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Abstract.

We formulate the principles of the mean-field theory of nuclear stability
employing the point-group, and group-representation theories. The related point-

group hierarchy of importance in the context of nuclear stability is constructed and
discussed. We introduce the notion of the magic-number chains associated with
each symmetry - in analogy to the spherical-symmetry nuclear magic-numbers.
To prepare the criteria for the experimental search of introduced symmetries we
examine the simplified collective rotation-vibration model whose Hamiltonian is
invariant under the symmetries in question. We illustrate the construction of
the solutions that form at the same time irreducible-representations of the point-
groups in question - in view of formulating the experimental symmetry-criteria
through the application of the branching-ratio techniques. Since the criteria may
involve very weak transitions whose experimental research may be at the limit of
the present-day experiments, the desires may arise, as it was the case in the past,
to replace the difficult experiments by an inadequate modelling. In this context
we present an alert: The use of oversimplified quantum mechanics exercises in
place of experiments and/or microscopic theories is likely to produce meaningless
results.

PACS numbers: 21.60.-n,21.10.-k,21.10.Pc
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1. Introduction: Nuclear stability and point-group symmetries

Studying exotic nuclear systems with extreme numbers of neutrons for any fixed proton
number represents one of the most important research directions at the large scale
nuclear physics facilities world-wide. One of the central issues in this research is the
question of stability (thus of life-times) of the investigated nuclear species, the shorter
the life-times the bigger the problems with the production and, importantly, detection
at a conclusive level of statistics. It therefore becomes clear that realistic modelling of
nuclear stability on the theory grounds will play a very important role, in particular,
in determining both the strategies as well as the detailed planing of experiments.

The stability of a nuclear system is related to the nucleonic binding, thus to the
presence of large gaps in the single-nucleonic spectra: to an approximation, the larger
the energy gaps at the Fermi level the stronger the stability. Contemporary effective
Hamiltonians such as nuclear mean-field Hamiltonians can generate information of
this type in a realistic manner. Since the majority of nuclei are non-spherical, the well
established capacity of the mean-field theories to describe the nuclear spontaneous
spherical-symmetry breaking, and by the same token, the nuclear deformations, is of
considerable advantage. Nuclear shapes are directly related to the spatial properties
of the underlying mean-field Hamiltonians, whereas the latter determine the nucleonic
energy spectra. This link opens up the possibilities of analyzing the global properties of
nucleonic spectra, such as energy-level degeneracies, fluctuations of the level densities
etc. through the symmetries of the mean-field Hamiltonians directly. Indeed, through
employing powerful group- and group-representation theories that help to predict
the most likely presence of gaps in the single particle spectra prior to the detailed
calculations we may obtain, as it will be shown, instructive guide-lines for such large
scale calculations, cf. section 2, especially table 1 and figure 1.

In this article we formulate the principal lines of the symmetry-based research
of stability of exotic nuclear shapes. The term ‘exotic’ is arbitrarily used to denote
any symmetry other than spherical, prolate-, oblate- or triaxial-quadrupole as well as
axial-octupole geometries. We present general group-theoretical arguments adapted
to the form of the mean-field theory Hamiltonians as well as the collective rotation-
vibration Hamiltonians. It will be shown that the latter present certain mathematical
advantages when formulating the criteria for the experimental identification of the
symmetries, but the corresponding signals may be weak and detection difficult.

In this article we discuss a number of Open Problems related to nuclear point-
group (geometrical) symmetries whose hierarchy is presented in section 2. We have
verified on the examples of tetrahedral and octahedral symmetries which, for reasons
explained below are on top of the list, that using realistic Hartree-Fock Bogoliubov
and phenomenological methods one obtains the high-symmetry solutions for nuclei in
numerous areas of the Periodic Table. We believe this is not so much the question
of ‘Whether?’ but ‘Where in the Nuclear Chart exotic symmetries can be found?’
A number of Open Problems relates to ‘What to look for?’ In section 3 we present
group-theory considerations that may help in the dedicated experimental studies.

Finally, we formulate a few brief comments on the in-adapted approaches to
look for the symmetries in nuclear systems which, very unfortunately, are applied
by certain authors leading to totally wrong conclusions based on possibly technically
correct an experimental input. Interested reader is referred to the article focussing on
the complete description of the problem and the underlying techniques in [1].
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2. Symmetry-based mean-field theory of nuclear stability

Let us begin by a few facts from the group-representation theory relating the symmetry
of the Hamiltonian, H , and the degeneracy of levels. Let group G = {ĝ1, ĝ2, . . . ĝf}
be a symmetry group of H , what implies that a representation D(ĝ) exists such that
[D(ĝ), H ] = 0, ∀ĝ ∈ G. Suppose that D1, D2, . . . Dr are the irreducible representations
of G with dimensions d1, d2, . . . dr, respectively. Then the spectrum of H splits into
multiplets with degeneracies either equal d1, or d2 or ... dr. The spherical symmetry
provides a particular example: the irreducible representations are characterised by
the single-particle angular momentum quantum numbers j, the implied Hamiltonian
block-sub-matrices have the dimensions (2j + 1) × (2j + 1) and the degeneracies are
equal to dj = (2j + 1). We will argue that the irreducible representations of the
symmetry groups influence spectral properties through two characteristics: both the
dimensions {dk : k = 1, . . . r} and the total number of irreducible representations, r.

Table 1. Double point groups together with the numbers of their irreducible

representations and dimensions. The information in the last column should be

read as follows. For instance, in the case of the double octahedral point group OD
h

we find 4 two-dimensional and 2 four-dimensional irreducible representations.

No. Group No. Irr. Dimensions

1 OD
h 6 4 x 2D and 2 x 4D

2 T D
d 3 2 x 2D and 1 x 4D

3 CD
6h 12 12 x 1D (6 x 2D)

4 DD
6h 6 6 x 2D

5 CD
4h 8 8 x 1D (4 x 2D)

6 DD
4h 4 4 x 2D

7 DD
3h 3 3 x 2D

8 CD
6v 3 3 x 2D

9 DD
6 3 3 x 2D

10 CD
6 6 6 x 1D (3 x 2D)

11 SD
6 6 6 x 1D (3 x 2D)

12 CD
3h 6 6 x 1D (3 x 2D)

13 CD
3i 6 6 x 1D (3 x 2D)

14 DD
2h 2 2 x 2D (reference)

Point groups that express geometrical symmetries in quantum mechanics are
classified as ‘simple’ or ‘double’, the latter applicable to the Fermion spaces and thus to
the mean-field Hamiltonians for nucleons. The names of the double groups are marked
with the superscript D. The point-groups of interest in this article are listed in table 1
according to decreasing dimensions of their irreducible representations - as well as the
decreasing numbers of irreducible representations. These two characteristics of various
groups are compared with the ones of DD

2h, the symmetry of the so-called ‘triaxial’
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nuclei, usually described with the help of quadrupole elongation (β) and triaxiality
(γ) deformations. It is suggested in sections 2.1 and 2.2 that the bigger the numbers

of irreducible representations and larger their dimensions per given symmetry group,

the larger the chances for strong inter-spacing of levels.

2.1. Symmetry groups and the effect of a large number of irreducible representations

To our knowledge, there exist no rigorous mathematical argument connecting e.g.
the gaps or the maximum-gaps in the energy spectra with the characteristics of the
irreducible representations of symmetry groups. We have performed numerous tests
using the realistic mean-field models to convince ourselves that the following properties
are approximately valid (so far OD

h , T D
d and CD

4h groups were tested), cf. figure 1.
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Figure 1. Schematic: 20 levels in a potential well; for comments cf. the text.

To introduce a reference mechanism let us consider a symmetry group possessing
only one two-dimensional or two-dimensional equivalent‡ irreducible representation
leading to Kramers degeneracy. Hamiltonians with the implied symmetry generate two
matrix-blocks, [H ] and [H∗], and it follows from the hermiticity that the corresponding
spectra are identical. With increasing deformation which preserves that symmetry (the
nuclear shapes resembling less and less a sphere) the levels have a tendency to fill in
the energy window Vo tending towards a uniform distribution (figure 1, right).

For symmetry groups with r irreducible representations the mechanism of filling
in the energy window Vo repeats itself within each of the r blocks. Level-density
fluctuations leading to relatively irregular spacings are stronger since there are much
fewer levels per each block in this case (figure 1 left). The mechanism presented
here qualitatively leads to strong non-spherical symmetry “magic” gaps in the single
particle spectra with the accompanying strong shell effects that lead to prediction of
possible shape-coexisting minima in various areas of the Periodic Table, cf. [6].

2.2. Symmetry groups and the effect of dimensions of irreducible representations

Dimensions of the irreducible representations are equal to the degeneracies of related
levels, as e.g. (2j + 1)-degeneracy in spherical nuclei. Suppose there are Nb bound

‡ The mathematical details about the Wigner theorem classifying the irreducible representations as
potentially real, pseudo-real and essentially complex, the mathematical terminology that we will not
need here, can nevertheless be found in [2].
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states in a deformed potential of depth Vo. Formally, we can place 2 · Nb particles in
the potential and the average level spacing 〈d〉 ∼ Vo/(Nb). The 2 ·Nb particles can be
put much more ‘economically’ if several levels carry degeneracies higher than 2 - this
is because the same number of particles can be placed on the number of levels Ndeg

which is smaller than Nb, so that the average level spacing 〈ddeg〉 ∼ Vo/(Ndeg) will be
larger (or considerably larger) than the one in the case of no extra degeneracies.

There are only a few double point groups that have dimensions of their irreducible
representations larger than 2. These are first of all the octahedral and tetrahedral
groups listed as the first two in table 1. The icosahedral group which belongs to
the same category generates regular shapes probably too close to the spherical form
to be of interest in the nuclear physics applications; so far, arbitrarily, we have
disregarded this group. However, the degeneracy arguments (equivalently: dimensions
of irreducible representations) together with the arguments of the large number of
irreducible representations place the octahedral and tetrahedral groups on top of the
list of interest in the context of strong non-spherical shell-gaps and an implied increase
in nuclear stability at the corresponding particle numbers, see below.

An illustration of this qualitative discussion in the context of the realistic nuclear
calculations will be given in section 2.4 after having introduced the solution of the
non-trivial problem of constructing the mean-field Hamiltonians preserving an a priori

given (pre-defined) point-group symmetry.

2.3. Construction of the symmetry-preserving mean-field Hamiltonians

Focusing on the mean-field applications, suppose that the considered Hamiltonian
depends on an ensemble of parameters {α} specifying nuclear shapes, thus en = en(α).

2.3.1. Phenomenological Mean Field Hamiltonians: Woods-Saxon or Yukawa folded.

Consider first a deformed Woods-Saxon or Yukawa-folded mean-field potential, with
the nuclear surface Σ represented with the help of spherical harmonics Yλµ as

Σ : R(ϑ, ϕ) = c({α})
[

1 +

λ
∑

µ=−λ

α?
λµ Yλµ(ϑ, ϕ)

]

, (1)

where function c(α) assures the constant volume condition. Given symmetry group
G = {ĝ1, ĝ2, . . . ĝf}; by acting with any of the symmetry operations ĝi on the nuclear
surface we must obtain an image coinciding with the original i.e.

λmax
∑

λ=2

λ
∑

µ=−λ

α?
λµ [ĝi Yλµ(ϑ, ϕ)] =

λmax
∑

λ=2

λ
∑

µ=−λ

α?
λµYλµ(ϑ, ϕ), ∀ ĝi. (2)

Let us introduce the Euler-angle representation of group elements adapted to act on
the spherical harmonics: ĝi → Ωi where Ωi ≡ {ω1, ω2, ω3} are the triplets of Euler
angles, cf. [2]; e.g. for a four-fold Oz-axis, Ω = {π/2, 0, 0}. One can show, [3], that
deformation parameters αλµ obeying the symmetry G satisfy in each order λ:

λ
∑

µ=−λ

[

(−1)ηi(−1)λDλ
µ′µ(Ωi) − δµµ′

]

α?
λµ = 0 for i = 1, 2, . . . f, (3)

where ηi=0 (or 1) depending on whether the inversion is not (or is) involved. This
system of f equations resembles the system of eigenvalue problems with eigenvalues
equal to unity. Since equations in (3) are uniform, multiplying their solution ᾱλµ by
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a constant generates another solution. This property allows to select, e.g. ᾱλµ=0

as an independent parameter and define a ‘hyper-curve’ ᾱλµ = ᾱλµ(ᾱλµ=0); for
higher multipolarites bi- or multi-dimensional hyper-surfaces are obtained provided
the solutions of the system in (3) exits at all. In fact, the system in question is
over-defined – it contains more equations than unknowns. The fact that solutions
(sometimes) exist is a result of the symmetry. Since all the elements of a group can
be constructed out of generators, in practice we need to solve only the systems of
equations for the generators.

Examples of solutions for the tetrahedral and octahedral symmetries are given
by equations (4)-(9) below. For instance, for the tetrahedral symmetry the solutions
exist only for odd λ ≥ 3, with the exception of λ = 5; we have [4]:

λ = 3 : α3,±2 ≡ t3; λ = 5 : no solution exists; (4)

λ = 7 : α7,±2 ≡ t7 and α7,±6 ≡ −
√

11
13 t7; (5)

λ = 9 : α9,±2 ≡ t9 and α9,±6 ≡ +
√

28
198 t9, etc. (6)

Observe the presence of the characteristic geometrical factors which are necessary to
guarantee that the symmetry of the nuclear surfaces is obeyed at each value of t7, t9,
etc. The solutions for the octahedral symmetry exist for even λ ≥ 4 and we find

λ = 4 : α4,0 ≡ o4 and α4,±4 ≡ −
√

5
14 o4; (7)

λ = 6 : α6,0 ≡ o6 and α6,±4 ≡ +
√

7
2 o6, (8)

together with

λ = 8 : α8,0 ≡ o8 and α8,±4 ≡ +
√

28
198 o8,

and α8,±8 ≡ +
√

65
198 o8, etc. (9)

Let us notice a property of a certain mathematical elegance: for the multipolarity
orders λ ≤ λmax = 9 studied we have the symmetries generated by one-parameter
families of (hyper-)curves in the deformation space and moreover, the multipolarities
λ are never mixed what simplifies the technical applications of the formalism.

To our knowledge tetrahedral and octahedral symmetries are the only ones for
which the problem of generating mean-field Hamiltonians invariant with respect to
a predefined symmetry has been examined and solved; the solutions for most of the
other point groups in table 1 belong to the domain of Open Problems, although the
simple formalism summarized by equations (1)-(9) paves the way towards this goal.

2.3.2. Microscopic Mean-Fields - Hartree-Fock and Density-Functional Hamiltonians.

All what has been said about the symmetry-respecting combinations of the ᾱλµ

coefficients in each given order λ for the Woods-Saxon and Yukawa-folded potentials
can be translated into the Hartree-Fock and constrained Hartree-Fock formalisms
after replacing ᾱλµ by multipole-moment constraints Q̄λµ. For instance, for the
octahedral symmetry of the rank λ = 4 we would search for solutions for which
Q̄4,±4 ≡ −

√

5/14 Q̄4, all other moments being either equal to zero or obeying the
relations of the type in (8)-(9) for higher permitted λ-ranks.

The geometrical formalism introduced in the preceding section is extremely
powerful in studying the symmetries of the self-consistent solutions as it can be seen
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Table 2. The Skyrme SIII Hartree-Fock-Boglyubov calculation results for
tetrahedral solutions in light Rare-Earth nuclei using the zero-range density-
dependent mixed pairing force in the pairing channel (based on [3]). Columns
3, 4 and 5 give the multipole moments indicated. Column 6 shows the symmetry
test based on relation (7); observe that the high precision equality between the
results in columns 5 and 6 is a measure of an (almost) perfect symmetry.

Z N Q32 Q40 Q44 −Q40 ×
√

5
14

(b3/2) (b2) (b2) (b2)

64 86 0.94181 −0.22737 0.13587 0.13588
64 90 1.39465 −0.42825 0.25592 0.25592
64 92 0.00000 −0.44721 0.26726 0.26726

62 86 0.48739 −0.08694 0.05195 0.05195
62 88 0.81210 −0.21880 0.13076 0.13076
62 90 1.20601 −0.38033 0.22729 0.22729

from the results in table 2 for the Hartree-Fock-Boglyubov calculations for a number
of nuclei in the Rare Earth region. The results correspond to the unconstrained
minimisation: the starting configuration has been constructed in such a way that
no predefined symmetry was present in the wave-functions at the zero Hartree-Fock
iteration, although a component of the tetrahedral symmetry has been present in the
“mixed-input”. As a consequence the convergence to the minima, as a matter of fact
significantly below the energy at the spherical shapes of the considered nuclei, was
assured just by the unconstrained variational principle. Observe also that solution
for 156Gd has a purely octahedral character, the symmetry OD

h , whereas in all other
solutions we have a combination of tetrahedral (weaker) and octahedral (stronger)
symmetries, T D

d ⊂ OD
h , leading to the final T D

d (i.e. weaker) symmetry for all but
156Gd nuclei. (For more details about the group-subgroup relations, cf. section 2.3.3.)

Let us emphasize that the unprepared user of the Hartree-Fock formalism would
not recognize the presence of the higher-level symmetries without relations (4)-(9), as
illustrated through comparison of columns 5 and 6 in table 2 for the tetrahedral and
octahedral symmetries. It is a great advantage of the simple approach presented in
section 2.3.1 that the results obtained with the e.g. Hartree Fock (and for that sake
any other density-functional) formalism can be easily recognized and studied by using
the multipole moments of the self-consistent solutions. The underlying geometrical
formalism is in fact a common factor between the phenomenological and the density-
functional methods. Preliminary studies in this direction have been advanced for
the octahedral and tetrahedral groups and the interested reader is referred to the
papers quoted above. However no systematic calculations for these two groups and
no calculations for all other groups listed in the table 1 exist today and the implied
studies belong to the Open Problem series.

2.3.3. Group vs. subgroup relations and symmetry-preserving energy minimisation.

It will be instructive to present the role of the weaker i.e. less symmetric (more
precisely: a subgroup) in the pair T D

d ⊂ OD
h groups. The corresponding geometrical

shapes are those of a triangle-base ‘pyramid’ and a ‘diamond’ shapes, respectively.
And yet, the tetrahedral group is a sub-group of the octahedral one: in other words,
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the shapes which are octahedral-symmetric are also tetrahedral symmetric and the
combination of the two classes of shapes may (and according to our tests does) enhance
strong shell effects of the over-all tetrahedral symmetry, thus increasing the chances
of the presence of the weaker among the two symmetries in atomic nuclei.

Figure 2. A nuclear ‘pyramid’ (left) and a nuclear ‘diamond’ (right) shapes
corresponding to the tetrahedral and octahedral deformations with t3 = 0.2
and o4 = 0.2, respectively, cf. (4) and (7). It is usually recognized as not

intuitive that so qualitatively different shapes belong to the common, ‘weaker’,
tetrahedral symmetry and when combined may decrease considerably a energy of
the tetrahedral-symmetric nucleus.

We find it instructive to compare the geometrical differences between shapes
generated by the two discussed symmetry groups and yet, when combined together,
leading to the symmetry of the subgroup, cf. figure 2. This simple observation is of
a very high importance when minimising the energies with e.g. the very performant
phenomenological models — and yet systematic studies of this type are only at the
beginning, thus enlarging the list of the related Open Problems..

2.4. Exotic symmetry groups and generalized magic gap chains

Let us emphasize at this point that the term magic numbers usually employed in
relation to the large gaps at spherical shapes corresponding to proton and/or neutron
numbers 8, 20, 28, 50, 82 and 126 should by no means be reserved to the O(3)
group. To the contrary, we suggest that any point-group symmetry may generate
its own series of magic numbers (we call them generalized magic gap chains) - with
an important difference compared to the spherical symmetry case. Whereas a given
nucleus cannot be more spherical than the other, it may be more (or less) deformed
with the deformation belonging to e.g. tetrahedral-symmetry shapes. In other words,
we may introduce the notion of tetrahedral-symmetry magic gaps by examining the
single-particle spectra in function of multidimensional paths parametrised with the
help of variables t3 - t9 of (4-6) and/or oλ of various orders. The maximal gaps in the
single-particle spectra do depend, individually, on deformation parameters. The gaps
at the particle numbers Ni correspond to the sets of symmetry-preserving deformation
parameters Pi ≡ {t̄3, t̄7, t̄9, . . .}i - the generalized magic gap chains for the octahedral
group are then characterized by the sets of numbers {Ni,Oi}.

More generally, consider an arbitrary symmetry-group G with the symmetry-
conserving parameters ᾱG

λ . By examining the single particle spectra in the spaces
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of {ᾱG
λ } we obtain the magic gaps corresponding to the occupation numbers NG

i at
deformations PG

i ≡ {ᾱG
λ }i, so that finally the generalized magic gap chains are given

by the ensembles of numbers {NG
i ,PG

i }. Properties of this type have been established
for the tetrahedral symmetry group in [3]-[8] and references therein, but the systematic
analysis for the other symmetry groups remains an Open Problem.
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Figure 3. An example of realistic calculations with the phenomenological Woods-
Saxon potential (here: Zirconium region) illustrating the mechanism of creating
strong “tetrahedral” gaps in the single-particle spectra that can be comparable
in size with the “spherical” gaps. The name “tetrahedral deformation” applies
to t3 of (4). The full lines represent solutions belonging to the four-dimensional
irreducible representations while the dashed lines – the two remaining inequivalent
two-dimensional representations. We use the Nilsson labelling of the curves, the
numbers in parentheses being percentages of the dominating (Nilsson) label.

Figure 3 illustrates the powerful impact of the symmetry-considerations on
generating large gaps in the realistic single-nucleon spectra. As it can be seen from the
figure the tetrahedral-symmetry “magic” gap at Z=40 is comparable with the Z = 50
spherical gap. Using this type of calculations the chain of the tetrahedral magic
numbers has been found with Z, N=32, 40, 56, 70, 90 and N=136. Similar diagrams
in which the single-nucleon energies are drawn in a way allowing to distinguish between
irreducible representations for various symmetry groups, cf. table 1, do not exist in
the nuclear physics literature and represent a series of Open Problems for the future.

There exists yet another difference between the nuclear stability associated with
spherical magic-gaps as compared to the generalized magic gaps. Whereas spherical
configurations offer the most optimal surface- to Coulomb-energy ratio the non-
spherical magic gaps may correspond to the forms whose surface- to Coulomb ratio
of energies becomes extremely unfavourable - in other words: the corresponding total
nuclear energies may lie very high, or, for the deformations large enough there may
be no stable minima in the total energy landscapes corresponding to the magic gaps
representing only the mean-field (and not the total nuclear energy) properties. These
and related stability questions belong to the realm of Open Problems today.



Exotic nuclei and exotic symmetries 10

3. Properties of rotational bands and criteria of detection of symmetries

We will limit our considerations to the coexisting nuclear states with tetrahedral and
quadrupole shapes as examples of ‘exotic’- and ‘usual’ non-spherical symmetries, for
which nuclear orientations in space and thus rotational bands can be defined. It has
been shown using the methods of the preceding Section that the tetrahedral symmetry
can be parametrised, to the lowest order, by α32 multipole deformation under the
condition that all other (static) deformations are zero. Moreover, it can easily be shown
that at the static tetrahedral minima Q2,µ=0, whereas all other multipole components
α3,µ6=2 lead to non-zero quadrupole moments. Within a simplified interpretation this
implies that the E2 transitions within the bands of exact tetrahedral symmetry should
vanish whereas in the case of a partial symmetry breaking they could be considerably
smaller than the ones in the usual quadrupole-deformed nuclei§. This implies that the
usually neglected mechanisms such as e.g. the zero-point motion around the vanishing
equilibrium deformations must not be neglected‖ anymore, e.g. the zero-point motion
in other octupole degrees of freedom, α3,µ6=2, as well as the quadrupole ones thus
leading to, possibly less hindered, E2 transitions in the tetrahedral bands, cf. (28).

Let us introduce an intrinsic reference frame Σrot and consider the Hamiltonian:

Σrot : H = Hvib;λ=2 + Hvib;λ=3 + Hrot. (10)

Since the spherical tensors αλµ are in general complex, the usual way to proceed is
to express the vibrational Hamiltonians using real parameters aλµ and bλµ defined by
αλµ ≡ aλµ + i bλµ. Above we assume the simplest decoupled-vibration picture, where
vibration potentials have the form 1

2Ca
λµ (aλµ − aeq.

λµ)2 and/or 1
2Cb

λµ (bλµ − beq.
λµ)2 and

the single-variable vibration Hamiltonians have the structure

Hvib = − h̄2

2B

∂2

∂ρ2
+

1

2
C(ρ − ρeq)2 with ρ ↔ aλµ or bλµ (11)

where B ↔ Bλµ and C ↔ Cλµ play the roles of the inertial mass parameter and
stiffness-coefficient, respectively, here considered constant. Equilibrium deformations
aeq.

λµ and/or beq.
λµ are selected using our extensive Woods-Saxon Strutinsky results.

Introducing the vibration frequencies h̄ω ≡ h̄
√

C/B and simplifying the notation

we define η ≡ h̄/[
√

2Bω]1/2 and introduce the usual harmonic-vibration solutions

φn(ρ) =

√

η/(2nn!
√

π) exp
(

− η2ρ2/2
)

Hn(ρ), (12)

where Hn are Hermite polynomials. We wish to avoid mathematical details at this
point and limit ourselves to schematizing the main lines of the approach; the interested
reader is referred to a more detailed discussion in [9].

We use the standard definition of the intrinsic reference frame (alternatively:
Euler angles) based on the choice of the quadrupole deformations as α2,+1 = 0 = α2,−1

and α2,+2 = α2,−2. In such a case the quadrupole vibrations are described in terms

§ The negative parity bands with the above properties have been found in the literature, cf. a short
review of the actual research status of the International TetraNuc (Tetrahedral Nuclei) Collaboration
in [10]; they can be seen as tetrahedral-symmetry candidate structures.
‖ To better appreciate this argument consider a nucleus with the quadrupole-deformed minimum of
the order of α20 ≈ 0.3 and the induced collective rotation. The corresponding reduced transition
probabilities, B(E2), could be as large as 300 W.u. depending of the nuclear mass while the correction
of the zero-point vibrations of the order of a dozen W.u. or so. The same ‘correction’ applied in the
case of the static, nearly-vanishing deformation [and therefore considerably smaller, nearly-vanishing
B(E2)] may take the role of the leading term rather then that of a negligible correction.
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of two independent real parameters α20 = a20 and α22 = a22 and it turns out
that the octupole vibrations represent seven independent modes, here parametrised
with the help of a30 as well as a31, a32, a33 and b31, b32, b33. In the following we
would like to construct the negative-parity one-phonon wave-functions to be able
to model the negative-parity bands, candidates for the tetrahedral symmetry, in
terms of the irreducible representations of the underlying tetrahedral group. With
n in (12) representing the phonon number, we will introduce the symbol {n} ≡
{n1, n2; n3, . . . n9} in which the first two places are reserved for the quadrupole degrees
of freedom and all the others of the octupole ones. We will introduce a basis of product
wave-functions

Φ{n} = φn1
φn2

× φn3
. . . φn9

, (13)

but since the conditions for the negative parity solutions imply the one-phonon
structure it follows that n1 = 0 and n2 = 0 (zero-phonon quadrupole ground-state)

whereas
∑i=9

i=3 ni = 1, with ni = 0 or 1. It will be possible (and convenient) to shorten
the notation by replacing {n1, n2; n3, . . . n9} by {00; m}, where m gives the only non-
zero index ni that is allowed. For instance, symbol Φ00;n5

represents the product
(φn1=0 · φn2=0) × (φn3=0 · . . . · φn5=1 · . . . · φn9=0).

Consider an arbitrary solution Ψ to the vibration-part of Hamiltonian in (10); it
can be expanded in terms of our basis wave-functions as

Φ =

9
∑

j=3

c{n}j
Φ{n}j

. (14)

Let PΓ denote the operator projecting from the space of Ψ onto a sub-space of the
irreducible representations Γ of G; we will apply it for G = Td, but the considerations
remain analogous for any symmetry point-group. According to the well known result

PΓ =
dim[Γ]

card(G)

∑

ĝ∈G

χΓ(ĝ)?ĝ, (15)

where card(G) is the number of elements in the group G and χΓ(ĝ) are the related
characters of the group elements. Using the above operator we find the structure of
the wave-functions spanning the irreducible representations of the group Td in the
7-dimensional space of one-phonon solutions; up to a normalisation they are given by:

|A1〉 ∼ Ψ00;n6
(16)

for the scalar representation Γ = A1,

|T 1; 1〉 ∼ Ψ00;n3
, (17)

|T 1; 2〉 ∼ 1
4 (−

√
5Ψ00;n2

−
√

3Ψ00;n4
− i

√
5Ψ00;n5

+ i
√

3Ψ00;n7
), (18)

|T 1; 3〉 ∼ 1

4
(+

√
5Ψ00;n2

+
√

3Ψ00;n4
− i

√
5Ψ00;n5

+ i
√

3Ψ00;n7
), (19)

for the first 3-dimensional representation Γ = T 1 and

|T 2; 1〉 ∼ Ψ00;n1
, (20)

|T 2; 2〉 ∼ 1
4 (−

√
3Ψ00;n2

+
√

5Ψ00;n4
+ i

√
3Ψ00;n5

+ i
√

5Ψ00;n7
), (21)

|T 2; 3〉 ∼ 1
4 (+

√
3Ψ00;n2

−
√

5Ψ00;n4
+ i

√
3Ψ00;n5

+ i
√

5Ψ00;n7
), (22)

for the remaining one, Γ = T 2, all that for the vibrations around the spherical
equilibrium in the 7-dimensional octupole space. To obtain the solutions for the
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non-zero equilibrium deformation we may introduce the deformation-shift operators,
say S, that must preserve the group structure of G - and thus must commute with
all the symmetry operations in G. It is possible to show that the only invariant
of the G = Td group composed of the αλ=3,µ tensor can be expressed (depending
on conventions that are of no importance here) as either b32 or a32. Using the first
convention we may demonstrate that the ‘tetrahedral-deformation shift’ operator with
the sought mathematical properties has the form

S(beq.
32 ) = exp

(

− beq.
32

∂

∂b32

)

. (23)

Introducing the above shift we formally break the symmetry under the inversion¶.
In such a case the projection onto the good parity is an option of choice. It is easy to
see that the operator 1

2 (1−Ci), where Ci denotes the inversion, is the sought projection
on the negative-parity irreducible-representations of the considered Td-group and thus
by applying the combined projection-and-shift operation

P(beq.
32 ) ≡ 1

2
(1 − Ci)S(beq.

32 ) (24)

on the wave functions in (16-22) we obtain the sought solutions that belong to the
irreducible representations of the group considered. They have the appropriately
adjusted equilibrium deformations and are also parity-projected.

We have discussed so far, for the sake of compactness of this presentation, only the
main lines of the proposed approach, but the interested reader can convince her/him-
self that due to the simplicity of the vibrational wave-function basis the calculations
of interest can be performed analytically+; this is a helpful factor for quick estimates
but by no means the most important one. As a first example of an application (and
using the fact that the exotic deformations considered here are relatively small) we
may introduce the general expansion expression for the multipole moment operators

Q
rot
λν =

3ZRλ
0

4π

{

αλν +
λ + 2

2
√

4π

∑

λ1λ2

√

(2λ1 + 1)(2λ2 + 1)

2λ + 1
× (λ10λ20|λ0) (αλ1

⊗ αλ2
)λν

}

, (25)

valid for the simplified uniform charge distributions in the nuclear intrinsic (‘rotating’)
reference frame. The laboratory-frame image of this operator is

Qlab
λµ =

∑

ν

Dλ
µν(Ω)?Qrot

λν , (26)

where Dλ
µν(Ω)? are the complex-conjugate Wigner functions. Using theorems of the

group-representation theory and the fact that the assumed Hamiltonian does not
couple the rotations and the vibrations we may construct the final solutions in the
group-theory adapted form

Ψ
(λ=2,3)
Γjσ;JMν (α, Ω) ∼ Φ

(λ=2,3)
Γjσ (α)RJMν (Ω), (27)

¶ We encounter here a certain mathematical artifice related to the fact that we have chosen to
illustrate the parity-projection technique. The use of the latter in this particular case is not really
necessary, since the potential energies are in fact always even functions of αλ=3,µ variables. However,
the projection technique presented here has certain merits for its applicability in more general
situations and we discuss it for that reason.
+ An introduction of the realistic potentials generated using the mean-field theory leads to the
condition V (−αλ=3,µ) = V (+αλ=3,µ), (even functions) and the corresponding solutions are not

proportional just to a single Hermite-polynomial but rather to a series of such functions and must be
obtained numerically.
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where α ≡ {α2 ⊗ α3}. Above, RJMν(Ω) represents the rotational part of the wave-
function while quantum numbers JM represent the total angular momentum of the
system together with its projection and ν distinguishes among the (2J+1)-solutions
of the rotor Hamiltonian that correspond to a given (JM). The phonons can also
be characterised by the associated quantum numbers jm, analogous with respect to

JM . In the solutions that were presented in (16-22), (and functions Φ
(λ=2,3)
Γjσ (α) are

constructed out of them) the involved three-dimensional irreducible representations
contain in general the combinations of the m-components. It then follows that the
resulting wave functions need to be labelled by a separate index, σ, enumerating states
within the three-dimensional irreducible representations. Finally, the symbol Γ refers
to irreducible representations of the group Td, above denoted A1, T 1 and T 2, that
possibly belong to different irreducible representations of the SO(3)-group, the latter
enumerated with j.

We are going to limit ourselves here to presenting some instructive estimates of
the expectation values of selected charge moments using the irreducible-representation
form of the vibrational solutions. Calculations using the elements of the approach
presented so far and assuming for simplicity that all the η3µ = η3 give

〈A1|Q20|A1〉 = 〈T 1; 1|Q20|T 1; 1〉 = −〈T 2; 1|Q20|T 2; 1〉 = − ZR2
0

2π
√

5π
· 1

η2
3

. (28)

This is instructive (although at this stage quite schematic) a result stressing once again
the importance of the zero-point motion mechanism in the symmetry considerations.
In words: the above results suggest that the tetrahedral-symmetry solutions contribute
to the quadrupole transitions through a dynamical (oscillation) mechanism involving
all the octupole components. This is in contrast to the earlier suggestions based on the
pure static considerations and implying that the quadrupole transitions in the exact
symmetry limit should vanish exactly.

Let us observe that the above conclusion is certainly only one on a long list. The
issues that remain Open Problems to us are: a. Complete (and not only schematic)
calculations of the reduced transition probabilities B(E2; Γ → Γ), B(E2; Γ → Γ′)
and: b. The ratios B(E2; Γ → Γ)/B(E1; Γ → gsb) and B(E2; Γ → Γ)/B(E2; Γ → Γ′)
together with the related combinations of stretched and non-stretched E2 and E1
transitions. Symmetries act very restrictively on the rules for inter-band transitions
depending on the type of an irreducible representation and the transition kind,
giving characteristic fully forbidden or retarded transitions, alternatively characteristic
branching ratios - that can be used to distinguish one symmetry from another.

4. Level-mixing models as a totally unsuited tool to search for symmetries

There exists an exercise in quantum mechanics dubbed two-level mixing model, cf.
[11] for probably the most rigorous presentation, and also [12]. The model has been
introduced to nuclear structure physics in the context of rotational-band mixing and
the Coriolis mixing, cf. [13, 14, 15], and references therein. In nuclear structure it has
been successful in parametrising certain features in the presence of strong quadrupole
deformations and dominating E2 transitions, but in the mean time used gradually
less and less properly, its limiting assumptions ignored or presumed valid without
verification, no attention payed to parametric instabilities etc.

In testing the symmetries, the signals are expected to be weak and so are the
related electromagnetic transition matrix elements expected to be of the order of
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those which are usually neglected in ‘level-mixing’ articles known to us. Moreover,
all exotic symmetries treated in this text involve non-axial shapes and thus using the
assumption of axiality (good K quantum number, the ‘usual’ assumption) is totally
incorrect. Anticipating that in the present context the level-mixing model may again
be a tempting option to replace partly or entirely the thorough measurements we
briefly add a few more among the most relevant inadequacies of this ‘method’ in
studying symmetries.

Let us emphasize that no calculation in general and the level-mixing calculations
in particular should ever be used in place of a measurement. However, in our opinion,
much too often the information deduced from the level-mixing calculations forces its
way down to the conclusions as if it were the experimental result.

In which respect the quantum-mechanics exercise of two-level mixing poses an
Open Problem in nuclear physics of the XXIst Century? We will reformulate this
question: “How can we lower the damage to the experimental research caused by the
model’s in-appropriate use?” In commenting these issues we let ourselves being guided
by the observations made during recent discussions, conference presentations and even
through recent publications!

In order to establish the presence of a symmetry it is important to verify the
symmetry criteria e.g. the ones based on the electromagnetic transition probabilities
or, if that is not fully possible, certain specific branching ratios as discussed in
section 3. This task involves inevitably weak transitions that may be difficult to
measure. The band mixing models have been used in the past to replace the weak
experimental signal from, say band B, by the results obtained through a mixing model

calculations provided some information about the electromagnetic transitions has been
experimentally available for another band, say A, the so-called reference band.

In their excellent presentation entitled “The theory of nuclear level mixing
resonant spectroscopy”, [16], the authors begin by justly emphasizing the fact that the
level-mixing models are based by construction on the symmetry breaking mechanism.
Indeed, according to Landau-Zener rule, two bands cross because their states differ
in symmetry - they repel each other because there is an interaction that causes the
state mixing. More precisely: given states φa and φb belonging either to two different
irreducible representations of the symmetry group of one generating Hamiltonian hg

or obtained from two distinct generating Hamiltonians h′
g and h′′

g . In order that the
states mix it is necessary that the mixing interaction vm does not commute, neither
with hg nor with at least one of the other two Hamiltonians. In other words, the ‘ full’
Hamiltonian h = hg + vm or h = h′

g + h′′
g + vm generates solutions of lower symmetry

since [h, vm] 6= 0, and none of the interacting states has its initial symmetry.
Since the level-mixing Hamiltonian breaks the original symmetries of each of the

mixed states, it becomes clear that the band mixing model is from the very beginning
not suited to look for symmetries. It then follows that e.g. complicating the same
model by adding more and more mixing bands would be multiplying inadequacies and
possibly even increasing the existing confusion.

5. Point-groups symmetries and nuclear stability: Open Problems

In this article we have formulated in fact two strategies in searching for the so-called
geometrical (synonymous with the point-group) symmetries in Nuclear Structure.
They are based on the group-theory guided discussion of the problems: What are the
nuclear geometries that privilege increased stability of the nuclear N-body systems?
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and: Where in the Periodic Table such symmetries can possibly be manifested?
The second strategy addresses the issue of the experimental criteria: What should
be measured in order to establish the presence (or absence) of the point-group
symmetries?

In discussing the first series of the implied Open Problems we have introduced
the notion of the generalized (as compared to the standard, spherical one) shell-
structures that can be associated with any symmetry group of the Hamiltonian -
not necessarily the ‘usual’ spherical symmetry. The first observables of interest in
this case are the ‘magic gap chains’ - the series of large energy gaps in the single-
nucleon spectra that express the system-stabilizing response of the nuclear mean field
to the privileged geometrical shapes: those manifesting the point-group symmetries.
On the basis of the earlier publications we have formulated a qualitative criterion
suggesting that the symmetries expressed by the point groups which have numerous
irreducible representations and/or whose irreducible representations have possibly
largest dimensions are likely to produce the strongest non-spherical shell effect. The
systematic although in a way still preliminary studies were focussed so far on the
tetrahedral and octahedral symmetries, with theoretical effort accompanied by the
series of dedicated experiments performed within the TetraNuc collaboration. But
examining the whole series of nearly a dozen of point groups of special interest listed
in this article is an Open Problem for this domain of research.

The second series of Open Problems is related to the research of observables
and the construction of the adequate experimental methods. We have proposed an
adaptation of the well known, and again a group-theory based approach, that consists
in calculating the electromagnetic transition probabilities in function of the point-
group symmetry. According to this suggestion the solutions of the collective rotation-
vibration Hamiltonian whose eigenfunctions are expressed in terms of the irreducible
representations of the involved symmetry groups are used to predict the properties of
the electromagnetic transitions and related branching ratios. Such transitions vary,
often dramatically, depending on the symmetry group involved and can be employed
as valuable criteria - however, they were not used so far in the search for symmetries.

We have also re-visited the level-mixing models that can occasionally be used
to fit and/or estimate the experimental data otherwise difficult to really measure.
Since these models have also been used in the past as substitutes for the experimental
research we have re-examined the model’s functioning and formulated rather obvious,
strong warning: the model’s unknowns and the applicability conditions may be more
difficult to establish experimentally than the attempted measurement itself.

Acknowledgements

The research programme and associated Open Problems reported here are related
to the activities of the TetraNuc (Tetrahedral Nuclei) Collaboration involving 18
institutions worldwide. This informal collaboration supported in part by IN2P3,
France, aims at searching for the fingerprints of the tetrahedral symmetry throughout
the Nuclear Chart. The authors want to warmly thank all who have taken part in
these activities and more specifically the Direction of the IPN-Orsay and D Verney,
D Curien, the co-spokesman of the collaboration as well as O Stézowski and Q T Doan
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