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1. Introduction

Lanczos algorithm [1, 2] is widely adopted in several branches of physics and other

disciplines for diagonalizing large size matrices. Its many implementations in nuclear

structure are devoted to the shell model (SM) eigenvalue problem.

Among them, some codes adopt a basis of states projected in spin (or spin-

isospin) (j − j-scheme) [3, 4, 5, 6] so as to deal with Hamiltonian matrices of relatively

small dimensions. These matrices, however, are very dense and require lengthy and

cumbersome calculations of fractional parentage and recoupling coefficients.

Other adopt the unprojected m-scheme. In such a basis, the Hamiltonian matrix,

though of much larger dimensions, has a far simpler structure and is sparse. Both

properties are fully exploited in the powerful Antoine code [3, 4].

Alternative to Lanczos is the shell model Monte Carlo (SMMC) [7], which avoids

the diagonalization of the Hamiltonian matrix by adopting a Monte Carlo technique to

evaluate expectation values and strength functions. The SMMC, however, is not suited

for computing spectra and has to face the sign problem which has not found a clear-cut

solution yet.

The MC technique is used in the quantum Monte Carlo diagonalization (QMCD)

method [8, 9] just to generate stochastically a truncated basis. This is then used

to diagonalize the Hamiltonian. Specific projection methods had to be developed in

order to restore the angular momentum and other symmetries, broken by the stochastic

sampling. The QMCD was adopted for systematics, especially in the (p, f) region.

Another technique for truncating the basis is provided by the density matrix

renormalization group (DMRG) [10], borrowed from condensed matter [11], based on

a partitioning of the full space into smaller subspaces. This method seems to be well

suited to schematic Hamiltonians. When applied to shell model, it seems to work better

in the coupled scheme [12].

Coming back to Lanczos, its numerical implementation deserves special care in

order to avoid numerical errors, whose propagation, during the iterative process, may

yield ”ghost” states.

Few years ago [13, 14], we proposed an iterative algorithm, alternative to Lanczos,

which is free of instabilities and of easy implementation. It is also endowed with an

importance sampling, which achieves a truncation of the basis. The algorithm was

implemented in the coupled j-scheme only, which is too time consuming in the iterative

construction of the Hamiltonian matrix. Here, we adopt the m-scheme and elaborate

an efficient variant of the method which promises to be considerably more competitive.

Its performance will be illustrated through some numerical examples.

The algorithm is as general as Lanczos and, therefore, is not bound to nuclear

structure. It may be used in other fields of physics and outside of the realm of physics.
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2. The algorithm

The algorithm has been described in Refs. [13, 14]. We give here a brief outline. Let us

consider a matrix A = {aij} representing a self-adjoint operator Â in an orthonormal

basis {| 1〉, | 2〉, . . . , |i >, . . . , | N〉}. The algorithm consists of several iteration loops.

The first loop goes through the following steps :

a) Pick up the lowest n0 basis states |i > (n0 << N), construct and diagonalize the

n0 × n0 submatrix A0 = (aij),

b)select the lowest v eigenvalues Λ0 ≡ {λ
(0)
1 , . . . , λ

(0)
k , . . . , λ(0)

v } and the corresponding

eigenvectors

| ϕ
(0)
k 〉 =

n0
∑

i=1

c
(0)
i | i〉, (1)

c) consider the subspace spanned by these v eigenvectors | ϕ
(0)
k 〉 plus the basis states

|j > = |n0 + 1 >, . . . |n1 > and construct the new submatrix

A1 =

(

Λ0 B01

B10 C1

)

, (2)

composed of the diagonal block Λ0 ≡ {λ
(0)
k } plus C1 = {aij} (i, j = n0 +1, n1). The two

blocks are coupled by B01 and its transpose, composed of the updated matrix elements

b
(0)
kj = 〈ϕ

(0)
k | Â | j〉 (k = 1, v), (j = n0 + 1, n1),

d) diagonalize A1, extract the new lowest v eigenvalues Λ1 ≡ {λ
(1)
k } (k = 1, v) and

eigenvectors | ϕ
(1)
k 〉, and use them plus the basis states |j > (j = n1+1, n2) to construct

a new submatrix A2 just as done in c).

The iterative procedure is now clearly outlined and can be illustrated by the

following sequential operations

A0 =⇒ Λ0 −→ A1 =

(

Λ0 B01

B10 C1

)

=⇒ Λ1 −→ . . .

−→ An =

(

Λ(n−1) B(n−1)n

Bn(n−1) Cn

)

=⇒ Λn = Λ. (3)

The first iteration loop goes on until the basis is exhausted, yielding the approximate v

eigenvalues and eigenvectors

E
(1)
k ≡ λ

(n)
k , | ψ

(1)
k 〉 ≡| ϕ

(n)
k 〉 =

N
∑

i=1

c
(n)
k (i) | i〉. (4)

These v eigenvectors |ψ
(1)
k > added to the original basis states {| i〉} are the entry

for a new iteration loop. Since these states form a non orthogonal redundant basis, we

solve a generalized eigenvalue problem and adopt the Choleski decomposition method to

eliminate any redundancy. Apart from this modification, the subsequent iteration loops

proceed as the first one and generate a sequence converging to the exact eigensolutions

[13]

{E
(r)
k , ψ

(r)
k }

r→∞

−→ {Ek, ψk}. (5)
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As proved and illustrated through typical numerical tests [13], the algorithm is robust,

being numerically stable and converging always to the extremal eigenvalues. It yields

ghost-free solutions and is also of easy implementation.

It requires O(N2) operations. In fact we needN operations to compute the updated

matrix element b
(n−1)
kj = 〈λ

(n−1)
k | Â | j〉 (k = 1, v). For sparse matrices with an average

number L of non zero matrix elements, the required number of operations grows linearly

with N .

3. Implementation of the algorithm in the m-scheme

Let Â be a SM Hamiltonian H of a nucleus with p valence nucleons. These are supposed

to be described by the basis states |i >= |α1, . . . αi, . . . , αp >, where αi = aimi are the

quantum numbers of a particle in the shell ai = {niliji}. The states |i > have the total

magnetic quantum number M = m1 + . . .mi + . . .mp.

It is advantageous to adopt the modified Hamiltonian

HJ = H + c[J2 − J(J + 1)]2, (6)

where J is the total spin operator, J a given integer (or half-integer), and c a positive

constant.

The full space can be thought to be decomposed into several subspaces

H = H0 ⊕H1 . . .⊕Hk . . .⊕HF . (7)

Each subspace Hk is composed of a set of partitions {ni}k = {an1

1 , . . . a
ni

i , . . .}k, where
∑

i ni = p. It is, therefore, invariant with respect to J. The partitions in Hk differ from

those in Hk−1 by at most two single particle shells ai.

We proceed according to the following iterative scheme

H0 ⇒ Λ0 −→ Λ0 ⊕H1 ⇒ Λ1 −→ . . . −→ ΛF−1 ⊕HF ⇒ ΛF . (8)

We, namely, diagonalize the Hamiltonian HJ in H0 obtaining v lowest eigenvalues

E
(0)
1 , . . . , E(0)

v and eigenvectors ψ
(0)
1 , . . . , ψ(0)

v spanning a subspace Λ0. These

eigensolutions are exact in this subspace and have all the same spin J if the constant c

is chosen so as to push the states with J ′ 6= J up in energy.

Because of its two-body nature, the Hamiltonian couples the subspace Λ0 to H1

only. We therefore diagonalize HJ in the subspace Λ0 ⊕ H1 to generate new updated

eigenvalues E
(1)
1 , . . . , E(1)

v and eigenvectors ψ
(1)
1 , . . . , ψ(1)

v , defining the subspace Λ1. We

proceed iteratively. Once the updated eigensolutions defining the subspace Λk are

obtained, we diagonalize the Hamiltonian in the upgraded subspace Λk ⊕ Hk+1. We

cover eventually the full space obtaining the exact v eigensolutions {Ei, ψi}.

By exploiting the sparsity of the Hamiltonian matrix, the above procedure allows

to reduce the number of operations to O(N), as in Lanczos implementations. This,

however, may not be sufficient for spaces of very large dimensions. It is therefore useful

to search for a reliable way of cutting the basis. To this purpose, the original sampling

procedure [14] has been modified and adapted to the m-scheme.
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Table 1. Single proton particle and single neutron hole energies (in MeV).

(nlj)p 2d5/2 1g7/2 2d3/2 3s1/2 1h11/2

ǫp 0.00 0.2 2.2 2.3 2.9

(nlj)−1
n (2d3/2)

−1 (1h11/2)
−1 (3s1/2)

−1 (2d5/2)
−1 (1g7/2)

−1

ǫn 0.00 0.14 0.33 1.65 2.43

Let us fix a sequence of positive small numbers of decreasing values ǫ1 > . . . ǫk >

. . . > ǫF . Having generated the lowest v eigenvectors ψ
(0)
1 , . . . , ψ(0)

v in H0, we proceed

following the same scheme (8) of the exact case with one constraint: In going from Hk−1

to Hk, we pick up only the basis states |j > that fulfill the condition

| < j|HJ |ϕ
(k−1)
i > |2

ajj − E
(k−1)
i

> ǫk. (9)

More specifically, in the first step (k = 1), the above condition selects a set of states

{|j >} forming a subspace H
(ǫ1)
1 ∈ H1. The eigenvalue problem is thus solved in

Λ0 ⊕H1(ǫ1) yielding new v eigensolutions E
(1)
k (ǫ1), ψ

(1)
k (ǫ1) defining the subspace Λ

(ǫ1)
1 .

We now explore the full subspace complementary to H0 ⊕ H1(ǫ1) and select all the

states |j > that fulfill the condition (9) with ǫ2 replacing ǫ1. The states so selected

span a subspace H
(ǫ2)
2 ∈ H0 ⊕H1 ⊕H2. The above procedure is iterated with updated

eigensolutions and decreasing sampling values ǫk until the full space is covered.

A sketch of the sampling procedure is provided by the following sequence

H0 ⇒ Λ0
ǫ1−→ Λ0 ⊕H

(ǫ1)
1 ⇒ Λ

(ǫ1)
1

ǫ2−→ . . .
ǫF−→ Λ

(ǫF−1)
F−1 ⊕H

(ǫF )
F ⇒ Λ

(ǫF )
F .(10)

Clearly, we get the exact solutions for ǫF → 0, namely limǫF→0 Λ
(ǫF )
F = ΛF , or, more

explicitly,

lim
ǫF→0

{Ei(ǫF ), ψi(ǫF )} = {Ei, ψi}. (11)

Few remarks are mandatory. Like the algorithm sketched in Section 2, the sampling

procedure is extremely stable. It yields, indeed, orthonormal eigenfunctions. These, at

each step, result from the diagonalization of a symmetric submatrix. The subspaces

selected by the sampling are not strictly invariant with respect to J. The invariance,

however, is restored as the sampling value ǫ becomes sufficiently small. We will show,

in fact, that all sampled eigenstates reach soon a good J .

The just outlined sampling process reminds of the DMRG [10]. In both approaches,

in fact, one starts with a subspace of small dimensions n0 and then goes through several

steps consisting of enlarging the space and, then, going back to a restricted space of the

original dimensions n0 spanned by updated eigensolutions. There are crucial differences,

however. Ours is based on a new diagonalization algorithm. Moreover, in our case the

space truncation is achieved by updating both energies and wavefunctions, while in the

DMRG it is based on prescriptions imposed on the wave functions (density matrix).
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Figure 1. Convergence rate of the lowest J
π = 0+ and J

π = 2+ eigenvalues in 132Xe.

4. Numerical implementation and results

We applied the sampling algorithm to 132Xe and 130Xe. These nuclei are supposed to be

near the transition point from a vibrational to a γ-soft structure and are being object

of experimental investigations [15].

The model space includes the shells {2d5/2, 1g7/2, 2d3/2, 3s1/2, 1h11/2} for both

valence neutrons and protons. The dimensions of the resulting Hamiltonian matrix are

N ≃ 3.7 × 107 for 132Xe and N ≃ 0.8 × 109 for 130Xe.

It is advantageous to describe the above isotopes in terms of valence proton particles

external to a Z = 50 core and neutron holes referredl to a N = 82 core. The single

particle energies are shown in Table 1. The neutron hole energies were deduced from

the spectrum of 131Sn, while the proton particle energies were taken from Ref. [14].

A renormalized G matrix [16] derived from the CD-Bonn potential [17] was taken

as a two-body interaction. The E2 transitions were computed using the effective charges

ep = 1.5 and en = 0.7 for protons and neutrons, respectively.

The first task consisted in choosing the initial subspace H0. Its dimensions n0

increase with the number of eigenstates of good J we intend to generate. To yield up

to ten eigenstates, the space dimensions came out to be of the order n0 ∼ 100. Having

chosen H0, we applied the iterative sampling procedure (10) with decreasing values of

ǫk. Each ǫk determines uniquely the dimension nk of the Hamiltonian matrix to be
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Table 2. Convergence rate of the absolute energies (in MeV) in 130Xe and 132Xe.

132Xe Jπ = 0+ Jsamp (n/N)k

0.0 81 0.219 0.290 0.372 0.463

0+
1 0.0005 Ek = -41.138 -41.201 -41.209 -41.213 -41.215

0+
2 0.0004 Ek = -39.857 -39.912 -39.918 -39.922 -39.924

Jπ = 2+ Jsamp (n/N)k

0.086 0.166 0.223 0.293 0.374

2+
1 2.0002 Ek = -40.273 -40.329 -40.343 -40.351 -40.356

2+
2 2.0001 Ek = -39.720 -39.774 -39.786 -39.794 -39.799

130Xe Jπ = 0+ Jsamp (n/N)k

0.011 0.018 0.029 0.045 0.067

0+
1 0.012 Ek = -59.141 -59.273 -59.369 -59.435 -59.481

0+
2 0.012 Ek = -57.942 -58.074 -58.167 -58.229 -58.272

Jπ = 2+ Jsamp (n/N)k

0.013 0.021 0.034 0.053 0.079

2+
1 2.002 Ek = -58.365 -58.517 -58.621 -58.692 -58.740

2+
2 2.002 Ek = -57.699 -57.866 -57.994 -58.082 -58.144

diagonalized.

In the case of 132Xe, the iterative procedure was carried out so as to include up

to 40% ÷ 50% of the basis states. As shown in Fig. 1, about 10% of the basis states

is enough to lead the Jπ = 0+ and Jπ = 2+ eigenvalues to convergence. Indeed, the

Jπ = 0+ absolute energies Ek decrease by less than 80 keV in going from n/N ∼ 0.08

to n/N ∼ 0.46 ( Table 2). The spectrum converges even faster. Indeed, the energy

difference E(0+
2 ) − E(0+

1 ) changes by ∼ 10 keV when we move from n/N ∼ 0.08 to

n/N ∼ 0.46.

The same convergence rate is found for the levels of 130Xe (Figs. 2 and Table

2). Indeed, the fraction of states considered (7% ÷ 8%) is enough to bring the energy

eigenvalues to the plateau. On the ground of the analysis made for 132Xe, the energies

obtained here may differ from the asymptotic values (n/N = 1) by at most 100 keV or

by 10 ÷ 20 keV, when referred to the ground state.

All the corresponding eigenstates have good J . As shown in Table 2, even with 7%÷

8% of the basis states, the J values coincide with the exact ones up to the second or third
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Figure 2. Convergence rate of the lowest J
π = 0+ and J

π = 2+ eigenvalues in 130Xe.

decimal digit. Thus, although the subspaces selected according to the sampling criterion

(9) are not strictly J-invariant, the invariance is eventually restored by a relatively small

fraction of basis states. Apparently, the components left out by the sampling are small

and of little relevance to all observables.

This statement is supported by the good convergence of the E2 transition strengths.

In 132Xe, the E2 strengths reach their saturated values for n/N ∼ 0.1. In going from

n/N ∼ 0.08 to n/N ∼ 0.46, the strengths increases from B(E2) ∼ 694 e2fm4 to

B(E2) ∼ 708 e2fm4, a ∼2% increment. The same convergence rate is obtained for

the B(E2) values in 130Xe. The values obtained for n/N ∼ 0.08 may be smaller than

the asymptotic one by ∼ 2% ÷ 3%.

The good convergence of the angular momentum J and the B(E2) probes the

accuracy of the sampled wavefunctions.

Being interested in illustrating the method, we have refrained ourselves from making

any comparison with experiments. We may only say that the computed levels and

transition strengths are not far from the corresponding measured quantities [15]. By

few small changes, like a better tuning of the single particle energies, the calculation

should be able to provide a satisfactory description of the low-energy spectroscopic

properties of these two important Xe isotopes.
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Figure 3. Convergence properties of the E2 reduced strengths.

5. Conclusions

From the present analysis we may conclude that the new m-scheme implementation

of the algorithm allows to take advantage of the sparsity of the Hamiltonian. The

importance sampling, combined with sparsity, enhances the convergence of the iterative

process leading to an effective truncation of the basis.

The algorithm is able to generate an almost arbitrary number of extremal

eigenstates for a given Jπ and, therefore, can describe spectra of great complexity.
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All these eigenstates are automatically orthonormal and have good J values.

Its stability is to be pointed out once again. Indeed, the iterative procedure reaches

convergence, independently of the subspace we start with.

As the sizes of the Hamiltonian matrix become too large, the time required to

perform the iterations becomes too long, at least on a desktop. On the other hand, the

smooth monotonic behavior of energies and transition strengths versus n/N allows to

make reliable and straightforward extrapolations to their asymptotic values (n/N = 1).

If we stick on a desktop, the extrapolation may allow to treat nuclei, like 128Xe,

at most. In order to go further, we need to develop a parallel version of the code and

explore if and to what extent its performance is enhanced.
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