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Abstract. Collinear laser spectroscopy experiments with the Sc+ transition
3d4s 3D2 → 3d4p 3F3 at λ = 363.1 nm were performed on the 42−46Sc isotopic
chain using an ion guide isotope separator with a cooler–buncher. Nuclear magnetic
dipole and electric quadrupole moments as well as isotope shifts were determined
from the hyperfine structure for five ground states and two isomers. Extensive
multi-configurational Dirac–Fock calculations were performed in order to evaluate the
specific mass–shift, MSMS, and field–shift, F , parameters which allowed evaluation of
the charge radii trend of the Sc isotopic sequence. The charge radii obtained show
systematics more like the Ti radii, which increase towards the neutron shell closure
N = 20, than the symmetric parabolic curve for Ca. The changes in mean square
charge radii of the isomeric states relative to the ground states for 44Sc and 45Sc
were also extracted. The charge radii difference between the ground and isomeric
states of 45Sc is in agreement with the deformation effect estimated from the B(E2)
measurements but is smaller than the deformation extracted from the spectroscopic
quadrupole moments.
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1. Introduction

The scandium isotopes (Z = 21) investigated in this study lie between the Z,N = 20

and Z,N = 28 shell closures. The trends (isotopic and isotonic) of the mean square

(ms) charge radii of nuclei in this region are strongly influenced by several proton and

neutron shell closures. Data on the charge radii trend for four isotopic chains in this

region are already available covering the whole neutron f7/2 shell (calcium [1, 2, 3] and

potassium [4]) or part of it (argon [5, 6] and titanium [7]) and even extending beyond

it (Ar, K and Ca). These are displayed in figure 1. For the Ca isotopes across the

ν(1f7/2) shell, the charge radii are characterized by a pronounced symmetric parabolic

shape superimposed by a large odd–even staggering (OES) [1, 8]. This symmetry is not

reproduced by the radii behaviour of the neighbouring elements. The shape asymmetry

of the δ〈r2〉 curves for the elements with Z > 20 and Z < 20 occurs in opposite

directions: for the Ti chain (Z = 22) there is a steady increase of the charge radii

towards N = 20 [7], whereas for the chains with Z = 18, 19 the radii increase towards

N = 28 [4, 6]. The OES effect decreases away from calcium, to argon or titanium, but

is smallest for the odd–Z element potassium. Systematic measurements of the isotopes

below the N = 20 shell closure have only been made for the Ar chain and show no shell

effect at N = 20 [5, 6]. In the Ca and K chains the sequential addition of neutrons going

from the sd– to the f7/2–shells, similarly gives a smooth change of the successive ms

charge radii for the odd–N isotopes. This behaviour is in contrast with what is expected

from the global nuclear radii behaviour at neutron shell closures with N ≥ 28 [9].

Several descriptions exist [5, 10, 11] which are able to explain some of the observed

features. Nevertheless, there remain many open questions, especially about the influence

of the closed proton shell of Ca. It should be clarified whether the flattening of

the curves away from Ca is due to the increasing distance from Z = 20 or can be

ascribed to a pairing effect (odd–Z/even–Z) and whether the absence of a shell effect

at N = 20 will persist in the charge radii evolution of elements with Z > 20. A better

understanding of the charge radii peculiarities in the calcium region requires extension

of the experimental information. Of particular importance is scandium (Z = 21), one

of the odd–Z neighbours of Ca. Information on nuclear charge radii in the scandium

isotopic sequence will provide a clearer picture about the role of the proton pairing effect.

No charge radii measurements have been made prior to this work with the exception of

the stable 45Sc ground state.

Magnetic dipole and electric quadrupole moments of nuclear ground and isomeric

states can be obtained from measurements of the hyperfine structures [12]. A specific

example of interest in this context is 45Sc which—along with 43Ca and 45Ti—is

considered as an excellent example of shape coexistence between the spherical 7/2−

ground state and deformed 3/2+ isomeric structures [13, 14]. All of these provide a

discerning testing ground for microscopic model calculations. Nuclear moments of Sc

nuclei known prior to this work are summarised in reference [15].

Low production yields of scandium isotopes at conventional isotope separators, have
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Figure 1. Changes in ms charge radii versus neutron number, N , for the Ti, Ca, K
and Ar chains. Dotted lines indicate neutron shell gaps. The isotope chains have been
offset from one another for clarity.

restricted their study so far. This paper reports the first collinear laser spectroscopy

results for the radioactive scandium isotopes, 42−44,46Sc, including the 44mSc (I = 6+)

and 45mSc (I = 3/2+) isomers. Our earlier published data [16] were preliminary and

did not include the atomic calculations required to determine the ms charge radii

from the isotope shifts. The experimental work was undertaken at the University

of Jyväskylä, Finland where the pioneering development of the IGISOL (ion-guide

isotope separator on-line) facility [17] has enabled the production of radioactive beams

of scandium isotopes with sufficient yields for laser spectroscopy experiments. A

substantial improvement in the quality of the produced ion beams was achieved following

the installation of a cooler–buncher [18, 19, 20] in the beam line, thus increasing the
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sensitivity of the collinear beams method of laser fluorescence spectroscopy.

2. Experimental method

2.1. Laser spectroscopy of the stable 45Sc isotope

Preliminary off-line studies were carried out at the IGISOL facility to optimize the

spectroscopy. Stable Sc+ beam currents of ∼ 20 pA were produced from a scandium

sample at the cathode of a ∼ 500 V discharge source inside the IGISOL chamber. Four

Sc+ transitions were chosen to be studied on the grounds of their oscillator strength. The

ions were accelerated to 37 keV and Doppler tuned onto resonance with the frequency

doubled output of a laser locked and stabilized to a chosen molecular iodine absorption

line. The wavelengths and upper and lower hyperfine structure parameters: Au, Bu, Al

and Bl, of the four transitions are presented in table 1. The transition 3d4s 3D2 (67

cm−1) → 3d4p 3F3 (27602 cm−1) at 363.1 nm was chosen for the on-line experiment,

due to the better spectroscopic efficiency, sensitivity to the upper and lower state B

hyperfine parameters and also because its structure does not extend in frequency space

as much as the structures of the other three lines as illustrated in figure 2.

Table 1. Upper and lower level hyperfine parameters along with spectroscopic
efficiencies (for the strongest hyperfine component) of the four ionic transitions
investigated for the stable 45Sc isotope.

λ Lower Upper Al Bl Au Bu Efficiency

(nm) level level (MHz) (MHz) (MHz) (MHz) (photon/ion)

364.3 3D1
3F o

2 −479.9(5) −12.6(19) +368.3(3) −61.7(32) 1/29,000

358.1 3D1
3Do

1 −479.9(5) −17.6(37) +305.3(6) +16.3(36) 1/150,000

363.1 3D2
3F o

3 +507.9(1) −34.4(15) +205.7(1) −62.3(19) 1/27,000

361.4 3D3
3F o

4 +656.2(6) −43(14) +101.5(5) −81(14) 1/25,000

2.2. Measurements of radioactive scandium isotopes and isomers

Radioactive scandium isotopes were produced at the IGISOL facility by proton and

deuteron beam irradiation of a 2.1 mg·cm−2 45Sc target. A deuteron beam energy of

15 MeV and proton beam energies of 25−48 MeV with currents of 5−10 µA were used

for the production of 42,43,44,44m,45,45m,46Sc via (p,pxn) and (d,p) reactions. The nuclear

reaction products were thermalized in the IGISOL in a fast flowing jet of helium gas

at pressures of 60 − 230 mbar and were then extracted and mass separated. A radio-

frequency gas-filled quadrupole (on a high voltage platform 100 V below the IGISOL

potential) was used to cool the singly charged ion beam to reduce its energy spread

to < 1 eV [18]. The ion beam was then reaccelerated by the platform high voltage

and overlapped collinearly at the interaction region with 0.5 mW of laser light with
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Figure 2. Hyperfine structures of the 364.3 nm, 358.1 nm, 363.1 nm and 361.4 nm
lines for the stable 45Sc isotope investigated during the off-line preparation tests. Fitted
Voigt profiles are also shown.

λ = 363.1 nm. This UV wavelength was generated by intra-cavity frequency doubling

using a LiIO3 crystal in a Spectra Physics 380D dye laser running with Pyridine 2

dye. The fundamental laser frequency was stabilized to within ∼ 2 MHz and locked to

the reference frequency of a molecular iodine absorption line at 13748.191 cm−1. An

adjustable potential was applied to the laser–ion interaction region to Doppler tune

the ions onto resonance with the laser beam and the fluorescent photons were imaged

through a system of lenses onto a Hamamatsu R5900-P03-L16 photomultiplier tube.

Ions were accumulated and bunched in the cooler–buncher over a 100 ms cycle. Typically

and ion bunch contains less than ∼ 105 ions including any isobaric contaminants. A

reduction of scattered, non-resonant laser light by a factor of 1.4×10−4 was achieved by

electronically gating the photomultiplier signal for 15 µs such that photon events were

only accepted if they arrived when an ion bunch was in front of the detector [19, 20].

Scans of radioisotopes were alternated with scans of 45Sc naturally sputtered from the

target which provided an on-line test for the stability of the laser frequency and the

accelerating potential, with the differential error on the latter found to be within 0.1 V.
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Table 2. Upper state hyperfine parameters of the 43−46,44m,45mSc isotopes and isomers
measured on the 363.1 nm ionic transition.

A Iπ Au(MHz) Bu(MHz)

43 7/2− +195.8(4) −77(15)
44 2+ +189.1(4) +44(11)
44m 6+ +96.7(3) −58(24)
45 7/2− +205.7(1) −62.3(19)
45m 3/2+ +36.3(11) +78(15)
46 4+ +115.1(3) +35(4)

3. Analysis and results

3.1. Hyperfine structure and electromagnetic moments

For each scandium isotope several spectra were recorded at the same acceleration energy

and were summed. An example of the summed resonance spectra, converted to frequency

relative to the centroid of 45Sc, is shown in figure 3. The resonance peak positions were

established by fitting the data with a hyperfine structure composed of Voigt profiles,

which were found to describe most adequately the line shape. The magnetic dipole and

electric quadrupole coupling constants A and B of both lower, 3d4s 3D2, and upper,

3d4p 3F3, states were obtained from the experimental spectra using a least square fitting

procedure to the two–parameter first–order hyperfine splitting formula [21],

∆νF = A
C

2
+B

3C(C + 1) − 4I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)
, (1)

where C = F (F+1)−I(I+1)−J(J+1) and I, J , F are the nuclear, electronic and total

atomic angular momentum quantum numbers, respectively. The number of observed or

resolved lines in some cases was not sufficient to extract all of the A and B factors

of the lower and upper level independently. For this reason, the lower state hyperfine

parameters Al, Bl were scaled for all isotopes to the ratios of the A and B parameters

observed in the 45Sc ground state (Al/Au = +2.4686(13) and Bl/Bu = +0.552(29)). The

hyperfine anomaly is negligible relative to our experimental uncertainties (see e.g. [22])

and was therefore neglected in the analysis. The peak intensity ratios in the fit were

fixed to the expected hyperfine intensities as calculated from the 6J symbols.

Values of the nuclear moments—magnetic dipole (µ) and electric quadrupole (Qs)—

were deduced from the A and B factors with reference to the highly accurate nuclear

moments of the stable 45Sc isotope (see reference [15] and the references therein)

according to the relations,

µ1 =
A1I1
A2I2

µ2 and Qs1 =
B1

B2
Qs2. (2)

The moments derived from relations (2) are displayed in table 3. Their values are in

reasonable agreement with those published in the compilation of Stone [15] but provide
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Figure 3. Example of a resonance fluorescence spectrum for 44g,mSc. The fitted
structure is shown overlaid, with the separate ground state (dashed) and isomeric
(dot-dashed) components underneath. Hyperfine Fl → Fu transitions are indicated,
with isomeric components denoted with an asterisk (∗). Other spectra (not shown)
with overlapping scan regions were also taken and analyzed simultaneously. Spectra
for the other isotopes is contained in reference [16].

Table 3. Nuclear moments of the 43−46,44m,45mSc isotopes and isomers determined
from this work along with those from the compilation of Stone [15].

A Iπ µ (µN) µ (µN) Qs (b) Qs (b)
this work Ref. [15] this work Ref. [15]

43 7/2− +4.528(10) +4.62(4) −0.27(5) −0.26(6)
44 2+ +2.499(5) +2.56(3) +0.16(4) +0.10(5)
44m 6+ +3.833(12) +3.88(1) −0.21(9) −0.19(2)
45 7/2− [reference] +4.756487(2) [reference] −0.220(2)
45m 3/2+ +0.360(11) — +0.28(5) —
46 4+ +3.042(8) +3.03(2) +0.12(2) +0.119(6)

a higher precision for the magnetic moment. Both of the nuclear moments for the isomer
45mSc are deduced for the first time.

3.2. Isotope shifts

The offset in centroid frequency between the hyperfine structures of two nuclear states,

νA,A′
= νA′ −νA, is known as the isotope (or isomer) shift. All isotope and isomer shifts
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have been obtained for the first time. The isotope shift can be decomposed into the

field–shift (FS) and two terms accounting for the finite mass of the nucleus: the normal

and specific mass–shifts (NMS and SMS) where [21, 23],

δν45,A = δν45,A
FS + δν45,A

NMS + δν45,A
SMS

= Fδ〈r2〉45,A +
mA −m45

mAm45
(MNMS +MSMS) . (3)

Here, MNMS and MSMS are the normal and specific mass–shift constants, respectively,

F is the electronic factor related to the change in the electronic density at the nucleus

for the optical transition and mA is the mass of the isotope with atomic number A.

Traditionally, F has been evaluated from atomic electron shell data using either

semi-empirical procedures and/or Hartree–Fock methods for calculating the relevant

electronic density at the site of the nucleus. So far these evaluations have yielded very

consistent sets of δ〈r2〉 values throughout the nuclear chart, including a number of very

long isotopic chains [8]. The electronic factor F is given by

F = πa3
0

∆ |Ψ(0)|2

Z
f(Z), (4)

where a0 is the Bohr radius and the total electron density change can be written

∆ |Ψ(0)|2 = β |Ψ(0)|2ns . (5)

The ∆ |Ψ(0)|2 in equation 4 represents the non–relativistic change in electron density

at the nucleus between lower and upper states of the optical transition and f(Z) is a

relativistic atomic factor tabulated in [24, 25, 26]. The electron density, |Ψ(0)|2ns is for

a single ns electron and β is a factor accounting for the screening of inner closed–shell

electrons from the nuclear charge by the valence electrons.

As regards the mass–shift, the situation is considerably more complicated. The

normal mass–shift constant, given by MNMS = νme = +452.8 GHz·u, is calculated with

the transition frequency ν and the electron mass me. The specific mass–shift constant,

MSMS, accounting for correlations of the electron motion, is much more difficult to

calculate reliably. Unfortunately, scandium has only a single stable isotope and there

are no other experimental charge radii data which would allow a determination of the

specific mass–shift in a consistent way. The often used approximate technique of a

King plot [23] between the isotope shifts of one element versus the ms charge radii of a

neighbouring isotopic chain [27, 28, 29] is impossible in the case of Sc due to the lack

of correspondence between neighbouring chains.

3.3. Calculation of the specific mass–shift and field–shift parameters

A more rigorous treatment of the specific mass–shift and field–shift parameters, MSMS

and F , is obtained if the electronic structure of the atom is described as a many–electron

system. Especially for open-shell atoms and ions, the multi–configuration Dirac-Fock

(MCDF) method has been found to be a versatile tool to calculate and analyze many

different properties of such systems, from tiny-to-small level shifts due to the structure
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of the nucleus, e.g. the hyperfine and isotope shifts [30], up to the ionization and

recombination of atoms following their interaction with external particles and fields

[31]. Apart from a rather systematic treatment of the wave functions of atomic bound

states, the MCDF method enables one to deal on equal footings with the effects of

relativity and many-electron correlations.

The MCDF method has been described in detail in the literature [32]. In

this method, an atomic state is approximated by a linear combination of so-called

configuration state functions (CSF) of the same symmetry

ψα(PJM) =
nc∑

r=1

cr(α) |γrPJM〉 , (6)

where nc is the number of CSFs and {cr(α)} denotes the representation of the atomic

state in this basis. In most standard computations, the CSFs |γrPJM〉 are constructed

as antisymmetrized products of a common set of orthonormal orbitals and are optimized

together on the basis of the Dirac-Coulomb Hamiltonian. Relativistic effects due to the

Breit interaction are then added to the representation {cr(α)} by diagonalizing the

Dirac-Coulomb-Breit Hamiltonian matrix [33, 34]. The dominant QED corrections can

also be estimated within this method as well but are negligible for optical transitions

of mid–Z elements. In addition, the specific mass–shift (operator) can be taken into

account into the Hamiltonian matrix as implemented, for example, within the Relci

code [35, 36]. The field–shift due to different charge distributions of the isotopes

were taken into account by means of an extended nucleus with a two-parameter Fermi

distribution

ρ(r) =
ρo

1 + e(r−c)/a
(7)

where c is the ‘half-charge density’ radius and a characterizes the skin thickness. Since

we only aim for the field–shift parameter F , a spherical symmetric nucleus was assumed

for all isotopes, and the Fermi parameters were taken directly from Grasp92 [33].

Since the isotope shift depends on the details of the wave functions near to the

nucleus (cf. equation (4)), special care has to be taken for the generation of the

atomic states of interest, including not only valence-valence correlations but also the

polarization of the core and even core-core correlations (as far as possible). The

importance of these different classes of electronic correlations was shown for the isotope

shift of the optical 4s 2S1/2 − 4p 2P1/2,3/2 resonance transitions of singly-charged Ca+

ions by applying many–body perturbation theory [37]. In the MCDF method, these

correlations are taken into account similarly by including systematically single and

double (and possibly further) replacements of electrons from the bound into virtual

orbitals. Using such a ‘shell–model’ procedure, however, the size of the wave function

expansion, nc, often increases very rapidly and makes it necessary to first identify the

major correlations, and to restrict the computations accordingly. For a singly-charged

ion with an open d−shell, such as Sc+, this usually implies a restriction to two layers

of additional (virtual) correlation orbitals as well as a proper selection of the core-

core correlations that can be considered. Large wave function expansions of tens or



10

hundreds of thousands of CSFs are feasible today and allow for reasonably correlated

level calculations even for nearly–neutral atoms with open d− and f−shells [30, 38].

To obtain the mass- and field–shift parameters for the 3d4s 3D2 → 3d4p 3F3

transition in Sc+, a series of computations have been performed, based on the

3p63d2, 3p63d4s, 3p64s2, 3p64p2 even-parity and 3p63d4p odd-parity reference

configurations (all with a 1s22s22p63s23p6 fixed core). From these reference

configurations, all single and double excitations into the 5s, 5p, 5d and 5f shells

(5l layer) as well as into the 6s, 6p, 6d, 6f shells (6l layer) have been incorporated

successively, giving rise to maximal expansions nc ∼ 60, 000. In addition, single

excitations from the 1s, ..., 4p shells into the 5l layer were taken into account to include

the polarization of the core. While a computation with only the reference configuration

included gives rise to MSMS = −277 GHz·u and F = −274 MHz·fm−2, and thus

to a rather unphysical value of the specific mass–shift, the core–polarization to the

reference configurations is enough to reverse the sign to MSMS = +290 GHz·u. However,

only a further stepwise increase of the size of the wave functions allows a reasonable

convergence of the mass– and field–shift parameters to be monitored. Although no

complete convergence (with regard to an arbitrary further increase in the size of the wave

functions) could be obtained, we estimate from the various steps of the computations

an uncertainty of about 25 % for the specific mass–shift and 15 % for the field–shift,

MSMS = + 130(30) GHz · u (8)

F = − 355(50) MHz · fm−2 . (9)

These ‘uncertainties’ were estimated from further test computations concerning different

core-core correlations as well as the (incomplete) incorporation of a third correlation

layer.

3.4. Isotopic and isomeric charge radii changes

The values of δ〈r2〉 have been derived using the values for the electronic factor and

specific mass–shift obtained in the previous section (see equations (8) and (9)). The

data are compiled in table 4 and shown in figure 4. An uncertainty on the specific mass

shift of 25%, dominates the error causing a pivoting about the reference isotope (see

figure 4). The relatively small uncertainty on F only scales the final values of δ〈r2〉. As

can be seen, the systematic errors affect only the overall scale of the charge radii and

do not influence the relative effects between the isotopes. Note that ms charge radii

changes between ground and isomeric states depend only on F and are not affected by

the uncertainty in MSMS.
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Table 4. Scandium isotope and isomer shifts, δνA,A′
= νA′−νA, measured on the

363.1 nm ionic transition, separate mass shift and field shift components, and the
extracted ms charge radii, δ〈r2〉A,A′

exp = 〈r2〉A′ − 〈r2〉A. All ground state values are
with respect to A = 45, and isomeric state values are quoted with respect to the
corresponding ground state. The errors quoted in parenthesis are statistical and
those in square brackets represent the systematic errors arising from uncertainties
in the scaling factors F and MSMS. For comparison, δ〈r2〉A,A′

SM , from the shell–model
calculations of this work are included.

A A′ δνA,A′
(MHz) δνA,A′

MS δνA,A′

FS δ〈r2〉A,A′

exp (fm2) δ〈r2〉A,A′

SM (fm2)

45 42 −985(11) −924 −61 +0.172(31)[136] −0.076
45 43 −631(5) −602 −29 +0.082(14)[88] −0.026
45 44 −287(4) −294 +7 −0.019(11)[43] −0.014
44 44m +25(4) 0 +25 −0.070(11)[10] −0.041
45 45 0 0 0 0 0
45 45m −66(2) 0 −66 +0.186(6)[26] +0.068
45 46 +336(3) +282 +54 −0.152(8)[46] −0.016

4. Discussion

4.1. Nuclear charge radii

4.1.1. Radii changes and deformation of 45g,mSc.

Among the investigated nuclei, 45Sc deserves closer attention. It belongs to the several

odd–A nuclei from the lower f7/2 shell, e.g. 43Ca, 43,45,49Sc, 45Ti, and 47,49V, showing

evidence of collective behaviour as regular rotational–like bands are formed from their

low lying positive–parity isomeric states, Iπ = 3/2+. The latter result from the coupling

of the valence fp nucleons and particle–hole excitations across the Z = N = 20 shell

closure. The level schemes of 45Sc have been studied experimentally [13, 14, 40, 41, 42]

and theoretically [43, 44]. It is suggested that the negative–parity ground state indicates

a spherical structure, while a rotational–like band is formed upon the Iπ = 3/2+, 12 keV

intruder level in 45mSc. Therefore, the case of 45Sc is a good example of shape coexistence

of spherical and prolate–deformed structures.

The mean–square quadrupole deformation, 〈β2
2〉, can be calculated using the

reduced B(E2) values between states of spin Ii and If (deduced from reference [13])

using the expression

〈β2
2〉 =

(
4π

5Ze〈r2〉sph

)2

B(E2 : Ii → If). (10)

The nuclear size is given most adequately by the droplet model [45] value of 〈r2〉sph =

12.366 fm2 and is for a spherical nucleus of the same volume (calculated using the

parameters of reference [46]). For the isomeric state, the deformation is averaged

over the rotational band and 〈β2
2〉(45mSc)= 0.052(4) is obtained for the ms quadrupole

deformation. The ground state is approximately spherical and it is assumed that

〈β2
2〉(45gSc) ≈ 0.
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Figure 4. Neutron number dependence of the 42−46Sc charge radii. Experimental
data are denoted by full circles and the error bars represent statistical errors; the two
enveloping lines indicate the effect of the specific mass shift uncertainties of 25%. The
dashed line represents a fit to the Zamick formula [39].

Using the relation,

δ〈r2〉g,m = 〈r2〉ss.sph
5

4π

[
〈β2

2〉(45m) − 〈β2
2〉(45)

]
, (11)

where 〈r2〉ss.sph = 9.426 fm2 [46] is for an equivalent sharp-surfaced spherical nucleus,

an estimate of δ〈r2〉45g,m = +0.195(15) fm2 can be made from the B(E2) value. This

compares favourably with the experimental value of δ〈r2〉45g,m = +0.186(26) fm2.

An alternative approach is to use the 〈β2〉 values derived from the spectroscopic

quadrupole moments. For the well defined rotational band of 45mSc we assume that the

projection formula

Q0 =
(I + 1)(2I + 3)

I(2I − 1)
Qs (12)

is valid. With Qs(
45mSc) from table 3, it follows that Q0(

45mSc) = +1.38(27) b. Using

the relation

Q0 ≈
5Z〈r2〉sph√

5π
〈β2〉 (1 + 0.36〈β2〉) , (13)

the mean deformation is calculated as 〈β2〉(45mSc)= +0.374(73). If a similar attempt

is made for the ground state, a value of Q0(
45gSc) =-0.47(2) b may be deduced from

the spectroscopic quadrupole moment, corresponding to a deformation of 〈β2〉(45gSc)=



13

−0.154(7). From these values and equation (11), assuming 〈β2
2〉 = 〈β2〉2, the estimated

change in ms charge radii, δ〈r2〉45g,m = +0.43(20) fm2, is higher than the experimental

value of δ〈r2〉45g,m = +0.186(27) fm2. This is a striking feature which remains

unexplained.

While both B(E2) and δ〈r2〉 measurements have a dependence on the deformation

in mean–square form, 〈β2
2〉, the spectroscopic quadrupole moment is dependent on 〈β2〉.

The discrepancy between 〈β2
2〉 and 〈β2〉2 is often used to infer β-softness [29], since

only the former contains information on the dynamic as well as static components of

the deformation. However, in this case, the rms deformation appears less than the

mean deformation for the isomeric state. This indicates a breakdown of the collective

rotational model on which equation (13) is based. Nevertheless, from a direct comparison

of the quadrupole moments, the Qs–derived value of Q0(
45mSc) = +1.38(27) b is twice

as large as Q0(
45mSc) = 0.746(30) b, the average calculated from the B(E2) values [13].

4.1.2. Nuclear radii trends in the neutron f7/2 shell.

The present investigation of nuclear radii changes along the scandium isotopic chain

complements the published results [6, 7, 9] on nuclear radii behaviour in the f7/2

shell. This is illustrated in figures 5 and 6 where the absolute rms nuclear radii

values, R = 〈r2〉1/2, are presented in terms of N and Z, respectively. The R–

values for the Ar, K, Ca, Ti and Cr isotopes are taken from the recently published

consistent sets of rms radii [47] (see also reference [9]). Absolute rms charge radii

for the investigated Sc isotopes are derived using as a reference the updated value of

R(45Sc) = 3.5459(25) fm [48] and the error takes into account the model uncertainties.

As can be seen from figure 5, adding the new data on Sc isotopes to the isotopic

radii trend in the f7/2 shell one obtains a consistent picture: no unreasonable crossing

of the isotopic course of the nuclear radii between different elements is observed. More

importantly, the shape of the Sc curve shows a steady increase towards N = 20 similar

to Ti and unlike that of Ca. This is also in contrast with the lower–Z elements Ar and

K for which the radii decrease towards N = 20. The odd–even staggering along the Sc

isotopic curve—especially on the neutron deficient side—is essentially smaller than for

the even–Z neighbours of Sc, as is the case for K (see e.g. reference [6]).

The isotonic trend of nuclear charge radii displayed in figure 6 refers to the even

neutron numbers. Unfortunately, the isotonic curves cover the whole Z region from Ar

to Ti only for N = 22 and N = 24. A normal proton odd–even staggering effect is

observed for K at Z = 19 and for Sc at Z = 21. This effect is associated with the

reduction of core polarization due to unpaired protons.

As shown and discussed in reference [6], a suitable approach for describing the

behaviour of the charge radii across the f7/2 shell is the Zamick-Talmi formula [39, 49],

δ〈r2〉20,20+n = nC +
n(n− 1)

2
α +

[
n

2

]
β, (14)

where n is the number of neutrons above the N = 20 shell closure and [n/2] = n/2

for even n and [n/2] = (n − 1)/2 for odd n. According to reference [39] the parameter
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Figure 5. Isotopic dependence of rms nuclear charge radii in the f7/2 shell.

C expresses the one-body part of the effective charge radius operator, α includes the

two-body part and β accounts for the odd–even effects. Equation (14) was derived for

the ms charge radii of nuclei with only neutrons (or only protons) outside of a closed

shell. Nevertheless, it has often been empirically generalised (see eg. reference [50])

and used to fit the trends of radii in other isotope chains. In our case the parameters

C = −0.18(1) fm2, α = 0.015(28) fm2 and β = 0.16(8) fm2 have been determined by a

fit to the radii of 42−46Sc and the fitted curve is shown in figure 4. The Zamick-Talmi

formula reproduces well the radii evolution in the case of scandium and thus confirms

the general picture of nuclear radii in the f7/2 shell, including the elements from Z = 18

to Z = 22. According to equation (14), the slope of the radii curves is determined by

the parameter C, connected to the sign of the one–body part of the effective charge

radius operator. This parameter is nearly zero for Ca and changes sign in the transition
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Figure 6. Isotonic dependence of rms nuclear charge radii in the f7/2 shell.

from Z < 20 to Z > 20 (compare our result with those in table 4 of reference [6]).

Adding the second and third terms of equation (14) which implicitly contain collective

effects like static and dynamic nuclear deformation the trend is changed from a nearly

linear dependence to a structure very similar to the experimental one. However, model

predictions are necessary for a quantitative description of the observed radii behaviour.

Although there are a large number of theoretical works which deal with different

nuclear parameters, including deformation and charge radius, there is no single adequate

theoretical approximation explaining even qualitatively the peculiarities of the charge

radii trend over the whole Ca region. The predicted isotopic variation of the charge

radii is usually featureless (see e.g. [11, 51]). Several approaches exist which are able

to explain some of the observed features. For example, the calculations based on the

Hartree–Fock method with Skyrme interactions [5, 6] predict the general trend of the

Ar charge radii in the sp and fp shell. The shell–model calculations of Caurier et al. [10]

using cross–shell proton–neutron correlation are the best description of the charge radii

trend for the Ca isotopes. In the case of Ti a continual increase in the charge radius

going from N = 28 to the N = 20 shell closure is qualitatively predicted by the self–

consistent RMF approach [11, 52]. However, the RMF theory makes no predictions for

odd–Z or odd–N nuclei, thus providing no information on the pronounced odd–even

effects in N and Z.

Once again we note that the isotopic behaviour in the νf7/2 shell around the proton

shell closure Z = 20 is very unusual compared with the data collected for the shell
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closures N = 50, 82 and 126 in the neighbourhood of Z = 50 and 82 [9]. In the latter

cases the overall slope of the isotopic curves as well as the neutron shell–effect (kinks at

the magic neutron number) are nearly unaffected by the proton number. This is already

pointed out in reference [6] assuming that the different nature of the shell closures and

the proton number dependence of the neutron shell gaps for N = 20 and N = 28 in the

neighbourhood of Z = 20 are responsible for such an exceptional situation. This is so

far an open question and a challenge for the theory.

4.1.3. Theoretical estimates. Table 4 and figure 7 report shell–model results for the

shifts of all the Sc isotopes considered here. Following reference [10], we performed

unrestricted diagonalizations in the (s1/2, d3/2, f7/2, p3/2) model–space using the

ANTOINE code [53, 54] and employed the “zbm2.renorm” interaction from the code’s

package [55]. The shifts were determined by comparing the occupations of protons

promoted to the fp shell by correlation effects and assuming harmonic oscillator wave

functions. A constant oscillator length of b=1.974 fm was taken as an average of the

optimal values of all the isotopes.

We have checked that the present calculations reproduce well the Ca shifts of

reference [10], as shown in the lower panel of figure 7. In spite of this, the results

are noticeably worse for Sc isotopes, with the measured charge radii decreasing with the

neutron number and the overall trend not being reproduced. The relative shifts with

respect to 45gSc are correct for 45mSc and the two 44Sc, 44mSc. As one can see from

figure 7 the magnitude of the shifts, whether having the correct sign or not, is always

underestimated, with the only exception of 44Sc. This suggests that the zbm2.renorm

interaction does not lower the gap at Z = 20 properly for Sc and so underestimates the

amount of excitations across the sd and pf shells.

4.2. Nuclear moments

To better understand the behaviour of the zbm2.renorm interaction, we calculated the

magnetic and quadrupole moments in both a 0h̄ω model–space (i.e. with no cross

shell excitation allowed) and the fully unrestricted model–space, listed in tables 5 and

6. For the full model–space case, the predicted quadrupole moments deviate largely

from the experiment and show that one misses a correct description of deformation and

charge radii even when all admixtures of np-nh are allowed. We note that the predicted

quadrupole moments are sensibly better for the 0h̄ω calculation. This is not unexpected

since the zbm2 interaction is based on the SDPF-NR one, which was originally developed

to be used only in model–spaces without excitations of nucleons from the sd to the fp

orbits. Some modifications needed to apply the zbm2 interaction in the unrestricted

space are discussed in reference [56] taking rotational bands as an example. There,

it is argued that these lead to a degradation of the quality of quadrupole moments,

in accordance with our finding in tables 5 and 6. On the other hand, full cross shell

excitation are an essential mechanism underlying isotope shifts and need to be considered
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Figure 7. Comparison of experimental Ca and Sc ms charge radii with theoretical
estimates performed as part of this work.

in the present case [10].

It remains clear that the development of effective interactions appropriate to study

excitation across the sd and pf shells is still an open question in shell–model theory [58].

In order to understand properly the shifts in the Sc region one might require further

improvements of the SDPF or zbm2 interactions but this is beyond the scope of the

present investigation.

The electromagnetic moments of the 43−46,44mSc isotopes have also been discussed

within the framework of shell–model calculations for the fp shell by van der Merwe

et al. [57]. Their model assumes a 40Ca core and a model–space which consists

of configurations 0fn
7/2 + 0fn−1

7/2 (1p3/20f5/21p1/2)
1. Effective g-factors (gs

π = +5.031,

gs
ν = −3.041, gl

π = +1.000 and gl
ν = 0) and effective charges (eπ = +1.486 and
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Table 5. Nuclear magnetic dipole moments, µ, obtained in this work (calibrated using
the value for 45Sc [15]) compared with shell–model predictions of this work (using the
same interaction employed for calculating the isotope shifts and the effective g–factors
gπ

l = +1, gν
l = 0, gπ

s = +5.031, gν
s =-3.041) and calculations of reference [57].

A Iπ µ (µN) µ (µN) µ (µN) µ (µN)
(experimental) (theoretical [57]) (0h̄ω) (unrestricted space)

43 7/2− +4.528(10) +4.687 +0.491 +4.403
44 2+ +2.499(5) +2.532 +2.585 +1.435
44m 6+ +3.833(12) +3.831 +4.081 +3.597
45 7/2− +4.756487(2)† +4.728 +4.390 +4.878
45m 3/2+ +0.360(11) — — +0.297
46 4+ +3.042(8) +2.974 +3.263 +2.266

† reference value [15]

Table 6. Nuclear spectroscopic quadrupole moments, Qs, obtained in this work
(calibrated using the value for 45Sc [15]) compared with shell–model predictions of
this work (using the same interaction employed for calculating the isotope shifts and
the effective charges eπ = +1.486, eν = +0.840) and calculations of reference [57].

A Iπ Qs (b) Qs (b) Qs (b) Qs (b)
(experimental) (theoretical [57]) (0h̄ω) (unrestricted space)

43 7/2− −0.27(5) −0.2300 −0.1937 −0.1534
44 2+ +0.16(4) +0.0545 +0.0322 −0.0664
44m 6+ −0.21(9) −0.2648 −0.2378 −0.0399
45 7/2− −0.220(2)† −0.2550 −0.1948 −0.1198
45m 3/2+ +0.28(5) — — +0.2055
46 4+ +0.12(2) −0.0246 −0.0363 −0.0757

† reference value [15]

eν = +0.840) were used in reference [57] to compensate for the configurations excluded

by the model–space. The calculated electromagnetic moments are listed in tables 5

and 6 and it can be seen that the predictive power of these calculations is excellent for

the magnetic moments. The experimental value of µ(45mSc)= +0.360(11) µN lies well

above the single–particle magnetic moment +0.126 µN of the d3/2 proton and reflects

the mixed structure of this isomeric state.

Conclusions from a comparison between theory and experiment are more qualitative

for the quadrupole moments than for the magnetic moments. There are two reasons for

this: (i) the E2 matrix elements are more complicated than those for the M1 operator,

because they require explicitly the radial wave function, and (ii) the experimental

values of the quadrupole moments have larger errors, and often the absolute calibration,

depending on the atomic properties, is subject to uncertainties of about 10%. For 46Sc

the theoretical prediction from reference [57] for the spectroscopic quadrupole moment

is close to zero, while in the remaining cases the measured spectroscopic quadrupole

moments follow at least the predicted trend of the sign. A close agreement is achieved



19

in the case of 45Sc, where a spectroscopic quadrupole moment ofQs =-0.217 b is obtained

in reference [43] by the modified (kb5) Kuo–Brown interaction. Calculations performed

in this work predict a quadrupole moment for the 45mSc isomer which is in reasonable

agreement with the experimental value, although underestimated (as is the ms charge

radius).

5. Conclusion

Laser spectroscopy has been performed on 42,43,44,44m,45,45m,46Sc revealing the nuclear

moments and ms charge radii. The latter show an increase with decreasing

neutron number and a reduction in odd–even staggering relative to the even–Z

neighbouring chains. Shell–model calculations were performed and a comparison with

the experimental values highlights the need to improve the effective interaction used.

The data obtained in the present work complement the nuclear radii systematics

in the f7/2 shell for elements around Z = 20. However, to achieve a full picture

of the nuclear properties in this (Z,N) region the experimental information needs

to be extended still further. Of great importance is the continuation of the optical

investigations of Sc and Ti isotopes toward and beyond the shell closures at N = 20

and N = 28. Information obtained on nuclear radii and moments for isotopes far from

stability and around neutron magic number provide a stringent test of the available

theoretical models.
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