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Abstract

We present an extension of the Standard Model (SM) based on the discrete flavor
symmetry S3 which gives a neutrino mass matrix with two-zero texture of Fritzsch-type
and nearly diagonal charged lepton mass matrix. The model is compatible with the
normal hierarchy only and predicts sin2 θ13 ≈ 0.01 at the best fit values of solar and
atmospheric parameters and maximal leptonic CP violation.

1 Introduction

Although there is a robust evidence that neutrinos are mixed, many aspects of the neutrino

physics are not clearly understood yet. Among them, the comprehension of the values of

the masses and mixing and the differences with respect to the quark sector are an open

problem whose solution seems to be quite far from being found. Recent data from neutrino

oscillations produced the following results:

0.36 ≤ sin2 θ23 ≤ 0.67 0.27 ≤ sin2 θ12 ≤ 0.38 sin2 θ13 < 0.053 , (1)
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and
2.07 × 10−3 eV 2 ≤ ∆m2

atm ≤ 2.75 × 10−3 eV 2,

7.03 × 10−5 eV 2 ≤ ∆m2
sol ≤ 8.27 × 10−5 eV 2,

(2)

at 99.73% confidence level [1] (see [2] for other recent interpretations of the neutrino data).

We have only hints coming from cosmological observations that the absolute values of

the neutrino masses should be less than 1 eV [3]. In the quark sector the situation is quite

different: not only the masses and the hierarchy in the up and down sectors are better

known but also the mixing angles are well measured and strongly differ from the neutrino

ones. A successful ansatz to reproduce these features in the quark sector is the Fritzsch-like

texture [4], where both the up and down quark mass matrices have a simple form

M =




0 A 0

A∗ C B

0 B∗ D


 . (3)

Such a matrix (already described in, e.g., [5]) gives the well know relation

tan θ12 =

√
m1

m2
, (4)

which predicts the Cabibbo angle whose small value is a consequence of the strong hierarchy

in the masses. A texture as in eq.(3) can also be employed for the Majorana neutrino mass

matrix; this is a particular case of the class of two-zero texture [6] which, together with the

two relations ∆matm = m2
3 −m2

1 and ∆msol = m2
2 −m2

1, fix the absolute neutrino mass scale

as suggested in [7]. Unlike the quark sector, the solar and atmospheric angles can be large

due to the fact that in the neutrino sector the hierarchy is not so strong.

Although a vast class of Fritzsch-like textures (and their phenomenological consequences)

has been already studied in the literature, in this paper we propose a leptonic model based on

the permutation symmetry S3 which naturally gives rise to a Fritzsch-type neutrino Majorana

mass matrix (and, in addition, to a nearly diagonal charged leptons). At tree level, the tau

lepton acquires a mass via the spontaneous electroweak symmetry breaking (ESB) driven

by one S3 doublet and two S3 singlets, whereas the electron and the muon remain massless.

Higher order operators, mediated by just one Standard Model (and S3) scalar singlet (called

the flavon) are responsible for me, mµ 6= 0. In the neutrino sector, the Majorana mass matrix

is generated by dimension five [8] and six operators.

The paper is organized as follows: in the next section we introduce the model; the scalar

potential is studied in Sec.3; the lepton and neutrino mass matrices are introduced in Secs.4
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and 5, respectively whereas their phenomenological consequences are discussed in Sec.6.

Sec.7 is devoted to our conclusions.

2 The model

We propose a model based on S3, the group of permutations of three objects, which is the

smallest non-Abelian discrete group. S3 contains one doublet irreducible representation and

two singlets. This feature is useful to separate the third family of fermions from the other

two and has been already used for model building [9]. For pioneers papers see [10] (and also

references in [11]).

The group S3 has two generators S and T satisfying the following relations:

S2 = T 3 = (ST )2 = 1 . (5)

One possible realization is the so-called “T-diagonal“ basis where

S =

(
0 1

1 0

)
T =

(
ω′ 0

0 ω′2

)
, (6)

with ω′ = ei2/3π. The tensor products involving pseudo-singlets are given by 1′ × 1′ = 1 and

1′ × 2 = 2 while the product of two doublets is 2 × 2 = 2 + 1 + 1′ which, in terms of the

components of the two doublets A = (a1, a2)
T and B = (b1, b2)

T in the T-diagonal basis, are

as follows:
a1b2 + a2b1 ∈ 1

a1b2 − a2b1 ∈ 1′

(
a2b2

a1b1

)
∈ 2 . (7)

The product 2∗ × 2 is similar to 2 × 2 with the exchange of a1 ↔ a2.

Construction of the model

The Higgs sector is extended from one SU(2)L-doublet to two SU(2)L-doublets, HD =

(H1, H2) belonging to a doublet irreducible representation of S3 and other two SU(2)L dou-

blets, HS and H ′
S, belonging to singlet representations of S3. We also introduce an elec-

troweak scalar singlet χ which turns out to be relevant to give a non-vanishing electron

and muon masses. In order to have nearly diagonal charged lepton mass matrix we assume

two further parity symmetries, so that the global discrete symmetry group of the model is

G = S3 ⊗ Z5 ⊗ Z2. The matter assignment under G ⊗ SM is summarized in Tab.1.

3



fields LD = L1,2 L3 lRD
= lR1,2 lR3 HD HS H ′

S χ

SUL(2) 2 2 1 1 2 2 2 1

Y -1 -1 -2 -2 1 1 1 0

S3 2 1 2 1 2 1 1 1

Z2 + − + − + + − +

Z5 ω2 ω ω ω2 ω3 ω4 ω4 ω2

Table 1: Matter assignment of the model. ω is the Z5 charge ω = ei2/5π and Y is the SM

hypercharge in the convention Y = 2(Q − T3), where T3 is the third component of the SM

SU(2) doublets.

3 The scalar potential

The most general Higgs potential invariant under G × SM is as follows:

V = µ1H
′†
S H ′

S + µ2(H
†
DHD)1 + µ3H

†
SHS + µ4|χ|2 + λ1|χ|4

+(λ2H
†
DHD + λ3H

†
SHS + λ4H

′†
S H ′

S)|χ|2 + λ5[(H
†
DHD)]2 + λ6[(H

†
DHD)1′]

2

+λ7[(H
†
DHD)2]

2 + λ′
7(H

†
DH†

D)1(HDHD)1 + λ8(H
†
SHS)2

+λ′
9(H

†
DHD)1H

′†
S H ′

S + λ′′
9(H

†
DH ′

S)2(H
′†
S HD)2 + λ′′′

9 ((H†
DH ′

S)2
2 + h.c.)+

+λ′
10(H

†
DHD)1H

†
SHS + λ′′

10(H
†
DH ′

S)2(H
′†
S HD)2 + λ′′′

10((H
†
DHS)2

2 + h.c.)+

+λ11(H
†
DH†

D)2(HDHD)2 + λ12(H
′†
S H ′

S)2+

+λ13
′H ′†

S H ′
SH†

SHS + λ13
′′(H ′†

S H ′†
S HSHS + h.c.) + λ13

′′′H ′†
S HSH†

SH ′
S

(8)

where we used the subscripts 1, 1′ and 2 to refer to the S3 contractions when necessary and,

for any Higgs fields, H̃ = −iτT
2 H∗. In the case of real vev’s, that is

〈HD〉 = (v1, v2),

〈HS〉 = vS,

〈H ′
S〉 = v′

S,

〈χ〉 = vχ,

(9)
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the potential can be written as4

V = (λ11 + λ5 + λ6)(v
4
1 + v4

2) + v4
Sλ8 + v′4

S λ12 + v2
Sv′2

S λ13 + v′2
S µ1 + v2

Sµ3+

+ (µ4 + v2
Sλ3 + v′2

S λ4)χ2 + λ1χ
4 + (v2

Sλ10 + v′2
S λ9 + µ2 + λ2χ

2) (v2
2 + v2

1)+

+ (2v2
2v

2
1(λ5 − λ6 + λ7)) .

(10)

The minima of V are found solving the minimizing equations:

∂V
∂v1

= 2v1

[
λ2v

2
χ + λ10v

2
S + λ9v

′2
S + 2v2

1(λ11 + λ5 + λ6) + 2v2
2(λ5 − λ6 + λ7) + µ2

]
= 0,

∂V
∂v2

= 2v2

[
λ2v

2
χ + λ10v

2
S + λ9v

′2
S + 2v2

2(λ11 + λ5 + λ6) + 2v2
1(λ5 − λ6 + λ7) + µ2

]
= 0,

∂V
∂vS

= 2vS

[
λ3v

2
χ + λ10 (v2

1 + v2
2) + 2v2

Sλ8 + v′2
S λ13 + µ3

]
= 0,

∂V
∂v′s

= 2v′
s

[
λ4v

2
χ + λ9 (v2

1 + v2
2) + 2v′2

S λ12 + v2
Sλ13 + µ1

]
= 0,

∂V
∂vχ

= 2vχ

[
µ4 + 2λ1v

2
χ + λ2 (v2

1 + v2
2) + λ3v

2
S + λ4v

′2
S

]
= 0 .

(11)

The second equation is satisfied for v2 = 0. From the remaining equations we can easily get

the vevs of the other scalars in terms of the couplings of the Higgs potential; in particular,

a solution with v1 6= 0 can be found and the vev alignment of the S3 Higgs doublet assumes

the structure:

〈HD〉 = (v, 0) . (12)

For this vev configuration, it is possible to find a huge region of the Higgs parameter space

where the eigenvalues of the Hessian of the potential are all positive and therefore where

the Higgs potential has a local minimum. Note that a solution of the form 〈HD〉 = (0, v) is

physically equivalent to eq.(12), producing the same phenomenology in the charged lepton

and neutrino sectors. In fact it corresponds to the exchange of L1 with L2. We also verified

numerically that, in the large parameter space where eq.(12) is a minimum, other solutions

like 〈HD〉 = v (1, 1) do not produce positive definite Hessian. The mass spectra of the Higgs

particles will be discussed elsewhere.

4Where λi = λ′
i + λ′′

i + λ′′′
i for i = 9, 10, 13.
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4 Leptons

The most general Lagrangian invariant under G × SM is given by:

L =
y1

Λ
LDHDlRD

χ∗ +
y2

Λ
LDHSlRD

χ + y3L3HSlR3 , (13)

where Λ is the cut-off scale. Higher order terms only appear at O(1/Λ2) and will be consid-

ered negligible for our discussion. From eq.(12) the charged lepton mass matrix is:

Ml =




y2

Λ
vSvχ 0 0

y1

Λ
vvχ

y2

Λ
vSvχ 0

0 0 y3vS


 . (14)

When vχ is equal to zero only the τ lepton is massive. The electron and muon masses are

generated by the vev of the scalar χ and are then suppressed by the large scale Λ. The

matrix MlM
†
l has three distinct eigenvalues that can be identified with the squared charged

fermion masses as:

m2
e =

ε2

2

(
v2y2

1 + 2v2
Sy2

2 − vy1

√
v2y2

1 + 4v2
Sy2

2

)

m2
µ =

ε2

2

(
v2y2

1 + 2v2
Sy2

2 + vy1

√
v2y2

1 + 4v2
Sy2

2

)
(15)

m2
τ = v2

Sy2
3

where we introduced the short-hand notation ε = vχ/Λ. We see that for ε � 1, the hierarchy

among the τ and the lightest charged leptons is easily reproduced although the latter, in

absence of any fine-tuning among the Yukawas and/or the Higgs vevs, are expected to be

of the same order of magnitude. We address this question in the next section. The mass

matrix for the charged leptons can be written in terms of the physical lepton masses as:

Ml =




√
memµ 0 0

−mµ(1 − me

mµ
)

√
memµ 0

0 0 mτ


 , (16)

and the squared matrix MlM
†
l is then diagonalized by:

UL =




1q
1+ me

mµ

−
√

me

mµ

1q
1+ me

mµ

0
√

me

mµ

1q
1+ me

mµ

1q
1+ me

mµ

0

0 0 1


 ∼




1 −0.07 0

0.07 1 0

0 0 1


 . (17)
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5 Neutrino

The neutrino masses are generated by non-renormalizable operators of dimension 5 and 6

invariant under the group G × SM5:

Λ · Lν = yν
1 (LDLD)1(H̃DH̃D)1 + yν

2(LDLD)2(H̃DH̃D)2 + yν
3 (LDH̃D)1(LDH̃D)1 +

yν
4 (LDH̃D)1′(LDH̃D)1′ + yν

5(LDH̃D)2(LDH̃D)2 +

yν
6
′(LDLD)1(H̃SH̃S)1 χ∗/Λ + yν

6
′′(LDLD)1(H̃

′
SH̃ ′

S)1 χ∗/Λ + (18)

yν
7L3L3(H̃DH̃D)1 χ/Λ + yν

8
′ L3L3H̃SH̃S + yν

8
′′ L3L3H̃ ′

SH̃ ′
S +

yν
9 (LDH̃D)1L3H̃ ′

S ,

where we assumed that the large energy scale which suppresses these operators is of the

same order of the cutoff scale Λ. The only operators of dimension six are those proportional

to yν
6 = yν

6
′ + yν

6
′′ and yν

7 . From eq.(19) the neutrino mass matrix is as follows:

Mν =




0 2 yν
6(v

2
S + v′2

S )vχ/Λ 0

2 yν
6(v

2
S + v′2

S )vχ/Λ (yν
2 + yν

3 + yν
4)v

2 yν
9vv′

S

0 yν
9vv′

S yν
8(v

2
S + v′2

S )


 ≡




0 b 0

b a c

0 c d


 , (19)

where yν
8 = yν

8
′+yν

8
′′. Before discussing the phenomenological consequences of such a matrix,

it is useful to get an estimate of the relevant Yukawa parameters and a relation among the

vevs v and vS. Comparing eqs.(14) and (16) and using the parameterization in eq.(19) we

get:

√
memµ = y2 vS ε

mµ

(
1 − me

mµ

)
= y1 v ε

mτ = y3 vS

a = yν v2

b = 2 yν
6(v

2
S + v

′2
S ) ε ,

where we assumed that yν
2 + yν

3 + yν
4 = yν. We assume

v >∼ vs ∼ O(100) GeV, ε ∼ O(10−2)

5Dimension 7 operators can be built, for instance, adding the singlet χ2 or doublets H†H to the previous
d = 5 operators and will then be neglected.
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then if

y1 ∼ O(10−1), y2 ∼ O(10−2), y2 ∼ O(10−2),

we have the correct charged lepton mass hyerarchies. We then consider the b/a ratio

b

a
=

2 yν
6ε(v

2
S + v

′2
S )

yν v2 vS
. (20)

We numerically verified that
(

a
b

)
∼ O(1) so the Yukawa parameters must satisfy

yν
6 ∼ O(1), yν ∼ O(10−2).

With these assumptions, the hierarchy in the charged leptons is recovered, higher order terms

with more that one flavon insertions can be safely neglected and the largest vev is generated

by the S3 singlet Higgs HS that can be identified with the Standard Model Higgs.

The mass matrix in eq.(19) depends on five real parameters, one of which is related to

the Dirac phase. The other four parameters can be fixed using the experimental information

from both solar and atmospheric sectors, namely the solar and atmospheric mixing angles

and squared mass differences. The model allows for correlations among the angle θ13 and the

CP phase δ that can be easily obtained using the zeros of the Fritzsch texture. The previous

mass matrix is diagonalized by a unitary matrix Uν as

UνT MνU
ν = diag(µ1, µ2, µ3) (21)

where µi = mie
iφi and φi are Majorana phases. Writing Uν in the CKM-like form6

Uν =




cν
12c

ν
13 cν

13s
ν
12 e−iδνsν

13

−cν
23s

ν
12 − cν

12e
iδνsν

13s
ν
23 cν

12c
ν
23 − eiδνsν

12s
ν
13s

ν
23 cν

13s
ν
23

−cν
12c

ν
23e

iδνsν
13 + sν

12s
ν
23 −cν

23e
iδνsν

12s
ν
13 − cν

12s
ν
23 cν

13c
ν
23


 , (22)

and using the fact that the elements (Mν)11 and (Mν)13 are zero (see eq. (19)), eq.(22) implies:

µ2 = µ1
cos θν

12(− cot θν
12 cos θν

23+sin θν
12 sin θν

13 sin θν
23eiδν )

cos θν
23 sin θν

12+cos θν
12 sin θν

13 sin θν
23eiδν ,

µ3 = −µ1
cos θν

12 cos2 θν
13 sin θν

23e−iδν

sin θν
13(cos θν

23 sin θν
12+cos θν

12 sin θν
13 sin θν

23eiδν )
.

(23)

Our model is compatible with the normal mass ordering only because the ratio |µ2|2/|µ3|2 is

always less than 1; expanding it up to second order in sin θν
13 we get:

|µ2|2

|µ3|2
= cot2 θν

12 cot2 θν
23 sin2 θν

13 + O(sν3
13) , (24)

6We have used the short-hand notation sν
ij = sin θν

ij and cν
ij = cos θν

ij .
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and we checked that higher order corrections do not modify our statement. The mass

differences are written as:

∆m2
sol = m2

1

[
cos θν

23(cos θν
12 cos θν

23 csc2 θν
12 − 2 cos δν cot θν

12 sin θν
13 sin θν

23)

Dν

]
, (25)

and

∆m2
atm = m2

1

(
−1 +

cos2 θν
12 cos2 θν

13 cot2 θν
13 sin2 θν

23

Dν

)
, (26)

where

Dν = cos2 θν
23 sin2 θν

12 + sin 2θν
12 sin 2θν

23 sin θν
13 cos δν/2 + cos2 θν

12 sin2 θν
13 sin2 θν

23 . (27)

From the ratio α = ∆m2
sol/∆m2

atm we find a relation between α and the mixing angles sν
12,

sν
13 and sν

23

α = 2 sin2 θν
13 cot θν

23 csc θν
12 sec θν

12(− sin θν
13 cos δν + cot 2θν

12 cot θν
23) . (28)

which will be used below to constrain the physical θ13 and δ.

6 Phenomenology

To study the phenomenological implication of our model, it is necessary to relate the param-

eters in eq.(22) to the physical ones. This can be achieved introducing the rotations from the

charged lepton sector described in Sec.4; the resulting mapping is a set of implicit relations

that are quite cumbersome and will not be explicitly presented here. We limit ourselves to

describe the procedure which allows us to extract the predictions of our model. The lepton

mixing is defined by V = U †
LUν and we can write

Uν = ULV , (29)

where V is parametrized in the standard form as in eq. (22) replacing sν
ij and cν

ij with the

physical (that is measurable) sij = sin θij and cij = cos θij, respectively. Taking the ratio of

Uν
23 and Uν

33 from eq. (29) we find an expression for sν
23 in terms of the physical parameters

θ12, θ23, θ13 and the Dirac phase δ (and the corrections from the charged leptons). In the

same way, always using eq. (29), we can express sν
12 and sν

13 as a function of θ12, θ23, θ13, δ;

finally, δν is the argument of the element (13) of the matrix ULV . In this way we have all

the parameters θν
12, θν

13, θν
23 and δν as a function of the neutrino mixing angles θ13, θ12, θ23

9



and the phase δ. These relations can be inserted into eq. (28) to get an implicit connection

among the mixing parameters and α, which is a characteristic of our model. Also the lightest

mass eigenstate can be related to the same parameters and ∆m2
atm using eq. (26).

In the left panel of Fig.1 we show the dependence of sin2 θ13 as a function of δ taking

θ12, θ23 and α inside their experimental ranges. In particular, the solid line represents the 1σ

correlation when also the other parameters are left free to vary in their 1σ allowed ranges

quoted in [1], whereas the 2σ correlation is represented by the dot-dashed line. Finally,

dashed line is the relation obtained when θ12, θ23 and α are fixed to their best fit values.

We also included the upper limit on sin2 θ13 at 3σ (upper horizontal dashed line) and the

best fit value of ref. [1] (lower horizontal dashed line). We can see that, even considering

the 2σ uncertainty, the predicted values for sin2 θ13 are different from zero so that, to a very

good accuracy, our model is compatible with deviation from θ13 = 0 for any value of the

CP violating phase. The precise value of θ13, however, relies on the assumed magnitude for

δ; in particular, the CP conserving case δ = 0 is the most promising one to allow large θ13

(even above the current limits) whereas around δ ∼ ±π we get the smaller θ13 allowed in our

model. It is interesting to observe that, in the case of maximal CP violation 7 and for the

other oscillation parameters to their best fit values, the predicted sin2 θ13 is fully compatible

with the best fit value obtained in [1], sin2 θ13 ∼ 0.01. Notice that, in the case of diagonal

charged lepton mass matrix, the pattern of the θ13 − δ correlation would have been quite

similar, as it can be seen investigating the right panel of Fig.1. The fact that the corrections

coming from UL in eq.(17) are as large as the values of sin2 θ13 is responsible for lowering

the allowed θ13 for δ ∼ ±π. For maximal CP violation at the best fit point, the Jarlskog

invariant [14] is as follows:

J = c12s23c
2
13s12s23s13 sin δ = 0.023 . (30)

The next observable we want to discuss is the effective mass mee entering in the neutrino-

less double beta decay. In the basis where the charged leptons are diagonal, mee is nothing

but the (11) element of the neutrino mass matrix. According to eq.(19), this should vanishes

as long as the rotation in the charged leptons is proportional to the identity matrix. Since

this is not the case, a non-vanishing mee is generated by the rotation (17) and it is expected

to be small because of the smallness of its off-diagonal entries. This is what we can observe

in Fig.(2), where we plot the model predictions for mee as a function of the lightest neutrino

mass m1. For m1 below O(10−2) eV we get |mee| ∼ 10−3 eV and then outside the range of

7Maximal CP violation can be observed in incoming experiments T2K and NOνA, see for instance [12,13].
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future experimental sensitivities. We also see that the allowed range for the lightest neutrino

mass is around 10−3 − 10−2 eV ; this is because, as already mentioned in the introduction,

the Fritzsch texture gives a correlation between θν
12

8 and the ratio m1/m2 that, together

with the two measured square mass differences, fix the absolute neutrino scale in this range.
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Figure 1: Left panel: correlation among δ and sin2 θ13 as obtained in our model. The 1σ

result, obtained varying the other oscillation parameters also in their 1σ allowed ranges, is

showed with solid lines, whereas the 2σ result is showed with the dot-dashed line. The dashed

line is the relation obtained when θ12, θ23 and α are fixed to their best fit values. Horizontal

lines represent the upper limits on sin2 θ13 (upper dashed line) and the best fit values (lower

dashed line) from [1]. Right panel: the same as the left panel but assuming exactly diagonal

charged lepton mass matrix.

7 Conclusion

In this paper we have studied a leptonic model based on the discrete S3 permutation flavor

symmetry. We extended the scalar sector of the Standard Model by introducing three more

Higgs doublets and one scalar singlet. We have carefully studied the problem of the mini-

mization of the potential and found that a solution of the form (v, 0) for the Higsses in the

8Note that in the case of diagonal charged leptons the angle θ12 corresponds exactly to θν
12 and therefore

from eqs. (4) and (23), the solar mixing angle does not depend on the absolute scale of neutrino mass m1,
while in our case this relation acquires a small correction proportional to

√
me/mµ.
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Figure 2: Model predictions for |mee| as a function of the lightest neutrino mass m1. We also

show the allowed regions for the normal hierarchy (gray band). The two dashed horizontal

lines represent the experimental sensitivity of some of the forthcoming experiments while

the dashed vertical line is the upper limit for the sum of the absolute neutrino masses from

cosmological data. For references to experiments see [15–19].

S3 doublet representation is a viable minimum of the potential. With such a minimum, we

obtain a two-zero Fritzsch-texture for the neutrino mass matrix and a nearly diagonal and

hierarchical charged lepton mass matrix. As a consequence of the two zeros of the Fritzsch

texture, we get a strong correlation between the reactor angle θ13 and the Dirac CP phase

δ. In particular, for δ ∼ ±π/2 we predict sin2 θ13 ≈ 0.01, a value which is very close to the

best fit value quoted in [1]. Beside the reactor angle, we also investigated the prediction for

the effective mass mee governing the rate of the 0νββ decay, founding mee ≈ 10−3 eV , one

order of magnitude less than the sensitivities of the future experiments.
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