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Abstract. We consider the phase structure of hadronic and hadron-quark models
at finite temperature and density. The basis for the hadronic part is an extension of
a flavor-SU(3) σ − ω model. We study the effect on the phase diagram by adding
additional hadronic resonances to the model. With the resulting equation of state
we investigate heavy-ion collisions using hydrodynamical simulations. In a combined
approach we include quarks and the Polyakov loop field in the calculation and study
chiral symmetry restoration and the deconfinement transition.

1. The Model Description

A key topic in the study of relativistic heavy-ion collisions is the investigation of the

phase structure of highly excited strongly-interacting hadronic and quark matter. This

includes the phase transition to a chirally symmetric and deconfined phase at high

temperatures and/or densities. From the experimental side one approach to study the

transition behavior is to use different beam energies to sample the transition region over

a range of excitation energies and densities.

At zero chemical potential QCD lattice simulations show a smooth cross-over of

the system to a phase with deconfinement and chiral symmetry restoration. Some

lattice calculations at finite chemical potential suggest the existence of a critical end-

point of a line of first-order phase transition at T ≈ 160MeV and µq ≈ 120MeV [1].

In the following we investigate the consequences of phase structures of that type by

considering chiral hadronic and combined hadron-quark models. The model description

of the hadronic system contains the lowest baryonic and mesonic SU(3) multiplets.

The interaction of the scalar mesons and baryons generates the vacuum masses of the
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baryons. The general interaction of baryons and the scalar (BM) and vector mesons

(BV) reads (assuming static and isospin-symmetric systems)

LBM = −
∑

i

ψi (giσσ + giζζ) ψi

, LBV = −
∑

i

ψi

(
giωγ0ω

0 + giφγ0φ
0
)
ψi . (1)

σ is the scalar non-strange meson where as ζ denotes the scalar (ss) state, whereas ω and

φ are the corresponding vector mesons. The sums extend over the baryon octet states.

Additional terms in the Lagrangian include mass terms and quartic self-interactions of

the vector mesons whereas the self-interactions of the scalar meson multiplet induce

the spontaneous breaking of chiral symmetry. The effect of non-zero current quark

masses are included by introducing an explicit chiral-symmetry breaking term (for a

detailed discussion of the Lagrangian see [2]). As a consequence of the coupling terms

the effective masses of the baryons are generated through their couplings to the chiral

condensates:

m∗
i (σ, ζ) = giσ σ + giζ ζ + δmi, . (2)

with a small explicit mass term δmi. All parameters of the model are fixed by symmetry

relations, hadronic vacuum and nuclear matter saturation properties ([2]). It has been

shown that by fine-tuning parameters the model provides a good quantitative description

of the properties of finite nuclei and the structure of neutron stars [2, 3].

2. Phase Diagram in the Hadronic Model

Restricting the baryonic degrees of freedom to the lowest lying octet, the model exhibits

cross-over phase transitions towards the chirally restored phase for high temperatures as

well as for high densities [2]. Including higher resonances this behaviour can change. In

order to avoid introducing many new unknown coupling constants for the baryon-meson

interactions for higher multiplets we model the influence of such heavy baryonic states by

adding a single resonance with mass mR = m0 + gRσ and vector coupling gRω = rV gNω .

and a degeneracy factor. The mass parameters, m0 , gR, the relative vector coupling rV

and the degeneracy represents free parameters, adjusted to reproduce a phase diagram

with a critical end-point as suggested by lattice simulations. An extended discussion of

the procedure can be found in [4, 5].

By maximizing the pressure one obtains self-consistent gap equations for the meson

fields, which are solved numerically. As can be seen in Fig. 1, with appropriate choice

of parameters it is possible to generate a phase diagram with a line of first-order phase

transitions ending in a critical end-point at T ≈ 180MeV and µq ≈ 110MeV, close

to the lattice values [1]. We use the resulting equation of state in a hydrodynamical

simulation of central Pb+Pb heavy-ion collisions. The evolution of the system in the

energy density and density plane is shown in Fig. 5. The shaded area shows the region

of the mixed phase where the system passes through a first order phase transition. The
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Figure 1. Line of first order phase transition in the T-µ diagram.

Figure 2. Evolution of the averaged energy density and density of a central Pb-Pb
collision system in a hydrodynamic simulation. The initial conditions were generated
by a UrQMD simulation (thin lines) and by an overlap model (thick lines). The shaded
area marks the region of the phase transition. The region marked in black is physically
not accessible.

figure suggests that the critical end-point is reached and sampled for beam energies

around 160 GeV per nucleon (see [7]).

3. Including Quarks

In order to represent the correct degrees of freedom at high temperatures and densities

we include quark fields into our model description following the general approach

outlined in [10, 11]. In the following we present results for vanishing chemical potential

[6].

The quarks couple to the mean fields of the model. As order parameter for

the deconfinement transition we introduce an effective Polyakov loop field Φ and its
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conjugate Φ∗ with a potential for the field reading [11]:

U = −1

2
a(T )ΦΦ∗ + b(T )ln[1− 6ΦΦ∗ + 4(Φ3Φ∗3)− 3(ΦΦ∗)2] (3)

where a(T ) = a0T
4 + a1T0T

3 + a2T
2
0 T 2, b(T ) = b3T

3
0 T . The parameters are fitted to

lattice QCD results at zero chemical potential.

The Polyakov loop enters the partition function for the quarks in the following way:

Ωq = −T
∑
i∈Q

γi

(2π)3

∫
d3k ln

(
1 + Φ exp

E∗
i − µi

T

)
(4)

and

Ωq = −T
∑
i∈Q

γi

(2π)3

∫
d3k ln

(
1 + Φ∗ exp

E∗
i + µi

T

)
(5)

suppressing quark contributions in the confined phase at Φ = 0. In order to ensure that

hadronic degrees of freedom vanish at high temperatures we introduce a finite volume

correction v for the hadrons (v = 1 fm3) extending the approach discussed in [12]:

vQuark = 0 , vBaryon = v , vMeson = v/8 (6)

assuming, for mesons, for simplicity, a radius with a value of half the effective radius

of the baryons. At this stage we do not include more subtle effects in the description

of the excluded volume effects like possible Lorentz contractions [9] or temperature-

dependent values of the volume [13]. An alternative approach to suppress hadrons at

high temperatures and densities by generating a mass shift for the hadronic particles at

non-zero values of Φ is discussed in ref. [8].

Using a modified chemical potential µ̃i for particle i

µ̃i = µi − vi P (7)

where P is the sum over all partial pressures, and by correcting all energy, particle, and

entropy densities (ẽi, ρ̃i and s̃i) by the volume exclusion factor:

f =
V ′

V
= (1 +

∑
i

viρi)
−1 (8)

one obtains a thermodynamically consistent set of equations.

Extremizing the grand canonical potential in mean-field approximation we

determine the fields, densities, and thermodynamical quantities as function of

temperature [6]. Fig. 3 shows the resulting hadronic and quark densities as function

of temperature. The critical temperature in the model is Tc = 183MeV, defined as

maximum in the change of the scalar condensate during the cross-over phase transition.

The results show contributions from mesons beyond Tc. The relative densities of quarks

and hadrons, however, drop relatively fast with temperature.

Looking at the interaction measure ε−3p in Fig. 4 we see reasonably good agreement

with lattice calculations. The wiggle at T ≈ 300 MeV is generated by the vanishing

of the excluded volume effect of the remaining mesons. The strength and position of

this effect depends rather strongly on the parameters used for the excluded volume
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Figure 3. Particle number densities for different particle species as function of T .
The solid line shows the total number density of quarks and antiquarks. The dotted
line refers to the total meson density and the dashed line to the number density of
baryons and antibaryons.
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Figure 4. Interaction measure (ε − 3p)/T 4 as a function of T at vanishing chemical
potential. The dashed line depicts the interaction measure using the energy density
ẽ without volume correction factor for comparison. The lattice data (symbols) for
different lattice actions and lattice sizes in temporal direction are taken from [15].

calculation. Note, however, that currently lattice gauge simulations are most likely

not accurate enough to realistically include possible hadronic interaction effects at high

temperatures.

The effect of the phase transition on the expansion dynamics of the hot system

created in a heavy-ion collision can be inferred from the speed of sound. Fig. 5 shows

its behavior with rising temperature. One can observe a significant dip while passing

through the cross-over phase transition. At very high temperatures the value approaches

the ideal gas limit c2
s = 1/3. However, one should keep in mind that a realistic calculation

of the heavy-ion dynamics will include an averaging over a range of temperatures and

densities contained in the hot system, washing out at least part of the signal related to

the dip in the speed of sound.

Microscopic calculations of the expansion in a hydrodynamical approach and fur-
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Figure 5. Squared value of the speed of sound as function of temperature.

ther studies of the model at finite baryon density are currently in progress and will be

reported on in the near future.
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[6] J. Steinheimer, S. Schramm, and H. Stöcker, arxiv:hep-ph/0909.4421, submitted to Phys. Rev. C.
[7] J. Steinheimer, M. Bleicher, H. Petersen, S. Schramm, H. Stöcker, D. Zschiesche, Phys. Rev. C
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