∈J

of elements of E such that ∀y ∈ E, ∃j ∈ J such that |y − xj | < δ̃. We can partition: E = ⊔j∈JEj such
that ∀j and ∀y ∈ Ej, |y − xj | < δ̃. For each j ∈ J , we can find Kj , a compact subset of Rd, such that
δxj

P ′(Kc
j ) < δ̃, δxj

P ′P (Kc
j ) < δ̃, . . . , δxj

P ′P k0(Kc
j ) < δ̃. Clearly, the set K = ∪j∈JKj is compact. Also,

∀k ≤ k0, ∀r

mrP
′P k(Kc) =

ˆ

y∈E
mr(dy)(P

′P k)(y,Kc)

=
∑

j∈J

ˆ

y∈Ej

mr(dy)(P
′P k)(y,Kc)

=
∑

j∈J

ˆ

y∈Ej

mr(dy)(P
′P k)(xj ,K

c)

+
∑

j∈J

ˆ

y∈Ej

mr(dy)((P
′P k)(y,Kc)− (P ′P k)(xj ,K

c))

≤
∑

j∈J

[

mr(Ej)(P
′P k)(xj ,K

c)
]

+ δ̃l̃P,P ′

≤ δ̃ + δ̃l̃P,P ′ ,

where the next to last inequality follows from Assumption 4 (2). Finally, ∀n ≥ k0 + 1

ηn+1(K
c) ≤

k0
∑

k=0

[ǫ(1− ǫ)kmn−kP
′P k(Kc)] + δ̃

≤
k0
∑

k=0

[ǫ(1− ǫ)k(δ̃ + δ̃l̃P,P ′)] + δ̃ .

The first statement follows. To prove the second statement, we begin by defining the (random )operator
SN ◦ P acting on probability measures on R

d: µ(SN ◦ P ) = (SN (µ))P . We have

η̃Nn+1 =
n
∑

k=0

[

ǫ(1− ǫ)km̃N
n−kP

′(SN ◦ P )k
]

+ (1− ǫ)n+1η0(S
N ◦ P )n+1 .

We take the same δ̃, xj ,Kj , . . . as above and we notice that ∀k, j,
E(δxj

P ′(SN ◦ P )k(Kc
j )) = δxj

P ′P k(Kc
j ) .

From this point, the proof is the same as for the first statement.
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