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Abstract. We discuss the information that can be obtained from an analysis
of fluctuations in heavy ion collisions within the context of the statistical model
of particle production. We then examine the recently published experimental
data on ratio fluctuations, and use it to obtain constraints on the statistical
properties (physically relevant ensemble, degree of chemical equilibration, scaling
across energies and system sizes) and freeze-out dynamics (amount of reinteraction
between chemical and thermal freeze-out) of the system.

The idea of modelling the abundance of hadrons using statistical mechanics techniques
has a long and distinguished history [1, 2, 3, 4]. In a sense, any discussion of
the thermodynamic properties of hadronic matter (e.g. the existence of a phase
transition) requires that statistical mechanics be applicable to this system ( through
not necessarily at the freeze-out stage).

That such a model can describe quantitatively the yield of most particles, including
multi-strange ones, has in fact been indicated by fits to average particle abundances
at AGS,SPS and RHIC energies [5, 6, 7, 8, 9, 10].

There are, however, several points of contention to this understanding: Some
practitioners,starting from [1] interpret the statistical model results in terms of nothing
more than phase space dominance: For a process strongly enough interacting with
enough particles in the final state, dynamics “factors out” into a normalization
constant, and the final state probabilities are dominated by phase space. If this is
the case, the applicability of the statistical model has nothing to do with a genuine
equilibration of the system.

Others [5, 11] believe that the applicability of the statistical model is a sign of a
phase transition, as the chemical equilibration of hadrons signals a regime in which
multi-particle processes and high-lying resonances dominate.

Still others think that in soft QCD processes particles are “born in equilibrium”
[12], and the applicability of the statistical model to even smaller systems (itself
contested [13]) is a fundamental characteristic of QCD.

How can these scenarios be differentiated? One observable “at the heart” of
statistical mechanics is event-by-event fluctuations [14, 15]. It is a fundamental
principle of statistics that variances around averages scale a certain way w.r.t.
averages. In our context “Averages” are particle multiplicities per event and
fluctuations are event-by-event fluctuations. For macroscopic systems, this principle
ensures that fluctuations become negligible and the expectation that the state of the
system is the maximum entropy one is nearly certain to be realized.

O (100− 1000) particles is not enough for this to be the case, but, if statistical
mechanics applies, one should still see that yields, fluctuations and higher cumulants
scale in a way calculable from the partition function. There are,however, some
experimental issues specific to heavy ion collisions that need to be explored before
this can be transformed into a quantitative test.

“standard” fluctuation calculations assume that the volume‡ of the system is
fixed. Obviously, in heavy ion collisions, the system is not in a box, so this requirement

‡ The applicability and definition of the term “volume” is itself problematic in a dynamical quantum
system. Statistical particle production assumes a volume, but leaves unexplained how this volume is
defined, eg if acceptance cuts can be considered as “cuts in volume”. If particles are created with a
boost-invariant flow,vz = z/t, and the thermal parameters are approximately independent of rapidity,
than cuts in rapidity are equivalent to cuts in volume. No other kinematic cuts, eg cuts in pT or φ,
can be reliably treated in this way, although the effect of these cuts on fluctuations can be partially
cancelled out by mixed event subtraction, as discussed later in this work
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has no reason to hold. The most straight-forward way around this is to construct
an ensemble where volume can fluctuate while its canonical conjugate, the pressure,
stays fixed [16]. This, however, can also present phenomenological difficulties, since
the origin of volume fluctuations in heavy ion collisions is not necessarily statistical,
but also geometric (initial state fluctuations) and dynamical (non-zero Knudsen
number [17]). Statistical mechanics, therefore, must include these fluctuations in the
constraints, since it has no ability to describe them.

Due to our incomplete understanding of how the initial state and dynamics
contribute to fluctuations at freeze-out, the best approach is to choose an observable
which is insensitive to any volume fluctuations. In the thermodynamic limit, where
volume becomes a proportionality constant at the level of the partition function, a
tempting observable is the scaled variance of the ratio of two particle multiplicities
measured event by event. That this is in fact a good guess can be seen at the level of
particle distributions. Assuming we are in the thermodynamic limit, the distribution
should separate into a component sensitive to volume V and the other on density,
N1/V

F1,2(N1,2) =
∫

g(V )f1,2

(
N1,2

V

)
dV (1)

here f1,2 depend on thermodynamics and g(V ) on initial geometry and dynamics (note
that we left it as a general function, and in general we do not really know what this
function is). Now, the probability distribution function of a ratio is

F

(
R =

N1

N2

)
=
∫

F1(N1)F2(N2)δ
(

N1

N2
− R

)
(2)

Expanding and substituting α = V N2 we get

F (R) =
∫

g(V )2V dV

︸ ︷︷ ︸
Independent of R

∫
f1 (αR) f2 (α) dα (3)

hence, N =
∫

g(V )2V dV appears equally in all cumulants.
Thus, quantities such as σN1/N2 are strictly independent of any volume

fluctuations §. Note that this is not true, for example, for the Kurtosis, recently
proposed as signatures for the critical point [19], since the Kurtosis is not the ratio of
two cumulants. The procedure above, however, makes it easy to derive the appropriate
volume-independent observable encoding higher cumulants of ratios (µ4/σ of the
distribution of a ratio, for example, would be volume independent. Here µ4 is the
fourth cumulant and σ the fluctuation).

The residual dependence of σN1/N2 on the average volume 〈V 〉 can be in turn
eliminated, in the grand canonical ensemble, by focusing on Ψ = 〈N1〉 σ

N1/N2
dyn ,

where 〈N1〉 and σdyn are to be measured within the same acceptance. Note that
this independence is specific to the grand-canonical ensemble, so should not apply
to scenarios where the “enhancement of strangeness” in A-A collisions is due to the
transition between the canonical limit in elementary processes and the grand canonical
limit in A-A [20]. In this scenario, the “strangeness correlation volume” (Vcorr not in
general equal to the system volume) should regulate Ψ as in Fig. 1 [21]

§ [18] section IV-C makes the opposite claim based on an expansion around ∆V/ 〈V 〉. The flaw in
that procedure is that it can not be determined weather terms such as ∆V/ 〈V 〉2 are to be included
in the fluctuation or in higher cumulants. The transport analysis in [18] validates our derivation,
since strictly no dependence of ratio fluctuations on multiplicity fluctuations is found
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Thermodynamic limit

small Vcorr

Figure 1. (left) Fluctuations dependence in canonical scenario [21] (right)
Strangeness fluctuations in the canonical scenario [20]

A different problem is the effect of a detectors limited acceptance ( Particle
(mis)identification, Limited rapidity and momentum resolution, momentum cuts
necessary to eliminate jets etc) on fluctuation observables. These are much more
difficult to model than averages, and once again an observable needs to be constructed
insensitive to them. Hence, the necessity of mixed event subtraction [22]. Mixed events
here, are defined as events where no physical correlation from the original event are
left in. This means that any correlation seen is due to the imperfection of the detector
(the fact that detector acceptance excludes particles of pT > 1 GeV for both event A
and B creates a correlation between A and B). To a good approximation, examined
in the next paragraph, the measured fluctuation is σ2 = σ2

physics + σ2
acceptance and

the mixed event one is σ2
mix = σ2

trivial + σ2
acceptance. Therefore, concentrating on

σ2
dyn = σ2 − σ2

mix should eliminate acceptance effects.
Two considerations are needed at this point: The first is that this method is

not perfect, since limited acceptance spoils not just fluctuations but correlations, and
this will not be corrected with mixed event subtraction. For example, in a narrow
acceptance detector, resonance kinematics modifies σ2

physics (weakens the correlation
due to the resonance) rather than introducing an additional σ2

acceptance (HBT would
be another source of such physical correlations, although the smallness of the relevant
relative momentum makes this largely irrelevant here). There is no perfect solution:
One empirical fix is to vary the acceptance, until its large enough that Ψ reaches an
asymptotic limit Fig. 2. This limit is the physical value of Ψ. Such a method is
not perfect, but it relies on the fact that, for a good event mixing procedure (defined
above) limited acceptance should only destroy correlations, not create them. The
highest value of the correlation seen by varying the detector acceptance is therefore
the physical one.
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The second consideration is that, by the definition above (no physical correlations
in mixed events), the current algorithms used by experimental collaborations [23, 24]
for mixed event definition are not perfect. For example, the total multiplicity of
mixed events is determined according to the experimentally measured multiplicity
distribution, containing all correlations of real events (eg, the π+ π− correlation
induced by the ρ). Since the abundance of all species are greater in a higher multiplicity
event, the autocorrelations contained in the experimentally measured multiplicity
distribution will translate into a correlation in the mixed event ratio of any two
particles (see Fig 3 for an illustration). This correlation is physical rather than
acceptance-induced, and hence should not be there in a “good” mixed event.

A more sound procedure,therefore, would be to normalize π, K and protons
separately and construct the mixed event bottom-up. In other words, for each mixed
event π, K and p multiplicities should be determined according to the respective
experimentally measured multiplicity distributions (uncorrected for acceptance).
Then the event should be constructed (the appropriate number of π, K and proton
tracks obtained from different events). As physical autocorrelations within the the
same particle species of relative momenta larger than O (100)MeV are negligible, this
procedure should yield a much better (according to the above definition) mixed event
sample. We do not think the multiplicity auto-correlation in mixed events is large,
but it is there, and it could be responsible for the deviation between statistical model
and the data shown in in the next paragraphs. It will be interesting to see how
implementing the mixed event definition presented here will change the results.

corrections needed
Acceptance

∆
Larger y∆

Ψ∼ SHM value

Small y

y∆

Ψ
Acceptance
corrections small

Figure 2. Correlation as a function of acceptance

We now proceed to discuss specific results and conclusions that can be obtained
from a study of fluctuation data. We refer to [5, 6, 7, 8, 9, 10, 15] for a review of the
statistical model. For this work, it is sufficient to repeat that the particle abundances
and fluctuations can be calculated from the first and second derivative’s a particle’s
partition function. In the Grand-Canonical limit, this partition function is strictly
proportional to volume. Because of this, the fluctuation

〈
(∆N)2

〉
and the yield 〈N〉

should both scale linearly with volume, and hence the fluctuation of a ratio

σN1/N2 =

〈
(∆N1)2

〉

〈N1〉2
+

〈
(∆N2)2

〉

〈N2〉2
− 〈∆N1∆N2〉

〈N1〉 〈N2〉
+ O

(
∆N

〈N〉2

)
(4)

should scale inversely to the volume 〈V 〉 (and be strictly independent of higher
cumulants of V , by the earlier derivation). Hence, provided the chemical parameters
do not change across systems, ΨN1

N1/N2
= 〈N1〉σ

N1/N2
dyn should be strictly independent

of centrality and system size. This requirement is not satisfied by the SPS scan [24]
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N1

N2

Figure 3. The experimental multiplicity measure used to normalized mixed
events (left panel) and an example of the systematic correlation this procedure
generates (right panel) in a ratio between two generic N1 and N2 particles
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Figure 4. Left panel: Scaling of K/π fluctuations at RHIC 200 GeV. Right
panel: K∗/K implied from fluctuations and directly measured. Star fluctuations
(left) and resonances (right) results, taken respectively from [23, 27]

discussed in the last part of the paper, since there µ/T does vary considerably ‖. It is
however satisfied by the RHIC upper energies. Thus, the Grand-Canonical statistical
model predicts a flat dependence with system size at these energies. The canonical
model, on the other hand, would predict a “kink” within the same centrality as when
the strangeness correlation volume approaches the thermodynamic limit (Fig. 1).

The results can be seen on Fig. 4 left panel. None of the models come out
perfectly, but the Grand-Canonical model is qualitatively much more similar to the
data than the canonical one, as no kink is visible there. The discrepancy in Ψ between
200 GeV and 62 GeV, the slight upward trend in centrality, and the lack of scaling
between A-A and Cu-Cu should however be closely watched, as the slight increase of
fluctuations with multiplicity can not be accounted for by any statistical model (Since
we are dealing with ratio fluctuations, a volume fluctuation tuned to KNO scaling, as
in [25], will not help here).

Before passing judgement on this topic, however, it will be interesting to see how
much of this trend is due to the previously described multiplicity correlation retained in
mixed events. Correcting for this effect using an improved mixing procedure would go
in the right direction (since physical correlations due to volume would not be cancelled
out). An analysis is ongoing to determine their extent. The scaling of fluctuations

‖ A scan in centrality and system size within the same energy should however produce the same
approximately horizontal bands in Ψ as are seen at RHIC: Each value of

√
s, and hence µ/T , should

produce a band when scanned in centrality and system size
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between RHIC and the LHC, where µ/T is virtually the same, should provide further
light on this.

Quantitatively, as reported earlier, Ψ is modelled much better with the inclusion
of the light-quark non-equilibrium parameter γq , due to Bose-Einstein enhancement
of fluctuations [14]. It remains to be seen weather the measurement of fluctuations of
more particles (Fig. 5 left panel) will corroborate this conclusion.

We now turn to a potentially important model-independent use of fluctuations,
the constraint on resonance reinteraction between chemical freeze-out and thermal
freeze-out [26]. The former can be estimated, to a good approximation, by
comparing the fluctuations of same-charged particles (uncorrelated) and opposite
charged particles (correlated by K∗)

K∗0

K− ' 3
4

(
Ψπ−

K−/π− − Ψπ−

K+/π−

)
(5)

Note that both Ψπ−

K−/π− and Ψπ−

K+/π− are equally affected by the volume correlations
present in mixed events, so these should cancel out when the difference is taken.
Comparing the fluctuation estimate of K∗0

K− to a direct measurement should yield
the amount of K0∗ destroyed by rescattering or regenerated through pseudo-elastic
interactions.

The results are shown in Fig. 4 (right panel, resonance values are taken from
[27]). Rescattering and regeneration have,within error bar little or no effect on the
final abundance of K∗s. Either chemical and thermal freeze-out proceed very close
to each other, so the amount of reinteraction is negligible (as was concluded in [28]
based on [29, 30]), or rescattering and regeneration of detectable resonances cancel
each other out to the degree of approximation allowed by the error bars (10 − 15%).
This margin appears somewhat below the estimates from transport models, which are
∼ 40% [31, 32]. This discrepancy is not too surprising, since, within the framework
of a collectively expanding system, a balance between rescattering and regeneration is
unnatural: If the number of reinteractions is small, rescattering generally dominates
as was assumed in [29, 30]. If the number of rescattering is large, detailed balance
would mean K∗/K would reequilibrate from the higher chemical freeze-out to the
lower thermal freeze-out temperature.

It would therefore be very interesting to investigate weather a transport model
such as uRQMD [33] or HSD [18] could be tuned to simultaneously reproduce the
fluctuation inference and direct measurement of K∗0

K− .
Unfortunately, the baroqueness of the resonance decay tree severely limits the

feasibilness of such graphic methods, as the right panel of Fig 5 shows. K, π is a
special pair of particles in that there is only one type of resonances that decays into
both, the K∗, and its lightest state is considerably lighter than the heavier ones.
No similar definition is possible for Σ∗/Λ, ρ/π and φ/K, since the resonance decays
equally into all pairs of decay products. For other resonances, cross-contamination
destroys any value of fluctuations as a graphic tool of reinteraction time.

This does not mean, however, that such resonances are useless for constraining
reinteraction time, since both fluctuations [14] and resonances [29, 30] provide
a tight constraint on all statistical models. If a statistical model consistently
describes fluctuations, but over-predicts resonance abundances, it could be taken as
an indication of a long reinteraction times with detailed balance. A casual look at
experimental data [27] shows this does not seem to be the case, since most resonances
are under-predicted by statistical models.
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panel) and resonances (middle panel) with the statistical parameters taken from
[39] (The γq = 1 values are similar to [5]). In the right panel, Full symbols show
the N∗/N ratio inferred from the correlation in the two models, while empty
symbols show, wherever possible, the estimate from σdyn comparisons

We now turn to the energy scan seen at SPS energies. We first warn the reader
not to take any quantitative statements we make here too seriously, since to study
the scaling with volume requires the same acceptance region from all particles (see
footnote on page 2), as well as for the yield and fluctuation measurements. The
analysis in [24] does not meet this requirement, since the acceptance for K and π is
considerably different, and the acceptance for yields is different still (note that the
earlier analysis in [34] failed to consider this). We await for measurements where this
issue is resolved (for experimental reasons they are easier to perform at collider energy
scans [35, 36, 37]) to see how big it is of an issue for the SPS results.
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Figure 6. Left and center panel: Scaling of K/π fluctuations with yields. The left
panel shown the α exponent, defined as in Eq. 6. Middle panel: The fluctuations
observed and calculated with such scaling. Right panel: Yields calculated in the
equilibrium and non-equilibrium models assuming the normalization used in the
respective calculations corresponds to the physical volume

[38] has done a very useful job of showing that the scaling of fluctuations with
√

s
reflects, to a good approximation, that of yields. Of course, in the statistical model an
exact scaling of σ

K/π
dyn with 〈K〉 , 〈π〉 in different energy systems is more complicated

than any of the models studied in [38], since it reflects changes in T, µ and possibly
γq,s with

√
s. To try to see how the statistical model fits within the analysis of [38]
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we parametrize the best fit set of parameters in [39, 40, 41] and [6] (in the second case
T, µB ,in the first T, µB , γs,q using the exponent α

〈π〉1/2−α 〈K〉1/2+α
σ

K/π
dyn = C = 〈π〉1/2 〈K〉1/2

σ
K/π
dyn

∣∣∣
Reference

(6)

where C is a constant adjusted from data (Note that all volume dependence cancels
out in the definition of α, as expected in the statistical model). α is simply extracted
out of the SHARE estimates [15]

α =
ln C − ln σ

K/π
dyn − (ln π + ln K) /2

∣∣∣
SHARE

ln 〈K〉 − ln 〈π〉|SHARE

(7)

We have performed this procedure with SPS data, taking the parameters from the
equilibrium and non-equilibrium values of the analysis in [39], and using the 〈K〉 and
〈π〉 expectations from [38] to fix the normalization.

The result is seen in Fig. 6 left panel, with full symbols using the lowest
SPS energy as reference and empty symbols using the maximum SPS energy. The
conclusions to be drawn from this exercise are two-fold: The first is that none of the
scalings examined in [38] is really compatible with the statistical model. The rapid
change in µB , γq,s really makes the statistical scaling across

√
s non-trivial. The second

is that the scaling is still close enough to Poissonian that the dependence of the fit
parameters on

√
s washes away if just K, π are considered. Note that, however, as Fig

6 shows, these scaled values will be somewhat different from the SHARE prediction.
Note, however, that in this work we did not consider abundances of particles other

than K,π. Since, as shown in [14], a yield and a fluctuation are enough to remove any
ambiguity between T and γq. Had the acceptance window considered here been the
same for 〈K〉 and π measurements, this would yield a tight prediction for the value of
protons and hyperons. Taking the normalization constant we fitted with [15] (We want
to emphasize this is not a reliable assumption, we did this for illustrative purposes) we
computed the particle yields using the equilibrium and non-equilibrium parameters
in [39, 40, 41, 6]. The results are shown in the right hand panel of Fig.6. As can
be seen, a quantitative test of both yields and fluctuations differentiates between the
equilibrium and non-equilibrium model much more than a test based on yields and
fluctuations alone. We look forward, therefore, to perform this analysis on data-sets
where the acceptance of the two particles in the ratio is the same, and hence protons
and hyperons can also be measured within this acceptance.

In conclusion, we have provided an overview of the current results of fluctuations
of particle ratios, and tried to interpret them within the framework of the statistical
model. None of the models considered here does a perfect job of describing the
data, through models based on Grand-Canonical ensembles better capture the scaling,
and the introduction of γq bring the theory closer to experiment. A different mixed
event subtraction is however needed to confirm these results. Comparing the effect
of resonances inside particle fluctuations with the directly measured resonances shows
that the resonance abundance present at chemical freeze-out seems to remain until the
final decoupling, in contrast to current estimates from transport models. While the
approximate Poissonian scaling found in the data is expected of the statistical model
for all thermal values, the strong variation of µ/T with

√
s prevents an exact scaling

with energy. A centrality scan at lower
√

s, as well as a uniform acceptance for both
particles in the measured ratio are necessary before the scaling of fluctuations with
energy can be unamibiguously interpreted.
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