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Introduction

Although there is a robust evidence that neutrinos are mixed, many aspects of the neutrino physics are not clearly understood yet. Among them, the comprehension of the values of the masses and mixing and the differences with respect to the quark sector are an open problem whose solution seems to be quite far from being found. Recent data from neutrino oscillations produced the following results: 0.36 ≤ sin 2 θ 23 ≤ 0.67 0.27 ≤ sin 2 θ 12 ≤ 0.38 sin 2 θ 13 < 0.053 ,

and 2.07 × 10 -3 eV 2 ≤ ∆m 2 atm ≤ 2.75 × 10 -3 eV 2 , 7.03 × 10 -5 eV 2 ≤ ∆m 2 sol ≤ 8.27 × 10 -5 eV 2 ,

(2) at 99.73% confidence level [1] (see [2] for other recent interpretations of the neutrino data).

We have only hints coming from cosmological observations that the absolute values of the neutrino masses should be less than 1 eV [3]. In the quark sector the situation is quite different: not only the masses and the hierarchy in the up and down sectors are better known but also the mixing angles are well measured and strongly differ from the neutrino ones. A successful ansatz to reproduce these features in the quark sector is the Fritzsch-like texture [4], where both the up and down quark mass matrices have a simple form

M =    0 A 0 A * C B 0 B * D    . (3) 
Such a matrix (already described in, e.g., [5]) gives the well know relation

tan θ 12 = m 1 m 2 , (4) 
which predicts the Cabibbo angle whose small value is a consequence of the strong hierarchy in the masses. A texture as in eq.( 3) can also be employed for the Majorana neutrino mass matrix; this is a particular case of the class of two-zero texture [6] which, together with the two relations ∆m atm = m 2 3 -m 2 1 and ∆m sol = m 2 2 -m 2 1 , fix the absolute neutrino mass scale as suggested in [7]. Unlike the quark sector, the solar and atmospheric angles can be large due to the fact that in the neutrino sector the hierarchy is not so strong.

Although a vast class of Fritzsch-like textures (and their phenomenological consequences) has been already studied in the literature, in this paper we propose a leptonic model based on the permutation symmetry S 3 which naturally gives rise to a Fritzsch-type neutrino Majorana mass matrix (and, in addition, to a nearly diagonal charged leptons). At tree level, the tau lepton acquires a mass via the spontaneous electroweak symmetry breaking (ESB) driven by one S 3 doublet and two S 3 singlets, whereas the electron and the muon remain massless. Higher order operators, mediated by just one Standard Model (and S 3 ) scalar singlet (called the flavon) are responsible for m e , m µ = 0. In the neutrino sector, the Majorana mass matrix is generated by dimension five [8] and six operators.

The paper is organized as follows: in the next section we introduce the model; the scalar potential is studied in Sec.3; the lepton and neutrino mass matrices are introduced in Secs.4 and 5, respectively whereas their phenomenological consequences are discussed in Sec.6. Sec.7 is devoted to our conclusions.

The model

We propose a model based on S 3 , the group of permutations of three objects, which is the smallest non-Abelian discrete group. S 3 contains one doublet irreducible representation and two singlets. This feature is useful to separate the third family of fermions from the other two and has been already used for model building [9]. For pioneers papers see [10] (and also references in [11]).

The group S 3 has two generators S and T satisfying the following relations:

S 2 = T 3 = (ST ) 2 = 1 .
(

) 5 
One possible realization is the so-called "T-diagonal" basis where

S = 0 1 1 0 T = ω 0 0 ω 2 , (6) 
with ω = e i2/3π . The tensor products involving pseudo-singlets are given by 1 × 1 = 1 and 1 × 2 = 2 while the product of two doublets is 2 × 2 = 2 + 1 + 1 which, in terms of the components of the two doublets A = (a 1 , a 2 ) T and B = (b 1 , b 2 ) T in the T-diagonal basis, are as follows:

a 1 b 2 + a 2 b 1 ∈ 1 a 1 b 2 -a 2 b 1 ∈ 1 a 2 b 2 a 1 b 1 ∈ 2 . ( 7 
)
The product 2 * × 2 is similar to 2 × 2 with the exchange of a 1 ↔ a 2 .

Construction of the model

The Higgs sector is extended from one SU(2) L -doublet to two SU(2) L -doublets, H D = (H 1 , H 2 ) belonging to a doublet irreducible representation of S 3 and other two SU(2) L doublets, H S and H S , belonging to singlet representations of S 3 . We also introduce an electroweak scalar singlet χ which turns out to be relevant to give a non-vanishing electron and muon masses. In order to have nearly diagonal charged lepton mass matrix we assume two further parity symmetries, so that the global discrete symmetry group of the model is

G = S 3 ⊗ Z 5 ⊗ Z 2 .
The matter assignment under G ⊗ SM is summarized in Tab.1.

fields

L D = L 1,2 L 3 l R D = l R 1,2 l R 3 H D H S H S χ SU L (2) 2 2 1 1 2 2 2 1 Y -1 -1 -2 -2 1 1 1 0 S 3 2 1 2 1 2 1 1 1 Z 2 + - + - + + -+ Z 5 ω 2 ω ω ω 2 ω 3 ω 4 ω 4 ω 2
Table 1: Matter assignment of the model. ω is the Z 5 charge ω = e i2/5π and Y is the SM hypercharge in the convention Y = 2(Q -T 3 ), where T 3 is the third component of the SM SU( 2) doublets.

The scalar potential

The most general Higgs potential invariant under G × SM is as follows:

V = µ 1 H † S H S + µ 2 (H † D H D ) 1 + µ 3 H † S H S + µ 4 |χ| 2 + λ 1 |χ| 4 +(λ 2 H † D H D + λ 3 H † S H S + λ 4 H † S H S )|χ| 2 + λ 5 [(H † D H D )] 2 + λ 6 [(H † D H D ) 1 ] 2 +λ 7 [(H † D H D ) 2 ] 2 + λ 7 (H † D H † D ) 1 (H D H D ) 1 + λ 8 (H † S H S ) 2 +λ 9 (H † D H D ) 1 H † S H S + λ 9 (H † D H S ) 2 (H † S H D ) 2 + λ 9 ((H † D H S ) 2 2 + h.c.)+ +λ 10 (H † D H D ) 1 H † S H S + λ 10 (H † D H S ) 2 (H † S H D ) 2 + λ 10 ((H † D H S ) 2 2 + h.c.)+ +λ 11 (H † D H † D ) 2 (H D H D ) 2 + λ 12 (H † S H S ) 2 + +λ 13 H † S H S H † S H S + λ 13 (H † S H † S H S H S + h.c.) + λ 13 H † S H S H † S H S (8) 
where we used the subscripts 1, 1 and 2 to refer to the S 3 contractions when necessary and, for any Higgs fields, H = -iτ T 2 H * . In the case of real vev's, that is

H D = (v 1 , v 2 ), H S = v S , H S = v S , χ = v χ , (9) 
the potential can be written as4 

V = (λ 11 + λ 5 + λ 6 )(v 4 1 + v 4 2 ) + v 4 S λ 8 + v 4 S λ 12 + v 2 S v 2 S λ 13 + v 2 S µ 1 + v 2 S µ 3 + + (µ 4 + v 2 S λ 3 + v 2 S λ 4 ) χ 2 + λ 1 χ 4 + (v 2 S λ 10 + v 2 S λ 9 + µ 2 + λ 2 χ 2 ) (v 2 2 + v 2 1 )+ + (2v 2 2 v 2 1 (λ 5 -λ 6 + λ 7 )) . (10) 
The minima of V are found solving the minimizing equations:

∂V ∂v 1 = 2v 1 λ 2 v 2 χ + λ 10 v 2 S + λ 9 v 2 S + 2v 2 1 (λ 11 + λ 5 + λ 6 ) + 2v 2 2 (λ 5 -λ 6 + λ 7 ) + µ 2 = 0, ∂V ∂v 2 = 2v 2 λ 2 v 2 χ + λ 10 v 2 S + λ 9 v 2 S + 2v 2 2 (λ 11 + λ 5 + λ 6 ) + 2v 2 1 (λ 5 -λ 6 + λ 7 ) + µ 2 = 0, ∂V ∂v S = 2v S λ 3 v 2 χ + λ 10 (v 2 1 + v 2 2 ) + 2v 2 S λ 8 + v 2 S λ 13 + µ 3 = 0, ∂V ∂v s = 2v s λ 4 v 2 χ + λ 9 (v 2 1 + v 2 2 ) + 2v 2 S λ 12 + v 2 S λ 13 + µ 1 = 0, ∂V ∂vχ = 2v χ µ 4 + 2λ 1 v 2 χ + λ 2 (v 2 1 + v 2 2 ) + λ 3 v 2 S + λ 4 v 2 S = 0 . ( 11 
)
The second equation is satisfied for v 2 = 0. From the remaining equations we can easily get the vevs of the other scalars in terms of the couplings of the Higgs potential; in particular, a solution with v 1 = 0 can be found and the vev alignment of the S 3 Higgs doublet assumes the structure:

H D = (v, 0) . ( 12 
)
For this vev configuration, it is possible to find a huge region of the Higgs parameter space where the eigenvalues of the Hessian of the potential are all positive and therefore where the Higgs potential has a local minimum. Note that a solution of the form H D = (0, v) is physically equivalent to eq.( 12), producing the same phenomenology in the charged lepton and neutrino sectors. In fact it corresponds to the exchange of L 1 with L 2 . We also verified numerically that, in the large parameter space where eq.( 12) is a minimum, other solutions like H D = v (1, 1) do not produce positive definite Hessian. The mass spectra of the Higgs particles will be discussed elsewhere.

Leptons

The most general Lagrangian invariant under G × SM is given by:

L = y 1 Λ L D H D l R D χ * + y 2 Λ L D H S l R D χ + y 3 L 3 H S l R 3 , ( 13 
)
where Λ is the cut-off scale. Higher order terms only appear at O(1/Λ 2 ) and will be considered negligible for our discussion. From eq.( 12) the charged lepton mass matrix is:

M l =    y 2 Λ v S v χ 0 0 y 1 Λ vv χ y 2 Λ v S v χ 0 0 0 y 3 v S    . ( 14 
)
When v χ is equal to zero only the τ lepton is massive. The electron and muon masses are generated by the vev of the scalar χ and are then suppressed by the large scale Λ. The matrix M l M † l has three distinct eigenvalues that can be identified with the squared charged fermion masses as:

m 2 e = ε 2 2 v 2 y 2 1 + 2v 2 S y 2 2 -vy 1 v 2 y 2 1 + 4v 2 S y 2 2 m 2 µ = ε 2 2 v 2 y 2 1 + 2v 2 S y 2 2 + vy 1 v 2 y 2 1 + 4v 2 S y 2 2 ( 15 
)
m 2 τ = v 2 S y 2 3
where we introduced the short-hand notation ε = v χ /Λ. We see that for ε 1, the hierarchy among the τ and the lightest charged leptons is easily reproduced although the latter, in absence of any fine-tuning among the Yukawas and/or the Higgs vevs, are expected to be of the same order of magnitude. We address this question in the next section. The mass matrix for the charged leptons can be written in terms of the physical lepton masses as:

M l =    √ m e m µ 0 0 -m µ (1 -me mµ ) √ m e m µ 0 0 0 m τ    , (16) 
and the squared matrix M l M † l is then diagonalized by:

U L =      1 q 1+ me mµ -me mµ 1 q 1+ me mµ 0 me mµ 1 q 1+ me mµ 1 q 1+ me mµ 0 0 0 1      ∼    1 -0.07 0 0.07 1 0 0 0 1    . ( 17 
)

Neutrino

The neutrino masses are generated by non-renormalizable operators of dimension 5 and 6 invariant under the group G × SM5 :

Λ • L ν = y ν 1 (L D L D ) 1 ( HD HD ) 1 + y ν 2 (L D L D ) 2 ( HD HD ) 2 + y ν 3 (L D HD ) 1 (L D HD ) 1 + y ν 4 (L D HD ) 1 (L D HD ) 1 + y ν 5 (L D HD ) 2 (L D HD ) 2 + y ν 6 (L D L D ) 1 ( HS HS ) 1 χ * /Λ + y ν 6 (L D L D ) 1 ( H S H S ) 1 χ * /Λ + ( 18 
)
y ν 7 L 3 L 3 ( HD HD ) 1 χ/Λ + y ν 8 L 3 L 3 HS HS + y ν 8 L 3 L 3 H S H S + y ν 9 (L D HD ) 1 L 3 H S ,
where we assumed that the large energy scale which suppresses these operators is of the same order of the cutoff scale Λ. The only operators of dimension six are those proportional to y ν 6 = y ν 6 + y ν 6 and y ν 7 . From eq.( 19) the neutrino mass matrix is as follows:

M ν =    0 2y ν 6 (v 2 S + v 2 S )v χ /Λ 0 2 y ν 6 (v 2 S + v 2 S )v χ /Λ (y ν 2 + y ν 3 + y ν 4 )v 2 y ν 9 vv S 0 y ν 9 vv S y ν 8 (v 2 S + v 2 S )    ≡    0 b 0 b a c 0 c d    , (19) 
where y ν 8 = y ν 8 + y ν 8 . Before discussing the phenomenological consequences of such a matrix, it is useful to get an estimate of the relevant Yukawa parameters and a relation among the vevs v and v S . Comparing eqs.( 14) and ( 16) and using the parameterization in eq.( 19) we get:

√ m e m µ = y 2 v S ε m µ 1 - m e m µ = y 1 v ε m τ = y 3 v S a = y ν v 2 b = 2 y ν 6 (v 2 S + v 2 S ) ε ,
where we assumed that y ν 2 + y ν 3 + y ν 4 = y ν . We assume

v > ∼ v s ∼ O(100) GeV, ε ∼ O(10 -2 ) then if y 1 ∼ O(10 -1 ), y 2 ∼ O(10 -2 ), y 2 ∼ O(10 -2 ),
we have the correct charged lepton mass hyerarchies. We then consider the b/a ratio

b a = 2 y ν 6 ε(v 2 S + v 2 S ) y ν v 2 v S . ( 20 
)
We numerically verified that a b ∼ O( 1) so the Yukawa parameters must satisfy

13 (cos θ ν 23 sin θ ν 12 +cos θ ν 12 sin θ ν 13 sin θ ν 23 e iδν ) . ( 23 
)
Our model is compatible with the normal mass ordering only because the ratio |µ 2 | 2 /|µ 3 | 2 is always less than 1; expanding it up to second order in sin θ ν 13 we get:

|µ 2 | 2 |µ 3 | 2 = cot 2 θ ν 12 cot 2 θ ν 23 sin 2 θ ν 13 + O(s ν3 13 ) , (24) 
and we checked that higher order corrections do not modify our statement. The mass differences are written as:

∆m 2 sol = m 2 1 cos θ ν 23 (cos θ ν 12 cos θ ν 23 csc 2 θ ν 12 -2 cos δ ν cot θ ν 12 sin θ ν 13 sin θ ν 23 ) D ν , (25) 
and

∆m 2 atm = m 2 1 -1 + cos 2 θ ν 12 cos 2 θ ν 13 cot 2 θ ν 13 sin 2 θ ν 23 D ν , (26) 
where 

D ν = cos
) 28 
which will be used below to constrain the physical θ 13 and δ.

Phenomenology

To study the phenomenological implication of our model, it is necessary to relate the parameters in eq.( 22) to the physical ones. This can be achieved introducing the rotations from the charged lepton sector described in Sec.4; the resulting mapping is a set of implicit relations that are quite cumbersome and will not be explicitly presented here. We limit ourselves to describe the procedure which allows us to extract the predictions of our model. The lepton mixing is defined by V = U † L U ν and we can write

U ν = U L V , (29) 
where V is parametrized in the standard form as in eq. ( 22) replacing s ν ij and c ν ij with the physical (that is measurable) s ij = sin θ ij and c ij = cos θ ij , respectively. Taking the ratio of U ν 23 and U ν 33 from eq. ( 29) we find an expression for s ν 23 in terms of the physical parameters θ 12 , θ 23 , θ 13 and the Dirac phase δ (and the corrections from the charged leptons). In the same way, always using eq. ( 29), we can express s ν 12 and s ν 13 as a function of θ 12 , θ 23 , θ 13 , δ; finally, δ ν is the argument of the element (13) of the matrix U L V . In this way we have all the parameters θ ν 12 , θ ν 13 , θ ν 23 and δ ν as a function of the neutrino mixing angles θ 13 , θ 12 , θ 23 and the phase δ. These relations can be inserted into eq. ( 28) to get an implicit connection among the mixing parameters and α, which is a characteristic of our model. Also the lightest mass eigenstate can be related to the same parameters and ∆m 2 atm using eq. ( 26). In the left panel of Fig. 1 we show the dependence of sin 2 θ 13 as a function of δ taking θ 12 , θ 23 and α inside their experimental ranges. In particular, the solid line represents the 1σ correlation when also the other parameters are left free to vary in their 1σ allowed ranges quoted in [1], whereas the 2σ correlation is represented by the dot-dashed line. Finally, dashed line is the relation obtained when θ 12 , θ 23 and α are fixed to their best fit values. We also included the upper limit on sin 2 θ 13 at 3σ (upper horizontal dashed line) and the best fit value of ref. [1] (lower horizontal dashed line). We can see that, even considering the 2σ uncertainty, the predicted values for sin 2 θ 13 are different from zero so that, to a very good accuracy, our model is compatible with deviation from θ 13 = 0 for any value of the CP violating phase. The precise value of θ 13 , however, relies on the assumed magnitude for δ; in particular, the CP conserving case δ = 0 is the most promising one to allow large θ 13 (even above the current limits) whereas around δ ∼ ±π we get the smaller θ 13 allowed in our model. It is interesting to observe that, in the case of maximal CP violation7 and for the other oscillation parameters to their best fit values, the predicted sin 2 θ 13 is fully compatible with the best fit value obtained in [1], sin 2 θ 13 ∼ 0.01. Notice that, in the case of diagonal charged lepton mass matrix, the pattern of the θ 13 -δ correlation would have been quite similar, as it can be seen investigating the right panel of Fig. 1. The fact that the corrections coming from U L in eq.( 17) are as large as the values of sin 2 θ 13 is responsible for lowering the allowed θ 13 for δ ∼ ±π. For maximal CP violation at the best fit point, the Jarlskog invariant [14] is as follows: J = c 12 s 23 c 2 13 s 12 s 23 s 13 sin δ = 0.023 .

The next observable we want to discuss is the effective mass m ee entering in the neutrinoless double beta decay. In the basis where the charged leptons are diagonal, m ee is nothing but the (11) element of the neutrino mass matrix. According to eq.( 19), this should vanishes as long as the rotation in the charged leptons is proportional to the identity matrix. Since this is not the case, a non-vanishing m ee is generated by the rotation (17) and it is expected to be small because of the smallness of its off-diagonal entries. This is what we can observe in Fig. (2), where we plot the model predictions for m ee as a function of the lightest neutrino mass m 1 . For m 1 below O(10 -2 ) eV we get |m ee | ∼ 10 -3 eV and then outside the range of future experimental sensitivities. We also see that the allowed range for the lightest neutrino mass is around 10 -3 -10 -2 eV ; this is because, as already mentioned in the introduction, the Fritzsch texture gives a correlation between θ ν 128 and the ratio m 1 /m 2 that, together with the two measured square mass differences, fix the absolute neutrino scale in this range. [1]. Right panel: the same as the left panel but assuming exactly diagonal charged lepton mass matrix.

Conclusion

In this paper we have studied a leptonic model based on the discrete S 3 permutation flavor symmetry. We extended the scalar sector of the Standard Model by introducing three more Higgs doublets and one scalar singlet. We have carefully studied the problem of the minimization of the potential and found that a solution of the form (v, 0) for the Higsses in the We also show the allowed regions for the normal hierarchy (gray band). The two dashed horizontal lines represent the experimental sensitivity of some of the forthcoming experiments while the dashed vertical line is the upper limit for the sum of the absolute neutrino masses from cosmological data. For references to experiments see [15][16][17][18][19].

S 3 doublet representation is a viable minimum of the potential. With such a minimum, we obtain a two-zero Fritzsch-texture for the neutrino mass matrix and a nearly diagonal and hierarchical charged lepton mass matrix. As a consequence of the two zeros of the Fritzsch texture, we get a strong correlation between the reactor angle θ 13 and the Dirac CP phase δ. In particular, for δ ∼ ±π/2 we predict sin 2 θ 13 ≈ 0.01, a value which is very close to the best fit value quoted in [1]. Beside the reactor angle, we also investigated the prediction for the effective mass m ee governing the rate of the 0νββ decay, founding m ee ≈ 10 -3 eV , one order of magnitude less than the sensitivities of the future experiments.

Figure 1 :

 1 Figure1: Left panel: correlation among δ and sin 2 θ 13 as obtained in our model. The 1σ result, obtained varying the other oscillation parameters also in their 1σ allowed ranges, is showed with solid lines, whereas the 2σ result is showed with the dot-dashed line. The dashed line is the relation obtained when θ 12 , θ 23 and α are fixed to their best fit values. Horizontal lines represent the upper limits on sin 2 θ 13 (upper dashed line) and the best fit values (lower dashed line) from[1]. Right panel: the same as the left panel but assuming exactly diagonal charged lepton mass matrix.

Figure 2 :

 2 Figure 2: Model predictions for |m ee | as a function of the lightest neutrino mass m 1 .We also show the allowed regions for the normal hierarchy (gray band). The two dashed horizontal lines represent the experimental sensitivity of some of the forthcoming experiments while the dashed vertical line is the upper limit for the sum of the absolute neutrino masses from cosmological data. For references to experiments see[15][16][17][18][19].

Whereλ i = λ i + λ i + λ i for i =9, 10, 13. 

Dimension 7 operators can be built, for instance, adding the singlet χ 2 or doublets H † H to the previous d = 5 operators and will then be neglected.

We have used the short-hand notation s ν ij = sin θ ν ij and c ν ij = cos θ ν ij .

Maximal CP violation can be observed in incoming experiments T2K and NOνA, see for instance[12,13].

Note that in the case of diagonal charged leptons the angle θ 12 corresponds exactly to θ ν 12 and therefore from eqs. (4) and (23), the solar mixing angle does not depend on the absolute scale of neutrino mass m 1 , while in our case this relation acquires a small correction proportional to m e /m µ .
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