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{oefrainr, lsaab, shak, nmansard}@laas.fr

Abstract—This paper presents a complete methodology to
quickly reshape a dynamic motion demonstrated by a human
and to adapt the dynamics of the human to the dynamics of
the robot. The method uses an inverse dynamics control scheme
with a quadratic programming optimization solver. The motion
data recorded using a motion capture system is introduced into
the control scheme as a reference posture task to be followed by
the joints trajectory respecting the dynamic limitations as well
as the contact constraints. The motion is further modified using
arbitrary tasks to let the robot imitate the original motion more
closely or to make voluntary changes for aesthetic reasons. The
results show the method applied to the humanoid robot HRP-2
imitating a human ”pop dance”.

I. INTRODUCTION

Human motion imitation by a humanoid robot is a challeng-
ing task involving coordination, control and stabilization of
the robot. Coordination problems are inherent to kinematically
redundant robots, and humanoids are known to be highly
redundant systems. Control difficulties arise from the complex
humanoid tree-like structure as well as its unstable nature due
to its vertical position. The robot must not only reproduce
some task, but it should not fall while performing the task,
keeping its dynamic balance. These constraints make imitation
of captured motion a more complicated problem in robotics
than in computer animation.

A classical approach for motion imitation in computer
graphics is inverse kinematics [1], [2] since the characters
usually do not possess physical dynamic characteristics. The
main tools are related to motion editing and retargetting cap-
tured motions [3]. Even though sometimes dynamics is taken
into account [4], its main objective is to give more realism
to the animation rather than to make the motion feasible. The
motion generated with methods for computer animation is not
guaranteed to be suitable for a direct reproduction on a robot.

In robotics, capture and analysis of motion has become
an active research area during these recent years to generate
motion by imitation [5]. This imitation paradigm that lets
the robot acquire the way of performing a task by observing
human demonstrations has been called learning from obser-
vation (LFO) [6] and was initially introduced for robotic
manipulators with the name assembly plan from observation
(APO) [7]. The starting point is usually the motion acquired
from a human expert using a motion capture system. Chinese
Kungfu is an example of this type of imitation [8]. Also,
Japanese traditional dancing has been replayed on a humanoid
robot imitating the motion of a professional dancer [9], [10],

Fig. 1: Inverse Dynamics Cascade Scheme

[6]. Moreover, modifications to the upper body motion have
been realized for the Japanese dancing [11]. Another motion
sequence resembling a dance was presented in [12] adapting
the captured joint trajectories to generate feasible motion in a
robot, and robot modeling is recreated in [13] where walking
and turning motion are created based on the motion obtained
from a professional model.

Optimization is a classical solution for reshaping the cap-
tured motion before imitation. For example, upper body mo-
tion is produced solving a separate optimization problem for
each frame of the motion in [14]. A constraint that uses
trajectory optimization and filtering to preserve the main
characteristics of the original motion and to respect at the
same time the physical limitations of the humanoid robot is
proposed in [15]. A similar approach is proposed in [5] but
the optimization problem is reformulated using Lie algebra
for the dynamic equations of motion. In this case, the ZMP is
controlled using the cart table model [16].

In this paper, we propose to use a generic hierarchical opti-
mization solver to solve simultaneously the dynamic reshaping
and the motion edition. The considered solver consists of the
inverse-dynamics control cascade proposed initially in [17]
and extended in [18]. The flexibility of the scheme allows
the addition of arbitrary tasks on the operational space that
modify the trajectory of the joints, to generate a more similar
motion, or to change some part of it, as Figure 1 shows.

This paper is organized as follows. Section II presents
the dynamic model considering the contact constraints. In
Section III we recall the inverse dynamics solver applied for
the generation of motion by resolving a set of tasks. The
tasks used for motion imitation are introduced in Section IV.
Section V presents the method used to reshape the observed



human motion to the robot kinematics using an optimization
algorithm. Finally, the results obtained in simulation for the
humanoid robot HRP-2 imitating a dance motion are presented
in Section VI.

II. DYNAMIC MODEL

A. Dynamic model with contact conditions

In this work, we consider a humanoid robot in contact with
its environment. The full representation of the humanoid robot
is given by the generalized coordinates q = (xb, qa) with
xb as the position and orientation of the robot with respect
to the world, and qa as the vector including the n actuated
joints. The arbitrary center of the body in contact (e.g. the
body center of mass or the center of the joint attached to
it) will be represented by xc and the frame attached to it by
{C}. By abuse, xc will denotes the 6D position (translation
and orientation) of the frame {C}. The contact forces are
then expressed in terms of the generalized 6D contact force
φc = (fc, τc) written at {C}. Considering a single body in
contact, the dynamic model is:

Aq̈ + b+ JT
c φc = ST τ (1)

where Jc is the contact Jacobian of xc expressed at the same
point as φc, A is the whole-body inertia matrix, b is the
vector including Coriolis, centrifugal and gravity forces, τ is
the actuated torque vector, and S is a matrix that selects the
actuated joints. This can be generalized for more than two
bodies in contact as shown later.

An additional non-holonomic restriction to be satisfied when
two rigid bodies are in contact is that no relative motion
should occur between them [19]: ẋc = 0 and ẍc = 01. At
the acceleration level, this is ẍc = Jcq̈ + J̇cq̇ = 0, which
implies

Jcq̈ = −J̇cq̇ (2)

B. Force constraint for rigid planar contacts

1) Unilateral model: In the following, the only contact
model considered is the rigid multi-planar contact. For each
contact, at least three non aligned points must lie on the planar
surface. Consider only one body in rigid contact and let the
points belonging to the contact surface be pi, i = 1, ..., np

with np ≥ 3. At each vertex pi, the force is represented
by fi = (fix, fiy, fiz ). The torque expressed at {C} is
cτi = cpi× fi = cp̂ifi, where cp̂i is the skew-matrix obtained
from cpi, and cpi is the point pi with respect to the reference
frame {C}. The total force at the center of contact is then
fc =

∑np

i=1 fi and the total torque is τc =
∑np

i=1
cp̂ifi:

φc =

[
fc
τc

]
=

[
I I ... I

cp̂1
cp̂2 ... c ˆpnp

] f1...
fnp

 . (3)

1We consider rigid contact (ẍ = 0, contact of class 6) which implies a
minimum of three contact points. For other classes of contact (e.g. punctual
contact) or non-rigid contact (i.e. ẍ is obtained as a non-zero function of the
exerted forces), the same structure can be used, but it is not considered here.

A sufficient condition to guarantee a rigid contact between
a body of the robot and the planar surface is that the reaction
force at the interface must be directed towards the robot;
equivalently, the normal components fiz of each contact force
must be positive [17]:

f⊥ = (f1z, f2z, . . . , fnpz) ≥ 0 (4)

2) Constraint reduction: The contact can be represented
by (3) and inequality (4). Using the planar hypothesis, it is
possible to reduce the size of these conditions. Consider a
reference frame {O} as the projection of {C} on the contact
surface so that the Z axis of {O} is normal to the surface,
and let oc = (0, 0, ocz) be the origin of frame {C} expressed
with respect to {O}. The total force and torque with respect
to the new frame are given by

φo =

[
fo
τo

]
=

[
I 0
oĉ I

] [
fc
τc

]
. (5)

Each contact point in the reference frame {O} is opi =
(opix,

opiy, 0), with opiz = 0 as they also lie in the contact
surface. Using (5) and the relation τo =

∑np

i=1
op̂ifi, it is

straightforward to verify that:
fcx
fcy
fcz

−oczfcy + τcx
oczfcx + τcy

τcz

 =



∑np

i fix∑np

i fiy∑np

i fiz∑np

i
opiyfiz

−
∑np

i
opixfiz

−
∑np

i
opiyfix +

∑
i
opixfiy

 (6)

Since the rigid contact condition on the force only constraints
the normal component fiz , the first, second and sixth rows
of (6) impose no restriction to the dynamic evolution and
can be arbitrarily chosen. With these simplifications, the rigid-
contact constraint including (4) and (6) is given by [18]:[

Qc1 Qc2

] [φc
f⊥

]
= 0 and f⊥ ≥ 0 (7)

with

Qc1 =

 0 0 −1 0 0 0
0 ocz 0 −1 0 0
−ocz 0 0 0 −1 0

 (8)

Qc2 =

 1 1 . . . 1
op1y

op2y . . . opnpy

−op1x −op2x . . . −opnpx

 (9)

Multiple contact: The model presented above is valid for
one body in contact with one plane. However, it is straightfor-
ward to extend it to multiple bodies in contact with multiple
planes, by considering one couple of conditions (2) and (7)
and one couple of variables Φc and f⊥ for each contact. In
that case, the complete dynamic equation of the robot is:

Aq̈ + b+
∑

JT
c φc = ST τ (10)

The equations (2) and (7), considered one for each body in
contact, complete the dynamic model.



ZMP-based stability condition: Considering frame {O} in
the interface between the supporting feet and the ground, and
assuming that the robot is in contact with a single plane, the
ZMP is computed as the average of the contact points opi
weighted by the normal component of the contact forces fiz
at each point:

pzmp =

(∑np

i
opixfiz∑np

i fiz
,

∑np

i
opiyfiz∑np

i fiz
, 0

)
(11)

The unilateral condition guarantees that f⊥ ≥ 0, and therefore,
the ZMP will exist inside the support polygon, ensuring the
dynamic stability condition. Consequently, (7) ensures the
fulfillment of the classical ZMP condition.

III. DYNAMIC INVERSION USING A STACK OF TASKS

The dynamic model presented above allows a dynamic
inversion from a reference joint trajectory, that is, it finds
the torques to exert on the robot joints given a reference
trajectory q̈∗. However, it is often much straightforward to
express the robot objectives in dedicated spaces, as proposed
by the task function approach [20]. A classical way to compose
a movement from a set of tasks is to introduce a strict hierarchy
between tasks to ensure a safe behavior in case of conflict. This
is a well known solution in kinematics [21] and in dynamics
[22]. In [23] a hierarchical solver including inequalities was
introduced for kinematics, and it was extended in [18] for
dynamics. In the following, the principles of this solver are
quickly recalled, and the classical tasks to be used are briefly
introduced.

A. Generic QP cascade scheme

Consider a linear system with n linear inequalities (or
equalities) A1x ≤ b1, A2x ≤ b2, . . . , Anx ≤ bn. The
system is solved for x by the hierarchical QP solver using
the following procedure. The first stage is:

min
x,w1

‖w1‖ (12)

A1x− b1 ≤ w1

where w1 is a slack variable. The second stage minimizes the
slack variable w2:

min
x,w2

‖w2‖ (13)

A2x− b2 ≤ w2

A1x− b1 ≤ w∗1
where w∗1 is the slack variable determined in the first
stage (12). In case of conflict between the constraints, the
slack variable w2 allows to violate A2x ≤ b2, giving a greater
priority to A1x ≤ b1. The subsequent stages are formulated
in a similar way, and the n-th stage can be written as:

min
x,wn

‖wn‖ (14)

Anx− bn ≤ wn

Aax− ba ≤ wa∗

Fig. 2: Dyanmic QP Cascade Scheme.

where Aa = (A1, · · · , An−1), ba = (b1, · · · , bn−1) and
wa∗ = (w∗1 , · · · , w∗n−1). The augmented slack variable wa∗

contains the slack variables obtained in the previous n − 1
stages. This hierarchical QP is denoted as (12) ≺ (13) ≺ · · ·
≺ (14).

B. Operational tasks

For any observable s(q) of the robot configuration, a desired
position and orientation s∗ can be specified without loss of
generality by the task e = s − s∗. A usual choice for the
task rate of change is ë = −λpe − λv ė with λp > 0 and
λv = 2

√
λp to make the error decrease exponentially. At the

acceleration level, the relation between the task space and the
joint space is:

Jq̈ = ë− J̇ q̇ (15)

where J = ∂e
∂q is the task Jacobian.

C. QP for the dynamic inversion

With the notation presented, the generic hierarchical QP
proposed in [18] for the resolution of the inverse dynamics
using the task space is written as (1) ≺ (2) ≺ (7) ≺ (15),
and is shown in Figure 2. To deal with all these constraints,
the optimization vector determined by the QP solver is x =
(q̈, τ, φc, f

⊥). The operational space dynamic tasks correspond
to the accelerations of the controlled task e, which is ë, and
Figure 2 shows the case of N tasks e1, ..., eN . These tasks
can be added or removed at any time and with any priority.
Additionally, the contact constraints can also be added or
removed at any time making the whole cascade very flexible
when handling whole-body motion.

IV. TASK SET FOR IMITATION

The solver detailed previously can be used for various kinds
of tasks. Examples can be found in [18]. In the frame of
imitation and edition, we have mainly used four types of tasks:
• The first task regulates the posture (actuated part of

the robot configuration) to follow the motion of the
demonstrator.

• The other tasks were used to edit the motion and include:
the control of the position and orientation of an opera-
tional point, the control of the trajectory of a particular
joint, and the control of the position on the ground plane
of one foot sliding.

These tasks are described in detail in this section.



A. Posture Task

The desired trajectory for the joint angles is obtained
using the motion capture system (as it will be explained in
Section V). This acquired motion can be directly replayed
on a human-like character used in the field of computer
graphics. However, it is not straightforward to regenerate
the data by a robot as it does not consider the dynamic
model or the constraints associated with it. In this case, the
inverse dynamics control scheme can be used as it considers
the contact constraints and the dynamic stability conditions.
Particularly, a task that follows the joints evolution as closely
as possible while satisfying the prior dynamic conditions
is implemented and will be called the posture task. Let
qjk = (qj , . . . , qk) ∈ Rk−j+1 with k, j ∈ N, 1 ≤ j, k ≤ n
and k ≥ j represent the vector containing the angular values
that need to be controlled, and q∗jk the corresponding desired
configuration. A posture task is expressed as e = qjk−q∗jk. At
the velocity level, this will lead to ė = Jjkq̇ with the Jacobian
Jjk ∈ R(k−j+1)×(6+n) selecting only the desired joints:

Jjk =
[
0(k−j+1)×(6+j−1) Ik−j+1 0(k−j+1)×(n−k)

]
(16)

where Ik−j+1 ∈ R(k−j+1)×(k−j+1) is the identity matrix and
0k1×k2

∈ Rk1×k2 are zero matrices. In the special case of
controlling all the actuated joints, the identity matrix will
have its largest size, lying in Rn×n. Finally, the reference
acceleration is given as a tracking of the joint trajectory
obtained by the motion capture system, using a PD controller:

q̈∗jk = −λp(qjk − q∗jk)− λv(q̇jk − q̇∗jk) (17)

with λp and λv defined as before.

B. Arbitrary Edition of the Generated Motion

The posture task reproduces the desired motion at the joint
level satisfying the dynamic constraints. However, the PD acts
as a low-pass filter, generating non desired movements at some
points or erasing some delicate or very dynamic movements,
typically due to fast oscillatory motions. Nevertheless, the
structure of the stack of tasks can be used to overcome this
problem by adding operational tasks that enhance or even
modify the original motion. Moreover, the priorities of the
tasks can be modified to better achieve the desired motion.

An operational task controls directly the position and/or
orientation of different operational points. In our case, we
consider the head, chest, waist, feet and hands of the robot
as the controlled end-effectors. Each operational point xi =
(pix, piy, piz, ϕix, ϕiy, ϕiz) ∈ R6 is expressed in Cartesian
coordinates to specify its position and the roll, pitch, yaw
angles for its orientation. Despite this 6D representation, we
are free to control either both position and orientation, or only
some axis of interest. For this sake, a diagonal selection matrix
Sx is defined as:

Sx = diag(s1, s2, s3, s4, s5, s6) (18)

where sj is a binary, 1 or 0, the former one to control that
particular element of position or orientation, and the latter

one to leave it unconstrained. Thus, the differential relation
is expressed as:

Sxėi = SxJq̇ (19)

and the reference x∗i to be followed only considers the
controlled elements of position and/or orientation.

We use this operational task to edit the motion in two cases:
• Specification of target points: A new desired target for

a chosen operational point can be specified without
defining the desired trajectory to reach it. This point
can be determined using forward kinematics applied on
a certain operational point to compute its position from
the kinematic optimization, which will be described in
Section V, or it can be arbitrarily set.

• Specification of a trajectory: Let the trajectory for the
operational point x be called xo(t). The new trajectory
xn(t) that will be set as the desired trajectory for that
operational point will be xn(t) = xo(t) + xm(t), where
xm(t) is the trajectory modification that can be done on
any of the six degrees of freedom of x. This trajectory
modification xm(t) can be time varying or constant,
according to the requirements.

It is important to point out that the added operational task
must have higher priority than the joints posture task it would
interfere with. For instance, if an operational task is added to
the hand, the priority of the arm posture task must be reduced.
Alternatively, the task can be removed, but it is preferred to
be kept, as it will serve as a “guide” for the new trajectory.
If these priority considerations are not taken into account, the
desired motion would be blinded by the solutions satisfying
the posture task with higher priority, then, the desired effect
would not be achieved. Other tasks (typically, the gaze) could
have been considered, even if not meaningful in our case of
pop dancing.

C. Foot Sliding

At some points, the observed motion revealed slight changes
in the contact which becomes not exactly rigid. Thus, to let
a foot slide, the rigid contact constraints stating ẋc = 0
and ẍc = 0 can be relaxed constraining the motion to the
horizontal XY plane. For the contact i, this restriction at
the velocity level can be formulated as vz = 0, ωx = 0,
ωy = 0 allowing the other velocity elements to take arbitrary
values. This guarantees no translation on the vertical axis
Z or rotation about it. To account for these constraints, the
dynamic model would need to be reformulated. Alternatively,
another simpler and more flexible approach is to remove the
contact constraint and add a task that restricts the motion in Z
direction, imposing no restrictions to the X or Y axis, which
will limit the motion to the XY plane. Considering x∗ as the
desired task, this particular case of the 6D task (19) is x∗ =
(kx, ky, Hz, 0, 0, krz) and Sx = diag(0, 0, 1, 1, 1, 0). where
Sx is the selection matrix defined in (18), kx, ky, krz ∈ R
are arbitrary values and Hz is the known height of the foot
operational point with respect to the world frame. When the
foot is in contact with the ground, this constraint restricts the



height of the foot to remain constant, and the rotation about
the X and Y axis to be null.

This task does not exactly correspond to a sliding, since slid-
ing can accept forces orthogonal to the motion. The proposed
solution is thus more restrictive than necessary. However, the
visual effect would be the same, and it will keep the motion
feasible and dynamically consistent.

V. MULTIBODY MOTION ACQUISITION

Our motion capture system is a 10-camera with marker
tracking system [24]. It provides the 6D position, translation
and orientation, of a set of unconstrained bodies in space,
typically the limbs of the demonstrator, at a frequency of 200
Hz and with a precision of 2 mm. For this set of 6D position,
we need to recompute the joint position of the demonstrator,
knowing its geometric model. This is achieved by solving a
non linear optimization problem where the geometric model
of the demonstrator is known, and the joint position is the
optimization variable.

A. Optimization problem formulation

The geometric model gives the position and orientation
of each joint qi with respect to the robot world reference
frame {W}, as the transformation matrix WTqi(q) which is a
function of the joint vector q. Then, the problem of finding the
suitable joint values q∗(t) for the robot at time t can be reduced
to minimizing the difference between these transformation
matrices as:

q∗(t) = arg min
q

n∑
i

WT ∗qi(t) �
WTqi(q) (20)

s.t. qi ≤ qi ≤ qi (21)

where WT ∗qi(t) is the 6D position of the body i given by the
motion capture system, qi, qi are the minimum and maximum
angular values of a joint i, respectively, and the condition to
satisfy the joint limits for every joint i ∈ {1, ..., n} at every
optimization process has been added. The symbol � represents
a distance operator in the matrix group. We used a weighted
norm of the translation-axis-angle vectorial writing of the
transformation matrices given as follows. The homogeneous
matrices can be decomposed in rotation and translation parts:

WT ∗qi(t) =

[
R∗qi(t) p∗qi(t)

0 1

]
(22)

WTqi(q) =

[
Rqi(q) pqi(q)

0 1

]
. (23)

For the part corresponding to the position, the difference
to minimize is directly represented by the L − 2 norm as
‖ p∗qi(t) − pqi(q) ‖2. For the orientation part, the difference
is measured by the rotation angle θi, which is obtained
using the axis/angle representation of the product Rdi

=
Rqi(q)R

∗
qi(t)

−1 ∈ SO(3). If the rotation matrices are close

enough, the angle of Rdi
about the arbitrary axis is very small.

Representing the product of the rotation matrices as

Rdi =

nx ox ax
ny oy ay
nz oz az

 (24)

the angle will be

θi = atan2 (sa, ca) (25)

where

sa =

√
(ny − ox)2 + (nz − ax)2 + (oz − ay)2

2
(26)

ca =
nx + oy + az − 1

2
. (27)

The angle θi is always between 0 and π. Finally, the operator
� in (20) is given by:

WT ∗qi(t) �
WTqi(q) = wpi

‖ p∗qi(t)− pqi(q) ‖2 +woiθi (28)

where wpi
is the weight corresponding to the position part of

the joint i and woi = 1−wpi
is the weight for the orientation

part. The weights are included to provide more flexibility to
the model and are experimentally determined to give more
priority to one of the parts.

The WTqi(q) should be computed from the geometric model
of the demonstrator. In our case, we have used directly the
model of the robot to compute WTqi(q). The optimization
method has proved to be robust enough to handle the approx-
imation, and the dynamic solver is sufficient to recover all the
resulting noise and inaccuracy.

B. Calibration of the body frame

In (20) it is supposed that the same frames are used to
express both the motion capture observation and the geometric
model. This is of course not the case in practice, since the
motion-capture system uses its own arbitrary frames to express
the multi-body motion. The observation of the motion capture
has to be then reformulated in the proper frame. To this end,
the person whose motion wants to be recovered starts with a
position that is well known for the robot. Using this known
configurations, the transformation matrices between each node
mi and the corresponding joint qi in the robot is obtained
from a classical “calibration” step and represented by miTqi ,
which remains constant for all the process as long as the
markers do not have relative motion with respect to the body
they are attached to. This matrix considers the differences in
orientation between the markers and the frames defined in the
kinematic model of the robot for each joint, as well as the
differences in the segment lengths of the robot and the dancer.
Another matrix that is obtained during the calibration process
is the one relating the origin of the motion capture system
{Wm} and the robot reference frame {W} represented by
WTWm

. Let the position and orientation of each node mi with
respect to the motion capture reference frame be represented
by the homogeneous transformation WmTmi(t) which varies
in time according to the motion to be imitated. With these



transformation matrices, the desired configuration of the robot
joint i is:

WT ∗qi(t) = WTWm

WmTmi
(t)miTqi (29)

VI. RESULTS

To validate the proposed method, the motion of a dancer was
acquired using the motion capture system, which provides the
position and orientation of the frames associated with each
node. The motion was retargeted to a modified-HRP2 model
(ie we added one degree of freedom to both chest and neck
joints, obtaining a kinematic structure closer to the one of
HRP4, to obtain a nicer final motion), and edited to corrected
the retargeting error and introduced new undemonstrated fea-
tures.

The kinematic optimization was applied to obtain the corre-
sponding joint trajectories, which were then validated dynam-
ically using the posture task in the inverse dynamics solver.
The joints trajectory is first obtained from the motion capture,
and it is, of course, not stable nor dynamically consistent as
Figure 3b shows. A first dynamic motion is then obtained using
only the joint trajectory as references. This motion is displayed
in Figure 3c. The motion is stable; however, the geometric and
dynamic retargetting have lost some data and produced some
errors compared to the initial demonstrated trajectory. Three
editions were thus applied:
• The knee oscillations (smoothed by the PD) were en-

hanced.
• The right hand motion was corrected.
• An additional motion of the left foot consisting in sliding

on the ground, which was not present in the initial
demonstration, was introduced.

The sequence showing the time moments when these mod-
ifications were added is shown in Figure 4. The following
subsections provide more details of these three modifications.

A. Knee Oscillation
The knees constitute a particular case as the dancer per-

manently moved them but at the dynamic level this motion
was strongly weaken. To correct this problem we referred to
the task approach where the motion of the knee joint was
analyzed. Figure 5a shows the joint evolution obtained after the
kinematic optimization for the right knee. Between iterations
2000 and 2800, and between 6200 and 7300, the motion of the
joint is oscillatory and those are the moments corresponding
directly to the observed motion at the dancer’s right knee. A
scalogram using the Gaussian wavelet was constructed and is
shown in Figure 5b, where it is observed (in red circle) that
there are salient frequencies at those points. It was determined
that the scale a corresponding to the maximum values at
the desired positions is 36. The frequency and the scales are
related by f = fsfw

a , where fs is the sampling frequency and
fw is the center frequency of the wavelet. For the Gaussian
derivative of order 4, fw = 0.5, and considering that the
sampling frequency used during the acquisition is 200 Hz,
the resulting frequency is 2.7 Hz. Then, a task on the knee
was added at that frequency to resemble more the motion.

(a)

(b)

Fig. 5: Scalogram of the right knee joint evolution

Figure 6a shows the evolution of the joint at the right
knee (joint number 4) in the joint space as a function of the
iteration time, and Figure 6b shows the evolution in the X
axis of the operational space. Note that there is a difference
in the iteration time of Figure 5 and Figure 6 as the former
one corresponds to the kinematic optimization of the motion
sampled at 200Hz and the latter corresponds to the dynamic
level that runs at 1000Hz (the iteration relation is 5 to 1). The
red line shows the evolution of the joint when there is only the
posture task in the leg, and the blue line shows the evolution
when the operational task is added to the knee, but both lines
are obtained using the dynamic control scheme. Even though
the joint is not directly controlled, it is observed in Figure 6a
that with the operational task addition, the joint at the knee
presents an oscillation with higher amplitude, whereas with
only the task posture the oscillation is weak. The results in
the X axis of the operational space show a clear consistent
oscillation with similar amplitude where the knee task was
added Both the joint space and the operational space show
the effect of the task at the knee.

B. Right hand motion

The fast up and down motion of the right arm was also
smoothed as a consequence of the PD used. This was espe-
cially noted when the arm could not reach the upper positions
that the dancer performed. Then, an operational task to raise
more the arm was introduced. The result is shown in Figure 7.
The trajectory of the right arm in the Z axis using only the
posture task is shown in red, whereas the trajectory with
the operational correction is shown in blue. The corrected
trajectory, improved the upper positions of the right hand. The
task in the right hand was also used to avoid the auto collision
of the hand with the head, as can be noticed of Fig. 3, fourth
thumbnails.

C. Foot sliding introduction

We artificially introduced a sliding movement of the right
foot, to prove that extra features can be added as desired.



(a) Motion performed by the dancer (http://homepages.laas.fr/nmansard/humanoid11-ramos-mocap/initial.avi)

(b) Motion obtained with the geometric model (http://homepages.laas.fr/nmansard/humanoid11-ramos-mocap/geometric.avi)

(c) Motion after the posture task (http://homepages.laas.fr/nmansard/humanoid11-ramos-mocap/dynamic.avi)

(d) Final motion (http://homepages.laas.fr/nmansard/humanoid11-ramos-mocap/final.avi)

Fig. 3: Results for the robot imitating the dance performed by a human.

Fig. 4: Task sequence

To introduce the sliding effect on a foot, the ZMP of the
motion obtained using only the dynamic posture was analyzed.
Figure 8 shows in blue the trajectory of the ZMP in the Y axis
as a function of the time. The wide red lines show the limits
of the support polygon in the Y axis, and the dashed red lines
show the boundaries of the foot (inside the support polygon).
Between the iteration times 46940 and 48310, the ZMP lies
completely in the area corresponding to the right foot. Then,
it was at this time that the sliding task was introduced for
the left foot, guaranteeing the dynamic stability of the robot,
as the sliding foot cannot be considered anymore part of the
support polygon.

VII. CONCLUSION

A method for the imitation of whole-body motion for
humanoid robots has been presented. The contribution of this
work is to propose a complete methodology to quickly reshape
a dynamic motion demonstrated by a human expert, adapt
the dynamics of the human body to the own dynamics of
the robot and modify or edit as desired the initial motion to
introduce extra features that were not demonstrated. It allows
to build complex dynamic behaviors, based on a composition
of tasks and constraints that are used as basic bricks for
motion generation. The method was satisfactorily applied to
the imitation of dancing motion, but it can be, in general,
applied to the imitation of any type of motion. The obtained
motion is dynamically consistent, and could be directly applied
on the real humanoid robot.



(a) Joint Space (joint number 4)

(b) Task Space (X axis)

Fig. 6: Temporal evolution of the right knee

Fig. 7: Right hand evolution in the operational space (Z axis).

Fig. 8: Evolution of the ZMP with only the posture task
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