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One of the most fundamental questions in the field of relativistic heavy ion physics is how to reach
and explore densities which are needed to cross the chiral and/or the deconfinement phase transition.
In this analysis we investigate the information we can gather by analyzing baryonic and mesonic
resonances on the hot and dense phase in such nuclear reactions. The decay products of these
resonances carry information on the resonances properties at the space time point of their decay.
We especially investigate the percentage of reconstructable resonances as a function of density for
heavy ion collisions in the energy range between Elab = 30 AGeV and

√
s = 200 AGeV, the energy

domain between the future FAIR facility and the present RHIC collider.

PACS numbers: 24.10.Lx,25.75.-q,25.75.Dw

Resonances have been investigated as probes for the interior of heavy ion reactions for a long time. Their properties
have been analyzed in various experiments ranging from low energy collisions [1, 2] through intermediate [3, 4] to high
energy heavy ion collisions [5–7]. In general one distinguishes between leptonic and hadronic decay channels. While
the hadronic decay channels have the advantage of larger branching ratios, the leptonic decays have the advantage
that the decay particles do not undergo final state interactions. It has been shown recently [11] that dileptons might
not be favorable as an observable for the high density phase of heavy ion collisions. Thus we will focus on the
hadronic decay channels and investigate their possibility to measure the hot and dense phase of nuclear reactions.

The present Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the upcoming Facility for Antiproton and
Ion Research (FAIR, for a recent status on the project we refer to [8] and articles in these proceedings) provide an
excellent research environment for probing resonances in matter. At the RHIC experiments it has been observed [9]
that less resonances are measured than expected from statistical model calculations [10]. Stable hadrons however
follow the prediction of this model. This suggests the conclusion that after chemical freeze-out, when the chemical
composition of the final state is determined, hadrons still undergo collisions and therefore some of the resonances
cannot be identified by the invariant mass of the decay products.

At FAIR the leptonic as well as the hadronic decay channel can be measured. While the leptonic channel is usually
regarded as the ’cleaner’ channel recent calculations [11] have shown that the dilepton channel might not probe the
dense phase as it was expected before.
In light of this new development it is worthwhile to evaluate the density-profile and the space-time-evolution of
resonances which can be reconstructed in the hadronic decay channels. Although those channels suffer from the
drawback of final state interaction of the decay products, their large branching ratios might make them better suited
for the investigation of the high density phase of heavy ion collisions compared to leptonic decay channels.

For our calculations we utilize the UrQMD(v2.3) model, a non-equilibrium transport approach, which relies on
the covariant Boltzmann equation. All cross sections are calculated by the principle of detailed balance and the
additive quark model or are fitted to available data. UrQMD does not include any explicit in-medium modifications
for vector mesons or effects to describe the restoration of chiral symmetry. The model allows to study the full space
time evolution of all hadrons, resonances and their decay products in hadron-hadron or nucleus-nucleus collisions.
This permits to explore the emission patterns of resonances in detail and to gain insight into their origins and decay
channels. For previous studies of resonances within this model see [11–17]. For further details about the UrQMD
model the reader is referred to [18, 19].

The experimental reconstruction of resonances is challenging. One often applied technique is to reconstruct the
invariant mass spectrum for single events. Then, an invariant mass distribution of mixed events is generated (here,
the particle pairs are uncorrelated by definition). The mixed event distribution is subtracted from the invariant
mass spectrum of the single (correlated) events. As a result one obtains the mass distributions and yields (after all
experimental corrections) of the resonances by fitting the resulting distribution with a suitable function (usually a
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Breit-Wigner function peaked around the pole mass of the respective resonance).
If the resonance spectral function changes in the hadronic medium this is in principle visible in the difference

spectrum between true and mixed events. However, if a daughter particle (re-)scatters before reaching the detector
the signal for the experimental reconstruction is blurred or even lost. Especially for strongly interacting decay
products this effect can be sizeable. It is therefore difficult to judge whether a deviation from an expected Breit-
Wigner distribution is due to an initial deformation or an increase of the initial width or due to the momentum
dependence of the rescattering cross section of the daughter particles.

What makes this analysis even tougher is the fact that the resonances decay over a wide range of densities and
therefore only an average value is measured. If this average value is dominated by resonance decays at low density
the information from the high density phase is blurred and thus the resonance analysis may offer only a limited view
on the high density phase of the heavy ion collision.

Within UrQMD we apply a different technique for the extraction of resonances. We follow the individual decay
products of each decaying resonance (the daughter particles). If the daughter particles do not rescatter in the further
evolution of the system, the resonance is counted as “reconstructable”. The advantage of this method is that it allows
to trace back the origin of each individual resonance to study their spatial and temporal emission pattern. Because
UrQMD follows the space time evolution of all particles it is possible to link production and decay point of each
individual resonance. This method also allows to explore the reconstruction efficiency in different decay branches.
Note however, that this method is restricted to theoretical models and not applicable in experimental analyses.

In order to calculate at which density the resonance decays we have to determine the baryonic density. The baryon
density is calculated locally at the position of the resonance in the rest frame of the baryon current (Eckart frame)
as ρB = j0 with jµ = (ρB ,~0). Details on the calculation of the baryon density are discussed in [11]. One should note
that the method chosen is insensitive to the parameters of the density calculation if chosen within reasonable bounds.
A variation of the Gaussian widths by 50% resulted in no sizable difference in the obtained results. In all figures we
present the density in units of ground state density, where a value of 0.16 1/fm3 is assumed. All analyses presented
in this work are done for central (impact parameter b≤3.4fm) Au+Au collisions at either FAIR energies of Elab =
30 AGeV or top RHIC energies of

√
s = 200 AGeV.

In the following we discuss the density dependence of the probability that a resonance can be reconstructed. Naively,
one would expect that the higher the densities the more the rescattering effect becomes dominant. Therefore it is
unlikely that a resonance which decays at high density is reconstructable. The view on the low density zone is expected
to remain unblurred but is less interesting because it resembles that observed in elementary collisions.
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FIG. 1: (Color online) Fraction of reconstructable baryon resonances (top) and meson resonances (bottom) as a function of
baryon density at the point of production.

Depicted in Fig. 1 left (right) is the probability that a baryon resonance - shown are ∆, Σ∗(1385) and Λ∗(1520)
baryon resonances (ρ, ω, K∗0 and Φ mesons) - which was produced at a certain density can be reconstructed experi-
mentally. One observes a clear peak at very low density and a steady decrease towards higher density. This means
that resonances that are produced at rather low density have a high probability to be detected and as the density
increases the chance to reconstruct the resonances decreases. This is nothing unexpected. However, this trend stops
at roughly 2 ρ0. At higher densities the chance to reconstruct a resonance saturates or even increases slightly again.
This increase, which we discuss later in detail, is caused by resonances which picked up very high transverse momenta
and leave the interaction zone quickly. This results in a decay in a region with less hadronic activity and a higher
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FIG. 2: (Color online) Probability distribution of baryon density at the production vertex for various reconstructable resonances
in central (b ≤ 3.4 fm) Au+Au collisions at 30 AGeV (top figure) and 200 AGeV (bottom figure) as a function of baryon density.
One observes that most resonances which can be reconstructed in the hadronic decay channel originate from low baryon density.

chance to be reconstructed.
Whereas the form of the curves is qualitatively similar for the different hadrons the absolute value of the fraction

of reconstructable resonances is rather different. It can be understood in terms of lifetimes of the resonances and in
terms of the rescattering cross sections of the decay products.

Due to the large cross section of pions in nuclear matter (usually undergoing N +π → ∆ or π+π → ρ reactions) the
probability to detect a high density ∆ resonance or a ρ meson is rather small compared to the probability to detect
a high density Φ meson, since the Φ meson itself has a small cross section in nuclear matter and a long lifetime of ∼
40 fm/c and the hadronic decay products (mostly kaons and antikaons) have a smaller cross sections compared to the
pions from the decay of a ρ meson. Similarly, the long lifetime of the Λ increases their possibility to be reconstructed.
As mentioned earlier, the saturation or slight increase of the reconstruction probability as a function of density has
its origin in the possibility that resonances with a large pT can escape quickly from the reaction zone which is rather
small initially.

Fig. 2 shows for various resonances the probability that an experimentally reconstructable resonance has been
created at a density ρ. The integral over all densities is normalized to unity. One observes that most of those
resonances are produced at very low densities, which is especially true for the mesonic resonances.

Reconstructable baryon resonances stem from slightly higher baryon densities, however most are still produced at
rather low densities (with a peak at roughly 0.1 ground state density). So the detection of resonances produced at
densities above ground state densities using hadronic decay channels seems not too encouraging. However, as we
discuss next, a loophole might exist.

Let us illustrate this further with two examples which are representative for all investigated particles.
Fig. 3 depicts the average transverse momentum of ∆ baryon resonances (left) and ρ meson resonances (right) as a

function of baryon density. Lines show reconstructable resonances, symbols show all decayed resonances. The striking
feature is the different average transverse momentum between all resonances and those which are reconstructable.
The higher the average transverse momentum, the larger is the chance that the resonance can be reconstructed. The
< pT > of reconstructable ∆/ρ resonances is about 200 MeV higher than for all resonances. Resonances with a large
pT can leave the high density zone rather fast and move with a velocity of about < pT > /m outwards.

Another interesting feature in Fig. 3 is the difference between the
√

s=200 AGeV and Elab=30 AGeV curves. While
the Elab=30 AGeV data shows a decrease of < pT > as a function of the baryon density, the

√
s=200 AGeV data

show an increase. At
√

s=200 AGeV the initial collisions (which happen at high baryon density) are more energetic
and give the particles a high transverse momentum, subsequent rescattering decreases pT . For the Elab=30 AGeV
collisions the situation is opposite. Initially the particle pT is small and the rescattering increases the pT due to
transverse expansion.

Fig. 4 shows the pT dependence of the reconstruction probability in detail. It shows the transverse momentum
spectra for all (full symbols) and reconstructable resonances (open symbols) for two different energies. The numbers
stated in the three shaded areas (pT < 1 GeV, 1 GeV < pT < 2 GeV, pT > 2 GeV ) are the percentages of
reconstructable resonances created at a density higher than 2ρ0. One observes that at low transverse momentum the
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FIG. 3: (Color online) Average transverse momentum of reconstructable (line) or all (symbol) ∆ baryons as a function of
baryon density for two different energies (left figure). Average transverse momentum of reconstructable (line) or all (symbol)
ρ mesons as a function of baryon density for two different energies (right figure).

percentage of reconstructable resonances is low and increases when going to higher transverse momenta, i.e. that
with increasing pT the chance to reconstruct a resonance produced at high baryon density increases. This effect is
more pronounced in RHIC collisions at

√
s = 200 AGeV than in collisions with an energy of Elab = 30 AGeV.

One might raise the question whether resonances with high transverse momentum are actually sensitive to the very
hot and dense quark gluon phase. Although there is no partonic phase build in the approach we are using, there
have been calculated estimates recently [22]. There it has been shown that the formation time of resonances are well
within the estimated lifetime of the quark-gluon-plasma.
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FIG. 4: (Color online) Transverse momentum spectra for all and reconstructable resonances for central (b≤3.4 fm) Au+Au
collision at Elab = 30 AGeV (left) and

√
s = 200 AGeV beam energy. Full circles depict the spectrum for all decayed resonances

(included in the analysis are ∆, Λ, Σ baryons, as well as ρ, ω,K∗0 and ω mesons), open circles for reconstructable resonances.
The numbers indicate the percentage of reconstructable resonances stemming from density region with ρ/ρ0 > 2.

In conclusion, we have discussed that the view on the high density zone may not be as restricted as usually assumed
when analyzing hadronic resonances.

We argued that resonances detected with high transverse momentum are sensitive to higher densities. It will be
interesting to explore if the properties of these resonances are different from the bulk emitted at low densities. The
exploration of high pT resonances might therefore open a new keyhole at the upcoming CBM experiment at FAIR or
the low energy program at RHIC to gain information on the high density zone and to observe eventual changes of
resonance properties in the medium.
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