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Radiative corrections to electron-pion scattering
revisited

N. Kaiser

Physik-Department T39, Technische Universität München, D-85747 Garching, Germany

Abstract

We calculate in closed analytical form the one-loop radiative corrections to electron-
pion scattering e−π− → e−π−. Concise expressions (in terms of dimensionless Mandel-
stam variables) are given for the pertinent interference terms between the tree diagram
and the one-loop diagrams related to photonic vertex correction, vacuum polarization
and two-photon exchange. Infrared finiteness of these virtual radiative corrections is
achieved (in the standard way) by including soft photon radiation below an energy cut-
off λ. We evaluate the finite part of the soft photon correction factor in the center-of-mass
frame. For all contributions we keep the full dependence on the electron mass. The re-
sults for the loop amplitudes can be applied also to pion-pair production e−e+ → π+π−.
The radiative corrections to the corresponding total cross section are calculated with
consideration of the pion-structure via a vector meson dominance form factor. We find
that such an additional charge form factor (inserted into the photonic vertex correction
of the pion) changes the radiative corrections to the total cross section by about −0.2%.

PACS: 12.20.-m, 12.20.Ds, 14.70.Bh

1 Introduction and summary

For a correct interpretation of the experimental data obtained in elastic or inelastic lepton
scattering processes it is essential to include in the analysis of these data the radiative cor-
rections arising from virtual photon-loops and (soft) photon bremsstrahlung. The subject of
radiative corrections has by now already a long history and we refer to the standard review
papers of Maximon [1] and Mo and Tsai [2] which have been used in the interpretation of
many electron scattering experiments. In recent years the issue of radiative corrections has
received a renewed interest in connection with new precision experiments, performed e.g. at
JLAB or MAMI. The two-photon exchange contribution [3, 4, 5] to the elastic electron-proton
scattering plays in fact a crucial role in order to reconcile the apparent discrepancies for the
ratio of the proton electric and magnetic form factors Gp

E(Q2)/Gp
M(Q2) as determined with the

polarization transfer technique on the one hand side and via the (more traditional) Rosenbluth
separation method on the other hand side.

These findings have prompted the exploration of the significance of two-photon exchange in
other electromagnetic reactions (see ref.[6] for a recent review on this subject). In particular,
the two-photon exchange corrections to elastic electron-pion scattering have been calculated in
ref.[7] taking into account the finite size of the pion through a (phenomenological) monopole
form factor Fπ(Q2) = (1 + Q2/m2

ρ)
−1. It has been found, that in comparison to the soft-

photon approximation which neglects hadron structure effects, the corrections are less than
1% for low momentum transfers Q2 < 0.1 GeV2, but can increase to several percent for Q2 ≥
1 GeV2 at extreme backward angles. The analytical expression for the two-photon exchange
amplitude with insertion of monopole form factors at the photon-pion vertices has however
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not been provided in ref.[7]. Also the two-photon exchange diagram involving the two-photon-
pion contact-vertex has seemingly been omitted, although the pion Compton tensor becomes
transversal only after that contact-vertex is properly included. Presumably its effect is so
small that it does not change the numerical results of ref.[7] in a significant way.

The one-loop radiative corrections to elastic electron-pion scattering e−π− → e−π− have
calculated some time ago by Kahane in ref.[8]. The associated inelastic bremsstrahlung pro-
cess e−π− → e−π−γ including soft photons (to cancel the infrared divergences generated by
the photon-loops) as well as hard photons has also been considered in detail and in the end the
radiative corrections have been approximated by their dominant logarithmic terms. Unfortu-
nately, the comprehensibility of the various analytical formulas written in ref.[8] is not always
straightforward since lots of auxiliary variables have been introduced although the process
e−π− → e−π− can be described by just two independent Mandelstam variables.

In this situation it is still meaningful and helpful to reconsider the radiative corrections to
electron-pion scattering. The purpose of the present paper is to document the results of such
a careful rederivation. Our paper is organized as follows. In section 2, we calculate in closed
analytical form the one-loop radiative corrections to electron-pion scattering e−π− → e−π−,
treating the pion as a structureless spin-0 particle. Explicit expressions (in terms of suitable
dimensionless Mandelstam variables) are given for the pertinent interference terms between the
tree diagram and the one-loop diagrams averaged already over the electron spin-states. The
occurring one-loop diagrams are of the type: photonic vertex correction, vacuum polarization
and two-photon exchange. Infrared finiteness of these virtual radiative corrections is achieved
(in the standard way) by including soft photon radiation (off the in- or out-going charged
particles) below an energy cut-off λ. We evaluate the remaining finite part of the soft photon
correction factor in the center-of-mass frame, assuming an isotropic photon emission therein.
In contrast to most existing calculations of the radiative corrections we keep in all expressions
the full dependence on the electron mass me. This has the advantage that our analytical
results can be directly taken over to muon-pion scattering where the knowledge of the complete
dependence on the lepton mass mµ is necessary. Figures with numerical results are presented
in order to demonstrate the size as well as the energy and angular dependence of the radiative
corrections to electron-pion scattering in the low-energy region. The radiative corrections
are dominated by the electronic vertex correction and the two-photon exchange. By making
use of crossing symmetry the radiative corrections to pion-pair production e−e+ → π+π−

can be obtained from the same analytical formulas. As a special feature, the contributions
from two-photon exchange drop out in the (angle-integrated) total cross section. We calculate
in section 3, the radiative corrections to σtot(e

−e+ → π+π−) taking into account the pion-
structure through a charge form factor of monopole type. The relevant photon-loop including
a squared monopole form factor can be evaluated neatly with the help of a (once-subtracted)
dispersion relation. In this (semi-phenomenological) approach we find that the pion-structure
changes the radiative corrections to the total cross section σtot(e

−e+ → π+π−) by about
−0.2%. Another important effect that must be included is the hadronic vacuum polarization
for which (continuously improving) parameterizations are available (see for that purpose the
discussion in section 6 of ref.[9]).

The results of this work can be of some relevance for extracting with improved precision
the hadronic cross section σtot(e

−e+ → π+π−) which presently causes the largest part of the
errorbar for the hadronic vacuum polarization contribution [9] to the muon anomalous mag-
netic moment. An accurate knowledge of the electromagnetic interaction of pions is obviously
a crucial condition for that procedure.
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(A)

Figure 1: One-photon exchange tree diagram (A) for electron-pion scattering. Full, dashed
and wiggly lines denote electrons, pions and photons, respectively.

2 Radiative corrections to electron-pion scattering

We start out with calculating the radiative corrections to electron-pion scattering. The in-
and out-going four-momenta of the reaction e−(p1) + π−(p2) → e−(p3) + π−(p4) give rise to
the Lorentz-invariant (dimensionless) Mandelstam variables (s, t, u) defined as follows:

s m2
π = (p1 + p2)

2 , t m2
π = (p1 − p3)

2 , u m2
π = (p1 − p4)

2 . (1)

Since m2
π has been factored out, they obey the numerical constraint s + t + u = 2 + 2r

with r = (me/mπ)2 the squared ratio between the electron mass me = 0.511 MeV and the
pion mass mπ = 139.57 MeV. In the case of unpolarized scattering the squared T-matrix for
e−π− → e−π− has to be summed over the electron spin-states. This double sum is efficiently
performed via a Dirac-trace: 1

8
tr[O(/p1 + me)O(/p3 + me)]. In order to keep the technical

complication of the loop calculation as low as possible the integration over the loop-momenta
is carried out after the summation over the electron spin-states. With that approach in mind
the unpolarized differential cross section for electron-pion scattering in the center-of-mass
frame, including radiative corrections of relative order α, can be represented in the following
compact form:

dσ

dΩcm
=

α2

m2
πs

{
A ⊗ A

t2
+

2

t
Re

[
(I + II + III + IV + V) ⊗ A

]}
, (2)

with α = 1/137.036 the fine-structure constant. Here A denotes the one-photon exchange
tree diagram (shown in Fig. 1) and I, II, III, IV, V stand for the five (classes of) contributing
one-loop diagrams (shown in Figs. 2, 3, 4). The product symbol ⊗ designates the interference
term between the T-matrices from two diagrams with the sums over the electron spins already
carried out via a Dirac-trace. When written in terms of the dimensionless variables (s, t, u, r)
the tree diagram A in Fig. 1 leads to the following simple polynomial expression:

A ⊗ A = 1 − (s − r)(u − r) . (3)

Note the invariance of A⊗A under the crossing transformation s ↔ u. It expresses the obvious
fact that at leading order the differential cross sections for e−π− → e−π− and e−π+ → e−π+

are equal.

2.1 Evaluation of one-loop diagrams

In this section, we present analytical expressions (of order α) for the interference terms between
the tree diagram and the one-loop diagrams for electron-pion scattering. We use dimensional
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(Ie) (Iπ)

Figure 2: One-loop diagrams (I) with photonic vertex corrections. The right diagram has a
horizontally reflected partner.

regularization to treat both ultraviolet and infrared divergences (where the latter are caused
by the masslessness of the photon). Divergent pieces of one-loop integrals show up in form of
the composite constant:

ξ =
1

d − 4
+

1

2
(γE − ln 4π) + ln

me

µ
, (4)

containing a simple pole at d = 4 and µ is an arbitrary mass scale. Ultraviolet (UV) and
infrared (IR) divergences are distinguished by the feature of whether the condition for conver-
gence of the d-dimensional integral is d < 4 or d > 4. We discriminate them in the notation
by putting appropriate subscripts, i.e. ξUV and ξIR.1 In order to simplify all calculations,
we employ the Feynman gauge where the photon propagator is directly proportional to the
Minkowski metric tensor gµν. Let us now enumerate the analytical results as they emerge
from the five (classes of) one-loop diagrams shown in Figs. 2, 3, 4.

The (on-shell) vertex correction in diagram Ie is comprised by the one-photon loop form
factors F1,2(t)

γ−loop of the electron. These Dirac and Pauli form factors are normalized at
t = 0 to: F1(0)γ−loop = 0 and F2(0)γ−loop = α/2π (anomalous magnetic moment). Putting all
the pieces together the pertinent interference term (A⊗A)F1(t)

γ−loop/t + (1− t/4)F2(t)
γ−loop

with the tree diagram A reads:

Ie ⊗ A =
α

2πt

{[(
4ξIR(t − 2r) + 8r − 3t

) L(−tr−1)√
4r2 − rt

+ 2ξIR − 2

+
(t − 2r)Φ(−tr−1)√

−t
√

4r − t

]
(A ⊗ A) +

√
r(4t − t2)

L(−tr−1)√
4r − t

}
, (5)

with A ⊗ A given in eq.(3). Here, we have introduced the frequently occurring logarithmic
loop function:

L(x) =
1√
x

ln

√
4 + x +

√
x

2
, (6)

and the auxiliary function:

Φ(x) = Li2(v(x)) − Li2(1 − v(x)) +
1

2
ln2 v(x) − 1

2
ln2(1 − v(x)) , (7)

composed of dilogarithms and squared logarithms of the argument:

v(x) =
1

2

(
1 −

√
x

4 + x

)
, (8)

1If an infinitesimal photon mass mγ is introduced as an (alternative) infrared regulator the infrared diver-
gence ξIR is to be identified with the logarithm ln(me/mγ).
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(IIe,µ) (IIπ)

Figure 3: One-loop diagrams (II) with leptonic or pionic vacuum polarizations.

where Li2(v) =
∑∞

n=1 n−2vn = v
∫ ∞
1 dy[y(y − v)]−1 ln y denotes the conventional dilogarith-

mic function. The basic loop function Φ(−t)/(
√
−t

√
4 − t) possesses the following spectral

representation:
Φ(−t)√
−t

√
4 − t

=
∫ ∞

4

dx

x − t

ln(x − 4)√
x2 − 4x

. (9)

Note that in addition to the photon-loop also the counterterm Z
(e)
1 −1 = α(2ξIR +ξUV −2)/2π

of spinor quantum electrodynamics, which eliminates the ultraviolet divergence ξUV in the
Dirac form factor F1(t)

γ−loop, has been included in eq.(5).
In the same way, the (on-shell) vertex corrections in diagrams Iπ are comprised by the

one-photon loop form factor Gπ(t)γ−loop of the pion. When completed by the counterterm

contribution Z
(π)
1 − 1 = α(ξIR − ξUV )/π of scalar quantum electrodynamics this form factor

is also normalized to Gπ(0)γ−loop = 0. The pertinent interference term (A ⊗ A)Gπ(t)γ−loop/t
with the tree diagram reads:

Iπ ⊗ A =
α

2πt

{
2ξIR − 2 − ln r +

t − 2√
−t

√
4 − t

[
Φ(−t)

+(4ξIR − 4 − 2 ln r)
√
−t L(−t)

]}
(A ⊗ A) . (10)

The additional ln r terms are present because the infrared divergence ξIR has been defined in
eq.(4) with the electron mass in the logarithm ln(me/µ).

The diagrams of class II shown in Fig. 3 involve vacuum polarizations at the exchanged
photon. Together with the counterterm Z

(e)
3 − 1 = 2α ξUV /3π the (renormalized) contribution

from electronic vacuum polarization takes the form:

IIe ⊗ A =
α

3πt2

{
2√
r
(t + 2r)

√
4r − t L(−tr−1) − 5t

3
− 4r

}
(A ⊗ A) . (11)

The analogous contribution from muonic vacuum polarization IIµ ⊗ A is readily obtained by
replacing the parameter r in eq.(11) by r̃ = (mµ/mπ)2 = 0.57309. In addition there is the
pionic vacuum polarization diagram IIπ. Together with the tadpole diagram (generated by

the γγππ contact-vertex) and the counterterm Z
(π)
3 − 1 = α(ξUV − 1

2
ln r)/6π the complete

(renormalized) contribution from pionic vacuum polarization reads:

IIπ ⊗ A =
α

6πt2

{
4 − 4t

3
+ (t − 4)

√
4 − t L(−t)

}
(A ⊗ A) . (12)

Next, we come to the two-photon exchange triangle diagram III shown in Fig. 4. The
respective loop integral with one massive (pion) and two massless (photon) propagators is
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(III) (IV) (V)

Figure 4: Two-photon exchange diagrams (III), (IV) and (V) for electron-pion scattering.

infrared convergent and the pertinent interference term with the tree diagram takes the form:

III ⊗ A =
α

π

s − u

4r − t

{
(4r − 2t)K(tr−1) + r

[
ln r − ln(−t)

]}
, (13)

with the t-dependent auxiliary function:

K(t) =
1√

−t
√

4 − t

[
π2

3
− t L2(−t) + Li2

(
2 − t −

√
−t

√
4 − t

2

)]
. (14)

Somewhat more intricate is the evaluation of the (planar and crossed) two-photon exchange
box diagrams IV and V shown in Fig. 4. We take advantage of performing first the spin-
sums (via a Dirac-trace) and of decomposing in the next step the resulting Lorentz-scalar loop
integrand into partial fractions. In this form the majority of terms has either only one electron
propagator or only one pion propagator and few terms involve the product of both. The latter
loop integrals depend in a non-trivial way on the squared mass ratio r = (me/mπ)2. Putting
all the pieces together one finds for the interference term of the planar two-photon exchange
box diagram IV with the tree diagram the following analytical expression:

IV ⊗ A =
α

π

{
s

2
(s − 2r)K(t) +

s

2r
(s − 2 − 2r)K(tr−1)

+
1 + r − s√

ρ+ − s
√

ρ− − s

[
(4ξIR − 2 ln r)

(
s − r +

1

t
(s − 1 − r)2

)

+
(
s − r +

2

t
(s − 1 − r)2

)
ln(−t)

]
ln

√
ρ+ − s +

√
ρ− − s

2r1/4

+
1

2
(s − r)(1 + r − s)

∫ ∞

ρ+

dx

x − s

ln[x − 2 − 2r + (1 − r)2x−1]√
x2 − 2x(1 + r) + (1 − r)2

+ terms even under (s ↔ u)

}
, (15)

with the abbreviations ρ± = 1 + r ± 2
√

r. For the numerical evaluation of the (only relevant)
real part of IV⊗A the spectral integral

∫ ∞
ρ+

dx/(x− s) . . . in the second last line of eq.(15) has
to be treated as a principal value integral (if s > ρ+). It can be conveniently decomposed into
a sum of two non-singular integrals by the following master formula:

−
∫ ∞

ρ+

dx
f(x)

x − s
=

∫ 2s−ρ+

ρ+

dx
f(x) − f(s)

x − s
+

∫ ∞

2s−ρ+

dx
f(x)

x − s
. (16)
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Finally, we are left with the contribution of the crossed two-photon exchange box diagram
V shown in Fig. 4. Its interference term with the tree diagram can be obtained via crossing
(s → u = 2 + 2r − s − t) as follows:

V ⊗ A = − IV ⊗ A |s↔u . (17)

The occurring minus-sign has the consequence that all terms even under the permutation of
variables s ↔ u drop out in the sum (IV + V) ⊗ A and therefore we do not need to specify
these. We have verified the relation eq.(17) by an explicit calculation of V ⊗ A as it arises
from the crossed two-photon exchange diagram V. The physical reason behind eq.(17) can be
easily explained and understood. When turning the right pion line in the crossed two-photon
exchange diagram V upside-down one gets the planar two-photon exchange diagram IV for
electron-antipion scattering (e−π+ → e−π+). The same manipulation applied to the tree
diagram A introduces an additional minus sign due to the (single) opposite electric charge,
and to close the argument, e−π+ → e−π+ and e−π− → e−π− are connected with each other
by s ↔ u crossing.

As an aside we note that it is instrumental to keep the factorized square roots in eqs.(5,10-
15) as they stand. In this form the correct analytical continuation of the (only relevant) real
parts of the loop functions along their branch cuts is guaranteed.

2.2 Infrared finiteness

In the next step we have to consider the infrared divergent terms proportional to ξIR. Inspec-
tion of eqs.(5,10,15,17) reveals that these scale with the Born term A⊗A/t. As a consequence
of that feature, the infrared divergent loop corrections multiply the differential cross section
dσ/dΩcm at tree-level by a factor:

δ
(IR)
virt =

4α

π
ξIR

{
1 +

t − 2√
4 − t

L(−t) +
t − 2r√
4r2 − rt

L(−tr−1)

+Re
[

2(1 + r − s)√
ρ+ − s

√
ρ− − s

ln

√
ρ+ − s +

√
ρ− − s

2r1/4

]

+
2(u − 1 − r)√
ρ+ − u

√
ρ− − u

ln

√
ρ+ − u +

√
ρ− − u

2r1/4

}
. (18)

The unphysical infrared divergence ξIR gets removed in the measurable cross section by con-
tributions from (undetected) soft photon bremsstrahlung. In its final effect, the (single) soft
photon radiation off the in- or out-going electrons and pions yields the multiplicative factor:

δsoft = α µ4−d
∫

|~l |<λ

dd−1l

(2π)d−2 l0

{
2p1 · p3

p1 · l p3 · l
+

2p2 · p4

p2 · l p4 · l
+

2p1 · p4

p1 · l p4 · l
+

2p2 · p3

p2 · l p3 · l

− 2p1 · p2

p1 · l p2 · l
− 2p3 · p4

p3 · l p4 · l
− m2

e

(p1 · l)2
− m2

π

(p2 · l)2
− m2

e

(p3 · l)2
− m2

π

(p4 · l)2

}
, (19)

which depends on a small photon energy cut-off λ. Working out this momentum space integral
by the method of dimensional regularization (with d > 4) one obtains the following soft photon
correction factor [11]:

δ
(cm)
soft =

α

π

{
4

[
1 +

t − 2√
4 − t

L(−t) +
t − 2r√
4r2 − rt

L
(
− t

r

)
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+
2√
P

(s − 1 − r) ln

√
s − ρ+ +

√
s − ρ−

2r1/4

+
2(u − 1 − r)√
ρ+ − u

√
ρ− − u

ln

√
ρ+ − u +

√
ρ− − u

2r1/4

](
ln

me

2λ
− ξIR

)
+

2√
P

×
[
(s − 1 + r) ln

s − 1 + r +
√

P

2
√

sr
+ (s + 1 − r) ln

s + 1 − r +
√

P

2
√

s

]

+
∫ 1/2

0
dx

[
(t − 2)(s + 1 − r)

[1 − tx(1 − x)]
√

Rt

ln
s + 1 − r +

√
Rt

s + 1 − r −
√

Rt

+
(t − 2r)(s − 1 + r)

[r − tx(1 − x)]
√

Rt

ln
s − 1 + r +

√
Rt

s − 1 + r −
√

Rt

]

+
∫ 1

0
dx

[
(s − 1 − r)[s + (1 − r)(1 − 2x)]

(1 − 2x)[sx(1 − x) + (1 − 2x)(1 − x − rx)]
√

P

× ln
s + (1 − 2x)(1 − r +

√
P )

s + (1 − 2x)(1 − r −
√

P )

+
(u − 1 − r)[s + (1 − r)(1 − 2x)]

[1 + (r − 1)x − ux(1 − x)]
√

Ru

ln
s + (1 − r)(1 − 2x) +

√
Ru

s + (1 − r)(1 − 2x) −
√

Ru

]}
, (20)

where we have introduced the polynomials: P = s2−2s(1+r)+(1−r)2, Rt = P +4stx(1−x),
Ru = P + 4x(1 − x)[su − (1 − r)2]. We note that the terms beyond those proportional to
ln(me/2λ)− ξIR are specific for the evaluation of the soft photon correction factor δsoft in the

center-of-mass frame with λ an infrared cut-off therein. As it is written in eq.(20), δ
(cm)
soft refers

to an (idealized) experimental situation where all undetected soft photon radiation fills a small
sphere of radius λ in the center-of-mass frame. In a real experiment the momentum space
region of undetected photons can be of different (non-isotropic) shape with no sharp boundaries
due to detector efficiencies etc. Such additional experiment-specific radiative corrections can
be accounted for and calculated by integrating the fivefold differential cross section for e−π− →
e−π−γ over the appropriate region in phase space. By construction this region excludes the
infrared singular domain |~l | < λ and thus leads to a finite result. The treatment of hard
photon bremsstrahlung [8] may also be important for comparison with a real experiment.

2.3 Numerical results

We are now in the position to present some numerical results for the radiative corrections
to electron-pion scattering e−π− → e−π−. The complete (infrared-finite) radiative correction

factor is δ
(cm)
soft written in eq.(20) plus the sum of all interference terms (see eq.(2)) divided by

the Born term A⊗A/t2. We refer to the center-of-mass kinematics where t = (cos θcm−1)P/2s
(and u = 2+2r− s− t), with θcm the scattering angle and P = s2−2s(1+ r)+(1− r)2. Fig. 5
shows in percent the radiative corrections arising from loops alone (discarding the ξIR terms)
at five selected center-of-mass energies

√
smπ = (1, 1, 1.6, 2.1, 2.6, 3.1)mπ as a function of

cos θcm. One notices sizeable negative radiative corrections with values up to about −11.5%.
With increasing

√
s the curves become gradually more symmetric under forward and backward

directions, θcm → 180◦ − θcm. At the highest selected center-of-mass energy
√

s mπ = 3.1mπ

the maximal squared momentum transfer is −tmaxm
2
π = 0.15 GeV2. This corresponds to the

region within which accurate data for pion-electron scattering 2 are presently available [10].

2For elastic pion-electron scattering the squared momentum transfer is given by −tm2
π = 2me(p0

3 − me)
with p0

3 the electron recoil energy. Since me occurs as a determining factor, pion beams with energies in the
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Figure 5: Radiative corrections to electron-pion scattering e−π− → e−π− arising from loops.
The numbers (1.1, 1.6, 2.1, 2.6, 3.1) on the curves correspond to the total center-of-mass energy√

s mπ in units of mπ.

Let us look also at individual contributions to the radiative corrections. For example, at√
s = 3 and θcm = 120◦ one has [(−14.90 − 2.51) + (1.74 + 0.16 + 0.016) + 5.51]% = −9.99%,

where the numbers in brackets stem from photonic vertex correction, vacuum polarization and
two-photon-exchange, in the order presented in subsection 2.1. The contribution from the two-
photon exchange triangle diagram III is in fact tiny: −0.0003%. This observation supports
the approach of ref.[7] that the finite size of the pion can be ignored for this (extremely small)
contribution. Evidently, the radiative corrections to electron-pion scattering e−π− → e−π−

are dominated by the electronic vertex correction due to the leading squared logarithm in
the asymptotic behavior of the Dirac form factor F1(t)

γ−loop ' −(α/4π) ln2(−tr−1). Next in
importance follows the two-photon exchange in form of the box diagrams IV and V. In principle
the contribution IIπ ⊗A from pionic vacuum polarization should replaced by that of hadronic
vacuum polarization (A⊗A)Πhad(t)/t. However, for the small momentum transfers

√
−tmπ <

0.4 GeV considered here, the corresponding (hadronic) effect is very small and reasonably well
approximated by the vacuum polarization due to a pointlike pion. The empirical vacuum
polarization function with its leptonic and hadronic contributions is shown in Fig. 82 of ref.[9].

Fig. 6 shows the radiative corrections to electron-pion scattering e−π− → e−π− with inclu-
sion of the soft photon bremsstrahlung effects. For the sake of having a concrete case we have
set the infrared cutoff to the value λ =

√
s mπ/200, thus modelling an (idealized) experimen-

tal situation where the electron and pion energies can be resolved within 1% accuracy. One
observes that the soft photon bremsstrahlung increases moderately the (negative) radiative
corrections to electron-pion scattering. At

√
s = 3 and θcm = 120◦ one has a soft photon

correction of (10.50 − 17.41)% = −6.91%, where the first and second number refer to the
”universal” part proportional to ln(me/2λ) and to the remaining terms in eq.(20) specific for

imposing an infrared cutoff via |~l | < λ the center-of-mass frame. It is clear that the radiative

few TeV range would be needed in order to reach a (modest) momentum transfer of
√
−tmπ ' 1 GeV.

9



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
cosθ

cm

-18

-16

-14

-12

-10

-8

-6

-4

-2

ra
di

at
iv

e
co

rr
ec

tio
n

[%
]

e
-π-

--> e
-π-

(γ
soft

)

λ = s
1/2

mπ/200

1.1

1.6

2.1

2.6

3.1

Figure 6: Radiative corrections to electron-pion scattering e−π− → e−π− including soft
photon bremsstrahlung. The numbers (1.1, 1.6, 2.1, 2.6, 3.1) on the curves correspond to
the total center-of-mass energy

√
smπ in units of mπ. The infrared cutoff has been set to

λ =
√

s mπ/200.

corrections due to the inelastic bremsstrahlung process e−π− → e−π−γ depend crucially on
the particular experimental conditions (i.e. cuts on energies and angles).

3 Radiative corrections to pion-pair production

In this section we discuss the radiative corrections to pion-pair production in e−e+ annihilation.
The process e−e+ → π+π− is obtained from elastic electron-pion scattering e−π− → e−π− via
the crossing transformation s ↔ t. We prefer to keep the original meaning of the Mandelstam
variables and thus denote by

√
t mπ the total center-of-mass energy of the reaction e−e+ →

π+π−. The cosine of the scattering angle y = cos θcm is involved in the (uncrossed) variable
u = 1 + r + (y

√
t − 4

√
t − 4r − t)/2 and s = 2 + 2r − t − u receives the same form with

y → −y. The relevant angular average 1
2

∫ 1
−1 dy . . . of the tree amplitude A ⊗ A comes out as

(4 − t)(t + 2r)/6. With an additional factor −1/2 due to averaging over positron spin-states
the total cross section for pion-pair production has the following well-known form:

σtot(t) =
πα2

3m2
πt3

(t − 4)3/2

√
t − 4r

(t + 2r) . (21)

The analytical expressions for the loop contributions to pion-pair production e−e+ → π+π−

can be directly taken over from subsection 2.1. The angular integration 2π
∫ 1
−1 dy involved in

the total cross section eliminates all terms which are odd under the permutation of variables
s ↔ u. These are precisely the two-photon exchange contributions (III+IV+V)⊗A given
in eqs.(13,15,17). The virtual radiative corrections (of order α) to the total cross section
σtot(e

−e+ → π+π−) are therefore completely determined by the photonic vertex corrections
I⊗A and the vacuum polarizations II⊗A. By making use of the angular average (4−t)(t+2r)/6
of A ⊗ A they can be directly read off from eqs.(5,10-12) with their explicit t-dependence.

10



The soft photon correction factor for pion-pair production e−e+ → π+π− is a modified
version of eq.(19) due to sign-changes of charges. When evaluated for the center-of-mass
kinematics under consideration it reads [11]:

δ
(cm)
soft =

α

π

{
4

[
1 +

2 − t√
t

L(t − 4) +
2r − t√

tr
L

( t

r
− 4

)](
ln

me

2λ
− ξIR

)

+2

√
t

r
L

( t

r
− 4

)
+ 2

√
t L(t − 4)

+
∫ 1/2

0
dx

[ √
t(2 − t)(t − 4)−1/2

(1 − 2x)[1 + (t − 4)x(1 − x)]
ln

√
t + (1 − 2x)

√
t − 4√

t − (1 − 2x)
√

t − 4

+

√
t(2r − t)(t − 4r)−1/2

(1 − 2x)[r + (t − 4r)x(1 − x)]
ln

√
t + (1 − 2x)

√
t − 4r√

t − (1 − 2x)
√

t − 4r

]

+ terms odd under (s ↔ u)

}
, (22)

with the function L(x) defined in eq.(6). The terms odd under s ↔ u need not to be specified.
After multiplication with the even Born term A ⊗ A and subsequent angular integration
2π

∫ 1
−1 dy they drop out of the radiative corrections to σtot(t).
The dashed line in Fig. 7 shows the radiative corrections to the total cross section for

pion-pair production e−e+ → π+π− arising from loops alone (discarding the ξIR terms) . One
observes sizeable (negative) radiative corrections which increase with center-off-mass energy√

t mπ. For example, at
√

t = 4 one has [(−16.80 − 2.70) + (1.91 + 0.22)]% = −17.37%,
where the numbers in brackets correspond to photonic vertex correction and leptonic vacuum
polarization, in the order presented in subsection 2.1. The photon-loop correction to the
photon-electron vertex is again the dominant effect. Next in importance follows the same
type of correction to the photon-pion vertex. The dashed line in Fig. 8 shows the radiative
corrections to the total cross section for pion-pair production e−e+ → π+π− with inclusion
of soft photon bremsstrahlung effects. For the sake of having a concrete case we have set the
infrared cutoff to the value λ =

√
t mπ/200. One observes a further increase of the negative

radiative corrections, but now their rise with the center-of-mass energy
√

t mπ has significantly
slowed down. Note that we have dropped here the contribution IIπ ⊗ A from pionic vacuum
polarization since it does not even in an approximate way represent the effects from hadronic
vacuum polarization in the energy region

√
tmπ < 1 GeV of interest. As can be seen from

Fig. 82 in ref.[9] the empirical hadronic vacuum polarization function develops pronounced
oscillations with sharp spikes in that energy range. Radiative corrections to the differential
cross section for e−e+ → π+π− at yet higher orders in α have been studied by Hoefer et al. in
ref.[12].

3.1 Inclusion of pion structure

With good reason one may object that treating the pion as a structureless spin-0 particle in a
calculation of the radiative corrections to e−e+ → π+π− for energies up to

√
t mπ ' 1 GeV is

rather unrealistic. In the ρ(770)-resonance region the empirical charge form factor of the pion
leads to an enhancement of the total cross section by a factor of up to 45. One is therefore
obliged to include the structure (finite size) of the pion also in the calculation of the radiative
corrections. As motivated by the vector meson dominance model, we introduce at each photon-
pion vertex a ”bare” pion charge form factor of monopole type: Fπ(−q2) = (1 − q2/m2

ρ)
−1,

with mρ = 770 MeV the (neutral) ρ-meson mass. Here, q is the photon four-momentum and

11
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polarization [9] is not considered explicitly.
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we apply the same form of Fπ(−q2) irrespective of whether the in- and out-going pions are
on or off their mass-shell. A first success of such an (admittedly crude) approach is the pion
electromagnetic selfenergy. When evaluated with a squared monopole form factor inserted the
one-photon loop selfenergy diagrams lead to the following expression for the mass difference
between the charged and neutral pion:

∆π =
α

2π
mρ

[
z + 2z3 ln 2z − (2z2 + 1)

√
z2 − 1 ln(z +

√
z2 − 1)

]
, (23)

with the ratio z = mρ/2mπ0 = 2.852. The value ∆π = 4.31 MeV resulting from this simple
model is remarkably close to the experimental pion mass difference ∆(exp)

π = 4.59 MeV. The
small remainder is (generally) attributed to an isospin-breaking effect quadratic in the up-
and down-quark mass difference.

We apply now the monopole form factor Fπ(−q2) consistently to all photon-pion vertices
of the diagrams in Fig. 1,2,3 and mark these modified diagrams by a prime. The modified
Born term reads:

A′ ⊗ A′ =
b2

(b − t)2
(A ⊗ A) , (24)

with b = (mρ/mπ)2 = 30.44, and similarly one gets for diagram I′e with electronic vertex
correction:

I′e ⊗ A′ =
b2

(b − t)2
(Ie ⊗ A) . (25)

For the (pionic) vertex correction diagrams I′π we exploit identity:

m4
ρ

(−l2)(m2
ρ − l2)2

=
1

−l2
+

(
m2

ρ

∂

∂m2
ρ

− 1
)

1

m2
ρ − l2

, (26)

which shows that the photon-loop with a squared monopole form factor inserted is equal to
an ordinary photon-loop plus a term which can be calculated from a massive vector-meson
loop by differentiation with respect to its mass. It is most convenient to calculate directly
the imaginary part of the (ordinary) vector-meson loop via the Cutkosky cutting rule and to
apply (after the mass-differentiation) a once-subtracted dispersion relation.3 Putting all the
pieces together one obtains the following modified interference term:

I′π ⊗ A′ =
b2

(b − t)2
(Iπ ⊗ A) +

α

2π
(A′ ⊗ A′)

∫ ∞

4
dx

1√
x2 − 4x (x − t)

×
[
1 − 2 + b

x
− b

2(x − 4 + b)
+

(
2

x
− 1 +

b2

x2 − 4x

)
ln

x − 4 + b

b

]
. (27)

For t > 4, the real part of the spectral integral
∫ ∞
4 dx/(x− t) . . . is given by its principal value.

Finally, there are the modified contributions from electronic and muonic vacuum polarization:

II′e,µ ⊗ A′ =
b2

(b − t)2
(IIe,µ ⊗ A) , (28)

as well as from hadronic vacuum polarization:

II′had ⊗ A′ =
A′ ⊗ A′

t
Πhad(t) , Re Πhad(t) =

t

4π2α
−
∫ ∞

4m2
π

ds′
σ0

had(s
′)

t − s′m−2
π

, (29)

3We have verified that the normalization condition Gπ(0)γ−loop = 0 for the photon-loop induced pion form
factor is preserved if the vertices include a monopole form factor. In addition to the diagrams I′π in Fig. 2 there
is also a b-dependent pion wavefunction renormalization factor, Z

(π)
2 − 1 = (α/4π)

{
4ξIR − 2 ln r + b− 2 + (2−

b2/2) ln b +
√

b/(b − 4) (b2 − 2b − 2) ln[(
√

b +
√

b − 4)/2]
}
, which contributes to the zero-sum.
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with σ0
had(s

′) the (undressed) cross section for electron-positron annihilation into hadrons [9].
The two-photon exchange contribution (III′ + IV′ + V′)⊗A′ remains of course odd under s ↔ u
and thus drops out of the radiative corrections to the total cross section σtot(e

−e+ → π+π−).
Note that the assumption of a monopole for the pion charge form factor plays only a role
for the second term in eq.(27). After dividing by the modified Born term A′ ⊗ A′ the actual
functional form of |Fπ(−tm2

π)|2 drops out in the radiative corrections of interest. Accurate
empirical parameterization of the pion charge form factor Fπ(−q2) which include the finite
width of the (neutral) ρ(770)-meson and the (isospin-breaking) ρ0-ω interference can be found
in appendix C of ref.[12].

The full line in Fig. 7 shows the radiative corrections to σtot(e
−e+ → π+π−) arising from

loops with inclusion of the pion-structure. The individual contributions to the radiative correc-
tion factor at

√
t = 4 are now: [(−16.80− 2.83) + (1.91 + 0.22)]% = −17.50%. By comparison

with the dashed line in Fig. 7 one sees that the effects due to the pion-structure are very
small. The essentially new principal-value integral term in eq.(27) arising from the photon-
loop with monopole-type vertex functions amounts at

√
t = 4, 5.5, 7 to radiative corrections

of (−0.13, −0.20, −0.25)%, respectively. The full line in Fig. 8 shows the analogous results
with inclusion of the soft photon bremsstrahlung effects. The latter are given by eq.(22) in un-
changed form since for real photon emission (q2 = 0) the form factor effect vanishes (according
to our treatment which does not make a distinction between on- and off-shell pions).

Let us exhibit separately the correction induced by the finite size of the pion on the photon-
loop form factor Gπ(t)γ−loop of the pion:

δGπ(t)γ−loop =
αt

2π

∫ ∞

4

dx

x − t − i0

1√
x2 − 4x

{
1 − b

2(x − 4 + b)

−2 + b

x
+

(
2

x
− 1 +

b2

x2 − 4x

)
ln

x − 4 + b

b

}
. (30)

The full and dashed line in Fig. 9 show the real and imaginary part of this quantity in the
interval −50 < t < 50. One observes very small values which range between 1.1 permille and
−1.4 permille. At the branch point t = 4 this finite size correction reads:

δGπ(4)γ−loop =
α

6π

{
3 + 2b − b2 ln b +

2√
b(b − 4)

(b3 − 2b2 − 2b − 6) ln

√
b +

√
b − 4

2

}
, (31)

and the slope at t = 0 is given by:

δG′
π(0)γ−loop =

α

24π

{
(4 + b2) ln b − 3 − 2b − 20

b − 4
+

2
√

b

(b − 4)3/2

×(6b2 − b3 − 10b + 18) ln

√
b +

√
b − 4

2

}
, (32)

with b = (mρ/mπ)2 = 30.44. It remains to be seen how much the finite size correction
δGπ(t)γ−loop changes if an improved parameterization of the half off-shell pion-photon vertex
function is used. The electromagnetic selfenergy ∆π given in eq.(23) suggests that the present
treatment could be fairly reasonable.

Finally, we note that the radiative corrections to pion- and kaon-pair production in e−e+

collisions for energies below 2GeV have also been calculated by Arbuzov et al. in ref.[13]. In
that work the differential cross section dσ/dΩcm of the reaction has been considered and the
radiative corrections have been approximated by their leading logarithms in the electron mass
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Figure 9: Correction to the photon-loop form factor of the pion induces by the finite size of
the pion. The calculation is based on a pion charge from factor of monopole type.

me. The structure (i.e. finite size) of the mesons has however not been taken into account and
the accuracy of their calculation [13] has been estimated to about 0.2%. This numerical esti-
mate is remarkably consistent with our present finding for the size of the additional radiative
corrections induced by the pion-structure.
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