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Neutrino propagation in the nuclear ”pasta phase” of neutron

stars

P. Grygorov, P. Gögelein and H. Müther

Institut für Theoretische Physik,

Universität Tübingen,

D-72076 Tübingen, Germany

The mean free path of neutrino in charged and neutral current reactions is calcu-

lated for inhomogeneous nuclear matter which is expected to appear in the inner crust

of neutron stars. The relevant cross section depends on Fermi and Gamow-Teller

strength distributions, which are derived from the self-consistent Skyrme-Hartree-

Fock and a relativistic mean-field calculations. The inhomogeneous nuclear matter,

which appears at the boundary between the inner crust and outer core is described in

terms of cubic Wigner-Seitz cells. It allows for a microscopic description of the struc-

tures in the so-called pasta phase of nuclear configurations and provides a smooth

transition to the limit of homogeneous matter. The influence of the pasta phase, its

microscopical structure and geometrical shapes on neutrino propagation are consid-

ered.

I. INTRODUCTION

The transport properties of neutrino play an essential role in the physics of supernovae

core collapse and in the evolution of the newly born neutron stars (NS). The most important

ingredient of neutrino propagation calculations is the neutrino opacity in a wide range of

densities. Both the charged current (CC) absorption and neutral current (NC) scattering

reactions are important sources of the neutrino opacity. In earlier works on neutrino inter-

actions with the homogeneous nuclear matter the noninteracting baryons were considered

[1]. Later the strong interaction was taking into account both in the non-relativistic and

relativistic calculations (see, e.g., [2–7] and ref. therein). It was shown that the neutrino

opacities of interacting matter may significantly altered from those for the noninteracting

case [4]. However, the use of homogeneous matter is a good approximation, while the exis-
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tence of the stable quasi-nuclei in the crust of neutron stars is energetically favorable and

must be taken into account.

At low densities, the nuclei in matter are expected to form the Coulomb lattice embedded

in the neutron sea, that minimizes the Coulomb repulsion between the protons. With in-

crease of density the nuclear pasta structures occur and the stable nuclear shape may change

form from spherical droplet to rod, slab, tube and bubble shapes [8]. Roughly speaking,

the favorable nuclear shape is determined by a balance between the surface and Coulomb

energies. In the following under ”pasta phase” we will assume quasi-nuclear structures with

spherical as well as non-spherical shape, which are embedded in a neutron sea.

Various attempts have been made to describe the ground-state structure of pasta phase

based on Thomas-Fermi approximation [9–13], coexisting phases method [13, 14], Quantum

Molecular Dynamics [15–18], Hartree-Fock and Relativistic Mean-Field calculations (RMF)

within the Wigner-Seitz (WS) cell approximation [21–25]. Later the dynamical properties of

pasta such as the response function and neutrino mean free path (NMFP) were investigated

[15, 18–20]. It was found that the coherent scattering of neutrinos on inhomogeneous matter

significantly reduces the mean free path.

The calculation of the NMFP in pasta phase presented in this work is based on Hartree-

Fock calculations in cubic WS cell [22–24], which allows for the description of non-spherical

quasi-nuclear structures such as rods or slabs and contains the limit of homogeneous matter

in a natural way. The self-consistent calculations are performed for β-stable matter in a

density range for which the quasi-nuclear structures discussed above are expected to ap-

pear. For the nuclear Hamiltonian we consider Skyrme forces (SLy4) [31] but also perform

calculations within the relativistic mean-field (Hartree) approximation. The stability of the

pasta phase with increase of the temperature is also discussed.

The NMFP is extracted from the relevant cross sections of neutrino on different pasta

structures. We pay special attention to the dependence of our results on the internal struc-

ture of the pasta phase and its geometrical shapes. The mean free paths obtained from these

inhomogeneous structures are compared with those calculated for homogeneous nuclear mat-

ter at the same global density, thus one can estimate the influence of the inhomogeneous

phase on the propagation of neutrinos.

After this introduction the details of Skyrme-Hartree-Fock approach with pairing will be

outlined and a method to calculate the NMFP will be reviewed in section 2. In section 3



3

we discuss the density dependent relativistic mean-field (DDRMF) model. The numerical

results are discussed in section 4 and the final section 5 contains the main conclusions.

II. SKYRME-HARTREE-FOCK CALCULATIONS

A. Energy functional

We perform self-consistent HF calculations with inclusion of pairing in a periodic lattice

of WS cells of cubic shapes. The symmetry of such WS cell allows the formation of triaxial

structures but also include rod-, and slab-like structures and provide a natural transition to

homogeneous matter.

Since the Skyrme-Hartree-Fock approach has frequently been described in the literature

[27–30] we will outline here only a few basic equations, which will define the nomenclature.

The Skyrme model is defined in terms of an energy density H(r), which can be split into

various contributions[28, 31]

H = HK + H0 + H3 + Heff + Hfin + Hso + HCoul, (1)

where HK is the kinetic energy term, H0 a zero range term, H3 a density dependent term,

Heff an effective mass term, Hfin a finite range term and Hso a spin-orbit term. These terms

are given by

HK =
~2

2m
τ,

H0 = 1
4
t0

[
(2 + x0)ρ

2 − (2x0 + 1)(ρ2
p + ρ2

n)
]
,

H3 = 1
24
t3ρ

α
[
(2 + x3)ρ

2 − (2x3 + 1)(ρ2
p + ρ2

n)
]
,

Heff = 1
8

[
t1(2 + x1) + t2(2 + x2)

]
τρ

+1
8

[
t2(2x2 + 1) − t1(2x1 + 1)

][
τpρp + τnρn

]
,

Hfin = − 1
32

[
3t1(2 + x1) − t2(2 + x2)

]
ρ∆ρ

+ 1
32

[
3t1(2x1 + 1) + t2(2x2 + 1)

][
ρp∆ρp + ρn∆ρn

]
,

Hso = −1
2
W0

[
ρ∇J + ρp ∇Jp + ρn ∇Jn

]
. (2)

The coefficients ti, xi, W0, and α are the parameters of a generalized Skyrme force [32]. The

single-particle energies and wave functions are determined as solutions of the Hartree-Fock
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equations

{
−∇ ~2

2m∗
q(r)

∇ + Uq(r) − iW q(r) · (∇ × σ)

}
ϕq

k(r, s) = εq
k ϕ

q
k(r, s) (3)

where ϕq
k(r, s) is the single-particle wave function with orbital, spin and isospin quantum

numbers k, s and q. The expression for the effective mass m∗, the central potential Uq(r) and

spin orbin term W q(r) can be found in [22, 31]. The HF equations have been solved by using

the imaginary time step method [22, 23, 33] in discretized coordinate space within a cubic

WS cell [32] of 20 fm length in each direction. The charge neutral matter contains protons,

neutrons and electrons in β-equilibrium. To decrease the numerical effort in calculation of

HF equations we assume two symmetries like in [32]:

• parity

P̂ϕk(r, s) = ϕk(−r, s) = pkϕk(r, s), pk = ±1; (4)

• z–signature

exp{iπ(Ĵz − 1
2
)}ϕk(x, y, z, s) = σϕk(−x,−y, z, s)

= ηkϕk(x, y, z, s), ηk = ±1.
(5)

These symmetries still allow triaxial deformations and reduce the calculation to the positive

coordinates in each direction. As additional symmetry time–reversal–invariance is assumed

for the time–reversed pairs ϕk, and ϕk̄:

ϕk̄(r, s) = (T̂ϕk)(r, s) = σϕ∗
k(r,−s). (6)

Summarising this symmetries it is sufficient to solve the HF equations for one wave function

of the time–reversed pairs.

Pairing correlations are included in terms of the BCS approximation by assuming a

density-dependent zero-range pairing force, which has been used in earlier calculations [22,

24, 34]. The code was tested for the set Skyrme III by comparing results for finite nuclei

with those [32].

Figures 1,2 display density profiles of proton and neutron distributions at the global

density of 0.0625 fm−3 and such quasi-nuclear structure can be characterized as rods along

the z-axis. At a density of 0.0775 fm−3 the variational Hartree-Fock leads to a quasi-nuclear

structure, which can be characterized as a set of parallel slabs. In figures 3 and 4, which show
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the proton and neutron density distributions at this density, we have chosen the orientation

of the coordinates such that these slabs are orthogonal to the z-axis. At the density 0.0166

fm−3 we observe the spherical droplet phase. Its density distribution is symmetric in all

directions therefore we do not illustrate it here. Thus we define three values of density,

which profiles possess a clear spatial distribution and can be identified with the known

pasta structures from other calculations [21]. Increasing density from 0.0166 fm−3 to 0.0775

fm−3 one obtains a variety of different intermediate density profiles which connect smoothly

three representatives: droplet → rod → slab.

As mentioned above the Hartree-Fock calculations were performed within the WS cell

approximation, assuming that the inner crust is divided into independent cubic cells, and

the wave functions of dripped, unbound neutrons satisfy the periodic boundary conditions.

However from the standard model of neutron stars [35] it is known, that the inner crust is

a perfect crystal and therefore the band theory of solids should be applied for the unbound

neutrons. In this case the energy spectrum of unbound neutrons will be formed of ”bands” in

momentum space, thus contain more information than in WS cell approximation. However

as it was shown in recent investigations by Chamel et al. [36], the differences between the

full band theory and WS approximation are expected to be essential when the processes

under considerations involve energy transfer, which is comparable with the level spacing

induced by discretization. In our calculation such level spacing in the energy spectrum of

unbound neutrons does not exceed 200 keV, therefore we suppose that the WS approximation

is a good starting point for calculation of NMFP with energies of the incoming neutrinos

10≤ Eν ≤100 MeV.

The single-particle energies and wave functions for protons and neutrons resulted from

the Hartree-Fock calculations were used to evaluate the NMFP by using the method outlined

in the following subsection.

B. Neutrino mean free path in Skyrme-Hartree-Fock model

The matrix element for the neutrino-nucleon reactions ν + n → ν + n ( ν + n → p + e )

is given by

M =
GFC√

2
Jµj

µ, (7)
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FIG. 1: Proton density distribution for Skyrme HF + BCS calculation at an average

density of ρ = 0.0625 fm−3 (rod).
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FIG. 2: Neutron density distribution for Skyrme HF + BCS calculation at an average

density of ρ = 0.0625 fm−3 (rod).

where

Jµ = iūn(p)(V γµ + Aγµγ5)un, (8)

jµ = −iūνγ
µ(1 − γ5)uν(e) (9)

are hadronic and leptonic currents, respectively. The parameters A, V must be replaced

by the respective values of coupling constants and C stands for the Cabbibo factor in the

charged-current reaction [37]. The total cross section can be written as

σ =
∑

f

pν(e)Eν(e)
1

2

1∫

−1

d(cosϑ)|M | 2, (10)

|M | 2 =
G2

FC
2

π

[
V 2(1 + cosϑ)|M1|2 + A2(1 − 1

3
cos ϑ)|M2|2

]
, (11)

M1 = 〈ϕ4|ei~q~r|ϕ2〉, M2 = 〈ϕ4|~σei~q~r|ϕ2〉, (12)
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FIG. 3: Proton density distribution for Skyrme HF + BCS calculation at an average

density of ρ = 0.0775 fm−3 (slab).
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FIG. 4: Neutron density distribution for Skyrme HF + BCS calculation at an average

density of ρ = 0.0775 fm−3 (slab).

where within this non-relativistic approach we neglect the lower components in Dirac spinors

u ' (ϕ
0 ). In the charged current reaction the influence of the Coulomb field on the outgoing

electron can be taken into account by multiplying the cross section by the Fermi function

F (Zf , Ee) [38]. For this reaction M1 and M2 stand for the Fermi and Gamow-Teller matrix

elements, respectively. The integration is performed over the spatial angle ϑ between the

momenta of incoming and the outgoing leptons. The single-particle wave functions ϕ(~r) and

single-particle energies εf (εi) are obtained from the solution of the HF equations. Note

that these single-particle energies enter (10) as the energy for the outgoing lepton is defined

as

Eν(e) = Ein
ν + εi − εf ,

where Ein
ν is the energy of the incoming neutrino.

The formalism described so far is appropriate for the neutrino-nucleus interaction. With
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some extensions it may also be used to evaluate the interaction of neutrinos with the quasi-

nuclear structures in the crust of neutron stars. Unlike spherical nuclei and the case of the

droplet phase, the cross section of neutrino on rods and slabs, generally speaking, depends

on the spatial orientation of momentum transfer ~q in (12), since the density distributions of

rod and slab phases are non spherical, as it is shown on figures 1-4. The precise averaging

over all possible mutual orientations of vectors ~q and ~r requires additional numerical efforts.

Thus, in order to reduce this effort we considered three particular cases, with the vector ~q

along the direction of the x, y and z-axis. Doing so, we determine the averaged cross section

as

σ =
1

3
(σx + σy + σz), (13)

where σx(y,z) represents the cross section calculated for the momentum transfer along x(y, z)-

axis.

In contrast to a finite nucleus, the WS cell of the inhomogeneous nuclear matter contains a

large number of unbound neutrons, which give nonzero contribution to the total cross section.

Thus, the cross section consists of two parts: the cross section due to the interaction with the

nucleons bound in the quasi-nuclear structure and the cross section due to the interaction

with unbound neutrons. Therefore, one can consider (10) as a cross section of neutrinos with

all nucleons in a given volume Vcell of a WS cell. The reverse NMFP can then be written as

1

λ
=

σ

Vcell
. (14)

Another important distinction of pasta structures in the crust of neutron stars from the

finite, isolated nuclei consists in the existence of the electron sea in the volume of the WS

cell. Therefore the nonzero chemical potential of electrons must be taken into account in

the evaluation of charged current reactions by a blocking of final states for electrons with

energies below the respective Fermi energy µe.

III. RELATIVISTIC MEAN-FIELD CALCULATIONS

In order to test the sensitivity of the results on the underlying nuclear model and the

choice of the NN interaction we also investigated the NMFP in the inhomogeneous nuclear

matter evaluated within a relativistic mean-field (Hartree) approximation by using a model
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of density-dependent meson-nucleon coupling constants. The parameterization of these con-

stants has been fitted to reproduce the properties of the nucleon self-energy evaluated in

Dirac-Brueckner-Hartree-Fock (DBHF) calculations of asymmetric nuclear matter but has

also been adjusted to provide a good description for bulk properties of finite nuclei [40–43].

The density-dependent relativistic mean-field (DDRMF) approach has also been used to

describe the properties of inhomogeneous nuclear matter in the crust of neutron stars [24].

A. Density dependent relativistic mean-field approach

The Density Dependent Relativistic Mean Field approach is an effective field theory of

interacting mesons and nucleons. Following the usual notation we consider scalar (σ, δ)

and vector mesons (ω, ρ), which with respect to the isospin correspond to isoscalar (σ, ω)

and isovector (δ, ρ), respectively. The Lagrangian density consists of three parts: the free

baryon Lagrangian density LB, the free meson Lagrangian density LM and the interaction

Lagrangian density Lint:

L = LB + LM + Lint, (15)

which take the explicit form

LB =Ψ̄( iγµ∂
µ −M)Ψ,

LM = 1
2

∑

ι=σ,δ

(
∂µΦι∂

µΦι −m2
ι Φ

2
ι

)

− 1
2

∑

κ=ω,ρ,γ

(
1
2
F(κ)µν F

µν
(κ) −m2

κA(κ)µA
µ
(κ)

)
,

Lint = − gσΨ̄ΦσΨ − gδΨ̄τΦδΨ

− gωΨ̄γµA
µ
(ω)Ψ − gρΨ̄τγµA

µ
(ρ)Ψ

− eΨ̄γµ
1
2
(1 + τ3)A

µ
(γ)Ψ,

(16)

with the field strength tensor F(κ)µν = ∂µA(κ)ν −∂νA(κ)µ for the vector mesons. In the above

Lagrangian density the nucleon field consisting of Dirac-spinors in isospin space is denoted

by Ψ and the nucleon rest mass by M = 938.9 MeV. The scalar meson fields are Φσ and

Φδ, the vector meson fields A(ω) and A(ρ). Bold symbols denote vectors in the isospin space

acting between the two species of nucleons. The mesons have rest masses mκ for each meson

κ and couple to the nucleons with the strength of the coupling constants gκ, which depend
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κ JP I m [MeV] aκ bκ cκ dκ

σ 0+ 0 550 7.7868 2.58637 2.32431 3.11504

ω 1− 0 782.6 9.73684 2.26377 7.05897 -

δ 0+ 1 983 2.68849 6.7193 0.503759 0.403927

ρ 1− 1 769 4.56919 5.45085 1.20926 -

TABLE I: Parameter set from DBHF by van Dalen et al. [42] for the density dependent

relativistic mean field approach.

on a density of the nucleon field Ψ. This density dependence of the coupling constants was

parametrized by

gκ(ρB) = aκ +
[
bκ + dκx

3
]
exp(−cκx), (17)

where x = ρB/ρ0, and ρ0 = 0.16 fm−3 is the saturation density of symmetric nuclear matter.

The values obtained for the fit of the coupling functions are summarized in table I.

Applying the variational principle to the Lagrangian we obtain a Dirac equation for the

nucleons and Klein–Gordon and Proca equations for the meson fields. Due to density-

dependent vertices the variation principle changes to

δL
δΨ̄

=
∂L
∂Ψ̄

+
∂L
∂ρ

δρ

δΨ̄
, (18)

where the second expression creates the so-called rearrangement contribution ΣR to the self–

energies of the nucleon field. These rearrangement contributions contribute only to the zero

component of the vector self–energy. Including these additional contributions we denote the

Dirac equation for the nucleonic single–particle wave function ψα in Hartree approximation

(
αp + (Σ0 + ΣR) + β(M + ΣS)

)
ψα = εα ψα, (19)

where the self–energy contributions read

ΣS = gσΦσ + gδΦδτ3,

Σ0 = gωA
(ω)
0 + gρA

(ρ)
0 τ3 + e

1

2
(1 − τ3)A

(γ)
0 , (20)

and the rearrangement self–energy contribution ΣR is obtained by

ΣR =
(∂gσ

∂ρ
Φσρ

s +
∂gδ

∂ρ
Φδρ

s
3 +

∂gω

∂ρ
γµA

(ω)
0 ρ +

∂gρ

∂ρ
A

(ρ)
0 ρ3

)
. (21)



11

The various densities are obtained from the nucleon single–particle wave functions in the

”no–sea” approximation as

ρs(x) =
∑

α

ηα ψ̄α(x)ψα(x)

ρs
3(x) =

∑

α

ηα ψ̄α(x)τ3ψα(x)

ρ(x) =
∑

α

ηα ψ̄α(x)γ0ψα(x)

ρ3(x) =
∑

α

ηα ψ̄α(x)γ0τ3ψα(x)

ρ(em)(x) =
∑

α

ηα ψ̄α(x)1
2
(1 − τ3)ψα(x) [−ρe(x)]. (22)

where ρs is the scalar density, ρ the baryon density, ρs
3 the scalar isovector density, ρ3 the

vector isovector density, and ρ(em) the charge density. The occupation factors ηα have to be

determined from the desired scheme of occupation.

Neglecting retardation effects the Klein-Gordon equations reduce to inhomogeneous

Helmholtz equations with source terms [39]

(−∆ +m2
σ) Φσ = −gσ ρ

s

(−∆ +m2
δ) Φδ = −gδ ρ

s
3

(−∆ +m2
ω)A

(ω)
0 = gω ρ

(−∆ +m2
ρ)A

(ρ)
0 = gρ ρ3

−∆A
(γ)
0 = e ρ(em), (23)

from which the self–energy contributions (20) are obtained. The Dirac equation for the

nucleons (19), the evaluation of the resulting densities (22), these meson field equations (23)

and the calculation of the resulting self–energy contributions (20) form a set of equations,

which have to be solved in a self–consistent way.

For the description of nuclear matter in a Wigner–Seitz cell the Dirac equation (19)

and the meson field equations (23) are solved in spatial representation. The numerical

procedure to solve the Dirac equation in the cubic box is the same as for non-relativistic

Skyrme–Hartree–Fock approach described above. Pairing correlations are included in terms

of the BCS approximation assuming a density dependent zero-range pairing force [34].

The resulting single-particle energies and spinors were used in the calculation of NMFP

as described in the next Subsection.
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B. Neutrino mean free path in relativistic mean-field model

First, let us consider the charged current reaction. Here we will exploit the most general

form for the nucleonic current, which is allowed due to the Lorentz, parity and isospin

invariances [37]

JCC
µ = iψ̄p[F

v
1 (q2)γµ + F v

2 (q2)σµνqν + FA(q2)γ5γµ − iFp(q
2)γ5qµ]ψn, (24)

where F v
1 and F v

2 are isovector electromagnetic formfactors, FA is the axial-vector formfactor,

Fp is the induced pseudoscalar formfactor. Following the common practice we ignore the

contribution of the second-class currents. The leptonic current has the same structure as in

(9). Analogously to (7), (11) the averaged squared matrix element for the charged current

reaction can be written in the form

|M | 2 =
G2

FC
2

2
[ |M1|2(1 − pl

3El

cosϑ) + |M2|2(1 +
pl

El

cosϑ) (25)

+|M3|2(p2
l + E2

ν − 2plEν cosϑ− p3
l

3El

cosϑ− pl

3El

E2
ν cos ϑ+

2p2
l

3El

Eν)

+|M4|2
pl

El

((p2
l + E2

ν) cosϑ− 2ElEν cos ϑ+ plEl +
El

pl

E2
ν − 2plEν)],

where

M1 = F1ψ̄p~γψn + FAψ̄pγ5~γψn,

M2 = F1ψ̄pγ0ψn + FAψ̄pγ5γ0ψn − iFpψ̄pγ5q0ψn,

M3 = F2ψ̄p
~Σψn,

M4 = Fpψ̄pγ5ψn,

and

~Σ =


 ~σ 0

0 ~σ


 .

Dirac spinors ψ and the respective single-particle energies are obtained from the solution

of the Dirac equation (19).

The hadronic part of the neutral current involves additionally isoscalar electromagnetic

form factors F s
1 and F s

2 , so that

JNC
µ =

i

2
ψ̄n[FA(q2)γ5γµ − iFp(q

2)γ5qµ (26)

+(1 − 2 sin2 θW )(F v
1 (q2)γµ + F v

2 (q2)σµνqν)

−2sin2θW (F s
1 (q2)γµ + F s

2 (q2)σµνqν)]ψn,
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where θW is the Weinberg angle. The respective matrix element for this reaction looks like

|M | 2 =
G2

F

8
[ |N1|2(1 − 1

3
cosϑ) + |N2|2(1 + cosϑ) (27)

+|N3|2(E ′2
ν + E2

ν − 2EνE
′
ν cosϑ− 1

3
E ′2

ν cosϑ− 1
3
E2

ν cosϑ + 2
3
EνE

′2
ν )

+|N4|2(Eν − E ′
ν)

2(1 + cos ϑ)],

where

N1 = ((1 − 2 sin2 θW )F v
1 − 2 sin2 θWF

s
1 )ψ̄n~γψn + FAψ̄nγ5~γ,

N2 = −FAψ̄nγ5γ0ψn − ((1 − 2 sin2 θW )F v
1 − 2 sin2 θWF

s
1 )ψ̄nψn + iFP ψ̄nγ5ψn,

N3 = ((1 − 2 sin2 θW )F v
2 − 2 sin2 θWF

s
2 )ψ̄n

~Σψn,

N4 = Fpψ̄nγ5ψn.

Substituting (25) and (27) in (10) one obtains the mean free path of neutrinos in rela-

tivistic mean-field model for charged and neutral current reactions, respectively.

IV. RESULTS AND DISCUSSIONS

Before we start the discussion of the transport properties of neutrinos in the crust of

neutron stars let us review some details of self-consistent Hartree-Fock and relativistic mean-

field calculations. For all the results presented in this manuscript a temperature T= 1 MeV

was considered. This temperature is high enough to take into account some effects of finite

temperatures and low enough to maintain the pairing correlations and stable quasi-nuclear

structures. It was found that all results discussed below are not very sensitive to temperature

changes in the range 0≤T≤1 MeV. The increase of temperature from 0 to 1 MeV leads to

a smearing of levels in vicinity of the Fermi surface, however the number of such levels is

small in comparison to the total number.

With increase of temperature the pasta phase structures become smoother and at some

critical temperature they disappear. For the Skyrme-Hartree-Fock approach this critical

temperature is around 5 MeV and 10 MeV for slab and rod structures, respectively, while

the droplet structure disappears at a temperature higher than 15 MeV. Thus, the spherically

symmetric droplet phase will play the main role in different simulations containing the

temperature evolution. Employing the relativistic approach the pasta phase structures turn
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FIG. 5: Proton abundance in the case of uniform matter (dashed line) and pasta phase

(solid line). The symbols refer to specific calculations, whereas the lines have been added

to guide the eye. The results for Skyrme-Hartree-Fock calculations are shown in the upper

panel and the relativistic mean-field results in the lower one. The dashed arrows indicate

typical densities leading to pasta structures of droplet, rod and slab shape.

out to be less stable. Rods and droplets disappear at the temperatures 6 MeV and 10 MeV,

respectively.

One can notice that the chosen temperature T=1 MeV is relatively small in order to

connect our calculations of the mean free path with a certain astrophysical scenario, e.g.,

the neutrino cooling of NS [44]. However, as we emphasized in the Introduction, the main

goal of our work is to investigate the difference of NMFPs in the pasta and homogeneous

matter due to the different spatial density distributions. This difference will be largest at

low temperature as at higher temperatures the inhomogeneous mass distributions tend to

disappear. Therefore the low temperature considered here determines the maximal effect

of the spatial density distribution on the mean free path. For higher temperatures this

influence becomes weaker and vanishes at the melting temperature, which is around T=15

MeV.

For temperatures below 15 MeV and global densities below 0.08 fm−3 the variational

calculations yield structures with inhomogeneous density distributions of protons and neu-
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trons (see figures 1-4). Comparing the spectra of single-particle energies obtained for the

homogeneous and inhomogeneous solutions one observes that the single-particle energies for

the localized states in inhomogeneous matter show more negative energies than the low-

est single-particle states for the homogeneous approach. In the β-equilibrium all proton

states are localized and therefore tend to have more attractive single-particle energies in

the inhomogeneous as compared to the homogeneous density calculation. The variational

calculations allowing for pasta structure yield larger proton fractions than obtained for the

β-equilibrium of homogeneous matter at the same global density.

This can be seen from inspecting figure 5. The upper panel of this figure contains results

of the proton abundances for baryonic matter in β-equilibrium resulted from non-relativistic

Skyrme-Hartree-Fock calculations. The proton abundance of homogeneous matter is a mono-

tonically increasing function of total density and it reaches the value of 4% at the density

0.1 fm−3. Allowing for inhomogeneous matter distribution one obtains a significant increase

of the proton fraction at densities below 0.03 fm−3, while in the density region from 0.03

to 0.08 fm−3 its value is almost constant around 3.2%. The lower panel of figure 5 displays

the corresponding results derived from the relativistic mean field approach. This relativistic

approach seems to provide a smaller symmetry energy at these low densities, which leads to

smaller proton abundances in the inhomogeneous as well as the homogeneous solution.

In figure 6 we want to demonstrate the dependence of the neutrino cross section for the

charge current reaction on the spatial orientation of the momentum transfer ~q. This is

displayed in terms of the corresponding neutrino mean free path, which has been calculated

according to (14) from σx (solid line) and σz (dashed line), respectively. Note that due to

our choice of the coordinate system the results for σy are identical to those for σx for the

rod as well as the slab structures.

For the density ρ of 0.0625 fm−3, which leads to a rod structure, we obtain results for

the NMFP ranging 20 km for neutrinos with an energy of 10 MeV down to 30 cm for

neutrinos with an energy of 100 MeV. For low-energy neutrinos the NMFP for reactions

with a momentum transfer parallel to the x-axis is larger by a factor of 2 as compared to

a momentum transfer parallel to the z-axis, difference which disappears for neutrinos with

larger energies. This factor of 2 is non-negligible but small on the scale of variations for the

NMFP as a function of the neutrino energy. Therefore the simple averaging procedure of

(13) seems to be adequate.
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FIG. 6: The neutrino mean free path (NMFP) calculated for the charged current reaction

in case of rod and slab configurations demonstrate the dependence of the result on spatial

orientation of the momentum transfer ~q.

Similar results are obtained for the slab configuration as can be seen from the lower panel

of figure 6. Note that the results for the NMFP are considerably smaller at low neutrino

energies (by a factor of 10) and even at neutrino energies as large as 100 MeV smaller by a

factor 2, although the ratio of the inverse densities is only about 1.2.

The NMFP calculated in CC (left panel) and NC (middle panel) reactions for homoge-

neous and inhomogeneous matter distributions are shown in figure 7. First, let us compare

the NMFP of homogeneous matter for both types of reactions. The main influence on

NMFP’s results from the available phase space for each reaction. In fact, the proton frac-

tion of homogeneous matter does not exceed 1% for the densities considered here. Thus

we have to consider a much larger blocking effect for the neutrons in the final states NC

reactions than for the protons in the CC reactions. Therefore the cross section of CC ab-

sorption is larger than in NC scattering, and consequently, the mean free path is shorter,

as it is shown by the red dashed lines in figure 7. Due to the small proton abundances in

homogeneous matter the Pauli blocking factor of final electron states affects the result for

the CC reaction only at very small neutrino energies Eν < 10 MeV.

Figure 7 also presents results for the NMFP of inhomogeneous matter for both types
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FIG. 7: Skyrme-Hartree-Fock calculations of NMFP for pasta phases (solid curves) and

the respective results for homogeneous matter at the same global density (dashed curves).

The results for the charged current reaction are shown in the left column, the neutral

current NMFP in the middle, and the total NMFP is shown in the right panel.

of currents (left and middle panels). First of all, we should emphasize the larger influence

of electron blocking factor on CC reaction in the droplet phase. This is due to the larger

proton abundances in the β-equilibrium of the inhomogeneous matter. At a neutrino energy

around Eν ' 10MeV the mean free path of CC processes is longer in comparison with NC

scattering, because in this region the Pauli blocking of electrons in CC reaction dominates

over the differences in phase spaces of the baryonic states. If the energy of incoming neutrino

Eν rises the Pauli blocking drops exponentially and the ratio of the cross sections for CC and

NC reactions is determined by the available phase space for the baryonic states as discussed

above for the homogeneous matter calculation. This means that the NMFP of absorption due

to CC becomes shorter than the respective result in NC scattering. At higher densities, where

rods and slabs appear, the influence of Pauli blocking of electrons is partially compensated
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description of the inhomogeneous baryonic matter distributions results from the density

dependent relativistic mean-field calculations. As examples we present results for the

droplet phase displayed in the left panel at a density of 0.034 fm−3 and for the rod phase

(right panel) at 0.055 fm−3.

by the effects of the baryonic phase space. Therefore the NMFP of CC reaction remains

shorter in comparison with NC reaction for all neutrinos with 10 ≤ Eν ≤ 100.

The same features are also observed in the comparison of NMFP due to the different

currents for the models of inhomogeneous baryonic matter, which are based on the relativistic

mean field calculations displayed in figure 8.

The cross section for neutrino scattering in homogeneous matter increases with the bary-

onic density in a non-linear way (see discussion above). Therefore one may expect that

the mean free path in the inhomogeneous matter is shorter than the corresponding one for

homogeneous of the same global density, since the scattering on the quasi-nuclear structures

shall enhance the respective cross section. Nevertheless, the NMFP obtained for the charged

current reaction, which is shown in left column of figure 7 demonstrates the opposite be-

havior, specially at low densities, where the droplet phase occurs. The NMFP obtained

from absorption in inhomogeneous matter is longer than the respective result derived from

homogeneous matter calculations.
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In order to explain this effect one should consider difference in proton fractions of homo-

geneous and inhomogeneous matter discussed in the beginning of this Section. At a typical

density 0.0165 fm−3, where the droplet phase occurs the proton abundance in inhomogeneous

matter is significantly larger than the respective value obtained in the homogeneous matter.

This difference in the proton fractions has two effects: first, the homogeneous matter con-

tains less protons in comparison with the inhomogeneous one. Consequently, the number of

unoccupied final proton states is larger and more transitions, which contribute to the total

cross section, are possible. Secondly, the chemical potential of electrons compensating the

charge of the protons in matter is lower in case of homogeneous matter and the respective

Pauli blocking factor for the produced electrons is lower than those obtained for the inhomo-

geneous matter. This effect again modifies the cross section considerably at low Eν. With

increase of the energy of incoming neutrinos the Pauli blocking of electrons rapidly drops

and more transitions become possible, so that the differences between homogeneous and

inhomogeneous matter distributions are getting less significant and the respective NMFP’s

become closer one to another. At higher densities of matter, where the rod and slab phases

occur, the difference in proton abundances are less important, therefore the resulted mean

free paths are very similar and the effect of inhomogeneous structure becomes negligible.

At the end we should notice that at neutrino energies less than 10 MeV the NMFP’s

of homogeneous and inhomogeneous matter distributions calculated in CC reaction signifi-

cantly exceed the typical neutron star radius. Therefore one can conclude that the charged

current reaction is kinematically suppressed [45].

The results of neutral current reaction are shown on the middle panel of figure 7. It is

obvious that the appearance of pasta phase in this case has no important influence on neu-

trino propagation, since this type of reaction does not depend on Pauli blocking of neutrino

in final state (no trapped neutrinos). The only small difference in NMFP’s of homogeneous

matter and droplet phase may be explained by different values of matrix elements in (12),

since the s.p. wave functions of bound neutrons in droplet significantly differ from wave

functions of homogeneous matter. However even this small effect becomes negligible if the

global density increases and the density profiles become smoother and transition to the

homogeneous phase approaches.

The total NMFP, which combines both reactions, is shown on the right panel. One can

see, that the total mean free path is slightly shorter than the mean free path in charged
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current reaction. Therefore we conclude that this reaction is dominant in the total neutrino

response of the system.

A comparison of NMFP’s of charged and neutral currents in case of pasta phase based on a

relativistic mean-field model in a WS cell is displayed in figure 8. It is worth mentioning that

within the relativistic model we could not find any formation of slab structures. Therefore

only results for droplet and rod structures are shown. Also, the global density, at which

the droplet phase occurs in the relativistic mean-field model is two times larger than the

respective density in the nonrelativistic model. The difference between proton fractions of

homogeneous matter and pasta phase is not so significant. In fact, the values of proton

abundance around ρ = 0.02 fm−3, displayed in the lower panel of figure 5, are about 40%

smaller than the corresponding values obtained in the Skyrme model (the upper panel).

Therefore we omit the comparison between NMFP’s of homogeneous and inhomogeneous

matter however we compare the mean free paths of pasta phase for both types of reactions.

One can see that at Eν < 20MeV the behavior of CC curves is determined by the Pauli

blocking, while at higher energies the result becomes sensitive to the structure of phase space

available for the reactions. Both charged and neutral current mean free paths decrease if

the global density of matter rises.

Up to now we considered the nuclear matter in β-equilibrium and found that the main role

in NMFP of charged current reaction plays the electron blocking factor and the difference in

phase spaces, caused by different proton numbers in pasta phase and homogeneous matter at

the same global density. Therefore all effects due to different spatial distribution were hidden.

In order to investigate the influence of density distributions on NMFP one can perform

calculations in homogeneous and inhomogeneous matter with the same proton fraction. For

comparison we choose the non-relativistic droplet phase and homogeneous matter at the

same density with fixed proton fraction 3.5%, ignoring the electron blocking factor. The

results are shown in figure 9. The mean free path is shorter for inhomogeneous density

distributions, however the difference between two curves is only about 20% at the neutrino

energy Eν =10 MeV. Since the core of droplet phase, which is localed at the center of WS

cell originated from the deeply bound states, its contribution becomes less significant with

increase of energy Eν. In fact, when energy and momentum transfers rise, the contribution

of deeply bound states becomes less important and on the contrary the contribution of

transitions between weakly bound and free states of neutrons and protons increases.
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FIG. 9: Skyrme-Hartree-Fock calculations of NMFP for droplet phase (solid curves) and

the respective results for homogeneous matter (dashed curves) at the same global density

ρ =0.0166fm−3. The effects of electron blocking factor and β-equilibrium were ignored.

In this study we considered two interaction models: a nonrelativistic Skyrme force and a

relativistic density-dependent mean field model. The dependence of the NMFP’s on these

interaction models turns out to be rather weak. At small neutrino energies (Eν < 25

MeV) the RMF yields a NMFP which is up to 20 percent larger than the corresponding

result derived from the Skyrme model, whereas at larger values of Eν the Skyrme model

predicts NMFP’s which are up to 10 percent larger than those resulting from the RMF. So

we conclude that the model-dependence of the NMFP is generally larger than the difference

resulting from inhomogeneous versus homogeneous matter. Only at small densities and small

neutrino energies one observes significant effects from inhomogeneous matter (see Fig.7).

Summarizing we conclude that the NMFP is determined by three different factors. The

first of them - the Pauli blocking effect of final electrons in CC reaction play the most

important role at low neutrino energy and drops exponentially if the energy increases. The

second factor is the difference in baryonic phase spaces of different reactions. The phase

space of CC absorption is larger than in NC scattering, because the Fermi energy of final
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(proton) states is considerably lower than the neutron Fermi energy. The last factor, related

to a significant difference of the spatial density distributions, leads to the reduction of the

NMFP in inhomogeneous matter, however it plays a smaller role in comparison with other

effects.

V. SUMMARY AND CONCLUSION

The aim of this study was to examine the role of the inhomogeneous baryonic density

structures in the crust of neutron stars on the propagation of neutrinos. Our calculations

of neutrino mean free paths (NMFP) are based on microscopic descriptions of the so-called

“pasta structures” derived from 3D Hartree-Fock calculations with the SLy4 parameteriza-

tion of the Skyrme potential as well as density-dependent relativistic mean-field calculations,

which reproduce the empirical properties of normal nuclei with good accuracy. We find that

the evaluated NMFP due to charged current reactions significantly depend on the structure

of the pasta phase. This is mainly due to fact that the proton abundances derived from the

β-equilibrium in inhomogeneous matter are larger than the corresponding values determined

for symmetric matter. The effects of inhomogeneous baryonic density distributions is less

pronounced for the neutral current contribution.

Recent studies show that the weakly bound neutrons may play an important role in

formation of collective modes in the crust of neutron stars [26]. In our calculations the

role of such collective features of neutrons has not yet been considered and an accurate

calculation of nuclear response functions should be done in the future.
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