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1. Introduction

Classical thermodynamics can be distilled into generally valid rules, into the so called

four laws (from zeroth to third) of thermodynamics stating universal behavior of

any system irrespective to the details of microscopic mechanisms – or the relativistic

covariance properties of the underlying dynamics. Exactly this universality makes

models based on this minimum of information so attractive for application to physical

systems emerging after a rather complex dynamic evolution; among others to describe

hadron spectra stemming from a fireball in high-energy heavy-ion collisions or, to an

increasing degree, from more elementary hadronic reactions [1, 2, 3, 4, 5].

As a new development of recent decades a strong wish has emerged to generalize

classical thermodynamics to be valid for the non-extensive systems, where the classical

requirement of having only short range correlations (and henceforth only short range

interaction) in near-equilibrium systems is not fulfilled. Such systems are numerous in

nature, like gravitating systems, charged plasmas, turbulent fluids, quantum entangled

systems, nearly Bose-condensed atoms, and - important for our understanding of the

very hadronization process in high-energy collisions - quark matter near to the critical

point or near to the edge of mechanical stability. In non-extensive systems one or even

all of the extensive variables, like entropy, internal energy, particle species number,

volume, cannot be treated as such, because the correlation between large subsystems
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of thermodynamic bodies is not restricted to a thin layer near to their interface. To

the contrary, corrections to the independent subsystem approximation are so important,

that they do not vanish in the thermodynamic limit.

A novel approach to deal with such systems is still under vigorous investigation.

Suggestions based on to use of an altered entropy formula instead of the Boltzmann-

Gibbs-Shannon one trace back to the Hungarian mathematician Alfred Renyi, who

has proved that there is a more general, extensive entropy formula than the classical

one using the logarithm of probability[6, 7]. An equivalent, but non-extensive entropy

formula has been suggested in relation with informatics [8] and later in condensed matter

physics by Constantino Tsallis [9, 10, 11, 12]. Discussions about the advantages and

disadvantages of one or the other formula triggered ramified investigations of more

formal nature: as a most important feature the Lesche-stability of the Renyi and Tsallis

entropies was investigated [13, 14]. Now it seems that these formulas can be used

equivalently in statistical models and the physical meaning of the parameter q in them

is related to the degree of non-extensivity in the system under investigation.

Recently we have worked out a formal and simple approach to non-extensivity

formulas based on the infinite repetition of composition rules generalizing the addition

[15]. This procedure reveals that there is a way to treat statistical models with non-

extensive properties mathematically clean. In the framework of the thermodynamics

of abstract composition rules not only a general recipe is given for producing entropy

formulas to each universal class of composition rules, but also suggestive generalizations

of both the canonical equilibrium and the kinetic approaches are established [16, 17, 18,

19].

In this paper we review the basic formalism about the behaviour of repeated

composition rules and the description of non-extensivity. We present then arguments

about hadron pT spectra occurring in relativistic heavy-ion collisions showing non-

extensive behaviour which does not seem to vanish with increasing participant number

[20]. The use of this parameter expands the range of validity of statistical model

fits to pT spectra dramatically. Also theoretical ideas will be discussed how relative

momentum-dependent QCD interactions among partons may generate a non-additive

rule for the individual kinetic energies causing this way a non-extensive statistical

canonical distribution of hadron energies with a power-law tail. Finally, taking these

hints seriously, we report about first attempts to obtain a non-extensive equation of state

for SU(2) gluon matter in the framework of a numerical lattice gauge theory simulation.

2. Composition rules and non-extensive formulas

The classical Boltzmann-Gibbs-Shannon entropy formula,

S =
∑

f ln
1

f
, (1)

has the property that it is additive for independent probabilities

S [f1 · f2] = S [f1] + S [f2] . (2)
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The canonical energy distribution, f = e−βE/Z, shows the back side of this coin: it

is multiplicative by the addition of subsystem energies: f(E1 + E2) = f(E1) · f(E2).

In such systems the absolute temperature can be obtained as satisfying the relation

β = 1/T = ∂S/∂E from the canonical requirement of maximizing the total entropy

at fixed total energy: S − βE = max. That the entropy is a useful concept is mainly

reflected in the fact, that β = 1/T occurs as an integrating factor rendering dS to be a

total differential (in contrast to the heat and mechanical work):

dS =
1

T
(dE + pdV − µdN + . . .) . (3)

Several physical mechanisms have since been suggested as micro-dynamical models to

achieve and maintain a canonical equilibrium state [21]. The Langevin equation utilizes

an additive white (Gaussian) noise for the momentum, the Fokker-Planck equation

describes the linear diffusion process for the distribution of elementary momenta and

Boltzmann’s Stosszahlansatz incorporates the trend towards the irreversible growth of

entropy.

All these mechanisms have already been generalized to deal with more entangled

situations: the Langevin equation with multiplicative noise leads to a power-law tailed

stationary distribution in kinetic energy [22], the anomalous (nonlinear) diffusion can

establish the more general Levy or the t-Student distribution instead of the Gaussian,

and the Stosszahlansatz also can be generalized exactly by manipulating the product

assumption (or by manipulating the energy addition assumption valid for a separated

pair of particles in a micro-collision) [16, 19]. What is common in all these approaches

can be understood as ”deforming” the usual formulas using the logarithm and the

exponential functions: in a way by keeping the same structure exactly these functions

are replaced by their ”deformed logarithm” and ”deformed exponential” versions.

Starting with an abstract composition rule generalizing the simple addition,

x ⊕ y = h(x, y), (4)

its infinite repetitive use, xn = h(xn−1, ∆yn), starting with zero (x0 = 0)and composing

infinitesimally small quantities, – which nevertheless sum up to a finite value, y =
∑

n ∆yn, – one can prove that the resulting composed quantity, x = lim
n→∞

xn satisfies the

scaling differential equation

dx

dy
=

∂

∂y
h(x, y)

∣∣∣∣∣
y=0+

. (5)

Its solution, y = L(x) is the formal logarithm which maps the composition rule to the

simple addition:

x(y1 + y2) = L−1 (L(x(y1)) + L(x(y2))) (6)

is the asymptotic composition rule in the thermodynamic (infinite repetition) limit.

Such asymptotic rules are associative and are attractors among all abstract composition

rules (for details see [15, 19]).
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A scaling parameter, a, can be used to interpolate between the simple addition and

the asymptotic rule by introducing La(x) = L(ax)/a. Now L0(x) = x, L1(x) = L(x) and

the deformed exponential function is given by ea(x) = exp(La(x)). Its inverse function is

the deformed logarithm lna(x) = L−1
a (ln(x)). Entropy composition formulas then satisfy

the rule L(σ(ab)) = L(σ(a)) + L(σ(b)) and hence σ(p) = lna(1/p). Considering now a

generalized canonical problem a non-additive entropy is maximized while a non-additive

total energy is kept fixed:

Y (S1) + Y (S2) = Y (S12) = max.

X(E1) + X(E2) = X(E12) = const. (7)

This construction also satisfies the zeroth law of thermodynamics because the

requirement of canonical equilibrium factorizes to quantities containing data of one

or the other system respectively [18]. This defines an absolute temperature as

β =
Y ′(S1)

X ′(E1)
S ′

1(E1) =
Y ′(S2)

X ′(E2)
S ′

2(E2). (8)

The relation between entropy, energy and temperature, however, is more complex than

in the classical case. Examples for different composition rules and emerging entropy

formulas can be constructed, for a list see the reference [19].

3. Non-extensive hadron spectra

A remarkable composition rule is defined by h(x, y) = x + y + G(xy), where the

asymptotic rule becomes ϕ(x, y) = x + y + axy with a = G′(0). This is exactly

the rule underlying the Tsallis and Renyi entropies. We have suggested in [15]

that in the high kinetic energy kinematics, the individual kinetic energy composition

rule may be deformed due to the momentum dependence of the interaction energy,

h(E1, E2) = E1 + E2 + U(Q2) with Q2 = 2E1E2(1 − cos θ) containing the product

of individual energies. This leads to a cut power-law asymptotic distribution in the

non-extensive canonical state

feq =
1

Z
(1 + 2U ′(0)E)

−β/2U ′(0)
. (9)

Unfortunately, U ′(0) is an infrared property and is not readily available from perturba-

tive QCD. By considering power-law tails in hadron spectra the phenomenological fits

of this parameter is a possible starting point for further investigations.

In the framework of a quark coalescence picture we have analyzed RHIC mesonic

and baryonic pT spectra and fitted them in a blast wave picture as possibly composed

from a quark matter with q ≈ 1.2 [23, 24]. Here we would like to demonstrate that the

descriptive power of such a fit increases dramatically by including the non-extensivity

parameter. In figure 1 the universality of an exponential fit for a collection of measured

meson and baryon spectra (left side) is contrasted to that of a non-extensive fit based on

the Tsallis-rule (right side). Not only the fit improves, but what is more important for
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Figure 1. Scaling variable for RHIC pT distributions with transverse flow as a blast
wave.

any thermal model, also its universality (dependence on hadron masses would directly

deny the possibility of a state based on the stationarity energy distributions).

We note that applying power-law tailed distributions the energy density and

pressure is higher at the same temperature than in the classical case. The energy

density per degree of freedom for an ideal boson gas using the deformed exponential

function with parameter a is given by

e =
T 4

2π2

∞∑

n=1

3!

n(n − a)(n − 2a)(n − 3a)
. (10)

Consequently aiming the same energy per particle values (which is determined by the

experimental facts to be around E/N ≈ 1 GeV in all relativistic heavy-ion experiments)

the fitted values for the temperature for q = 1 + aT > 1 are smaller than for q = 1

(a = 0, the traditional case). For massless Boltzmann particles one easily obtains

3T = E/(N + aE) < E/N for a > 0.

4. Non-extensive lattice SU(2) equation of state

Motivated by the mathematical challenge and encouraged by the phenomenological

success we raise the question: may it be that already the quark matter, preceding the

hadronic fireball spectra, was in a non-extensive asymptotic state? The Monte Carlo

method simulating lattice gauge field dynamics under non-extensive thermodynamic

asymptotic conditions is based on the superstatistic interpretation [25, 26], where

the power-law tailed Tsallis-Pareto distribution is convoluted from an Euler-Gamma

distribution for the inverse temperature [17]. This in fact also has been interpreted as

an effect of temperature fluctuations due to deficient equilibration in the fireball [27, 28].

Since

cc

Γ(c)

∞∫

0

dt tc−1 e−ct e−tβE =

(
1 +

βE

c

)−c

, (11)

and the inverse temperature β = 1/T = Nat on the lattice is defined by its Euclidean

time periodicity, we supplement the well-known lattice Metropolis method by sampling
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Figure 2. Equipartition of chromelectric and chromomagnetic contributions during
the combined Euler-Gamma deviate and Metropolis method on a 104 su2 lattice at
4/g2 = 2.10.
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Figure 3. Action difference (a − b) as a function of the inverse coupling 4/g2 on an
asymmetric 103 × 2 lattice normalized to the symmetric lattice. These are the raw
data for the scaled energy density, e/T 4 vs T/Tc plot.

the asymmetry parameter (the ratio of timelike and spacelike lattice spacings), t = at/as,

from an Euler Gamma distribution with the parameter c. This distribution stretches

over non-negative values only and its width is 1/
√

c. We renew the parameter t after

each lattice sweep of throwing new link variables.

In figure 2 we present the equipartition between the chromoelectric and

chromomagnetic plaquette average values corrected by the corresponding asymmetry

factors: at equilibrates to b/t. A quick equilibration during the Monte Carlo process

can be inspected for all different values of c (1024, 32 and 13.5).
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Figure 4. Action sum (a + b) as a function of the inverse coupling 4/g2 on an
asymmetric 103 × 2 lattice normalized to the symmetric lattice. These are the raw
data for the interaction measure, (e − 3p)/T 4 vs T/Tc plot.

Raw data towards obtaining the equation of state are collected from numerical

simulations in figures 3 and 4. The action difference between chromoelectric and

chromomagnetic contributions on an asymmetric lattice is the basis of obtaining the

scaled energy density e/T 4, while the action sum for the interaction measure (e−3p)/T 4.

Our results show already the main trends: smaller c values - corresponding to bigger

temperature fluctuations - increase the pressure and energy density. In fact, although

numerical uncertainties are still large, a tendency can be observed for thickening the

area under the action sum curve related to (e − 3p)/T 4. Of course further analysis has

to be done and the renormalization of the physical temperature scale has to be carried

out based on the static quark - antiquark potential analysis of Wilson Loop expectation

values. The preliminary results presented here we regard as a first step into a promising

direction.

In summarizing we have reviewed the thermodynamics of composition rules as a

mathematical formulation for dealing with a non-extensive thermodynamic description,

first of all formulas for entropy, energy and canonical distribution. We see the main

reason for occurring power-law tailed distributions in certain parton cascade simulations

and phenomenological fits to fireball hadron and quark matter spectra in the momentum-

dependent interaction term in QCD. This idea, of course, has to be solicited by further

research. Finally we reported first results attempting to obtain a non-extensive equation

of state for gluon matter in the framework of a modified Monte Carlo method in lattice

simulation. Although first results look promising in this area, there is still a long way

to go before the expected deviations from the classical thermodynamical picture can be

pointed out by such numerical calculations.
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