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Abstract.

In this article we introduce a subjective notion of the predictive power of
nuclear Hamiltonians (an objective one does not exist) and examine it in the
particular context of the single-nucleon energy spectra. We consider various types
of uncertainties originating both from the experiment and theory stressing the
dominating character of the theoretical errors. The latter originate from the
complexity of the nuclear many body systems that is not matched adequately by
the formalism behind the present day nuclear Hamiltonians. The related inverse
problem is formulated and the presence of errors (ignorance, lack of knowledge)
is parametrized in terms of the associated probability distributions. Various
hypotheses concerning the input uncertainties (‘numerical noise’) are formulated
and the impact of the input-uncertainties in the adjustment procedures down to
the final parameter values and theoretical spectra is illustrated and discussed. A
number of Open Problems are formulated and listed at the end of the article.
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1. Introduction: Predictive power and the inverse problem

In this article we formulate and discuss the problem of predictive power of nuclear
theories focusing on the underlying properties of nuclear structure Hamiltonians. The
notion of predictive power associated with a given theory, similarly to the very notion
of probability, is subjective‡. According to the common sense, the adjective ‘predictive’
signifies theory’s capacity of providing realistic i.e. experiment-comparable outcome
prior to the effectively performing the measurement. Again, the qualifying terms such
as ‘realistic’ and ‘comparable with experiment’ are left to physicist’s judgement.

We arbitrarily distinguish between two regimes of theory’s functioning and the
two related forms of predictive power called extraneous, from the Latin ‘extraneus’
(outside) and intraneous, from the Latin ’intraneus’ (inside). The former adjective
refers to the capacity of predicting the experimental results outside of the realm of the
experimental input used to determine parametrisation of the theory, e.g. predictions
for the super-heavy or exotic nuclei based on the parameter adjustments to the
properties of, say, β-stable nuclei. Alternatively, the latter adjective refers to the
capacity of predicting the properties of nucleus ‘2’ using the parameter adjustments
to the ‘neighbouring’ nuclei ‘1’ and ‘3’.

The very word ‘prediction’ refers to our lack of knowledge: We do not know what
the binding energy of the nucleus 322

126Xx196 is before we actually succeed in measuring
it and thus in the best case we may try to ‘predict it’ before experimenting. However,
we may try to quantify our lack of knowledge. Based on our experience with hundreds
of other binding energies we may be able to estimate the probability within which, we
believe, our theoretical prediction should apply. This does not offer any guarantee
(as it is always the case when working within the realm of the probability calculus)
- but diminishes our ignorance and possibly strengthens our (subjective) confidence§.
In what follows we will illustrate these issues using realistic (phenomenological) mean
field Hamiltonians and realistic experimental data.

The science of obtaining statistically significant result ‘for the whole’ out of the
‘limited data-samples’ is a sub-field of applied mathematics called inverse problem:
the latter is usually formulated as follows. Given the experimental results called data
{d} and a set of parameters {p} that must be determined by these data. Next, let
all the operations leading within the considered theory from the set of parameters
to the theoretical prediction of the data be abbreviated by Ô: we write symbolically
{d} = Ô{p}. In what follows, the data will represent the energies generated by a
certain quantum Hamiltonian while {p} - the set of its parameters. Calculating the
energies out of the known parameter set is referred to as solving the direct problem,
whereas determining the parameters out of predefined (usually experimental) energies
- the related inverse problem. Since the need for the inverse problem solutions is

‡ Indeed, the word probability does not have any unique/consistent definition, there exist two most
frequently involved approaches dealing with probability, the ‘frequentist’ and the ‘Bayesian’ ones, not
to forget a couple of others (Jeffrey’s the so-called logical and Fischer’s fiducial), together with over a
dozen probability interpretations. In short: by entering the territory of probability distributions we
introduce inevitably subjective criteria; in this text we follow the frequentist notion of probability.
§ In their Introduction to Bayesian Scientific Computing, Calvetti and Somersalo [1] use the following
dialogue to illustrate the similar context. [Origin: Umberto Ecco’s ‘The Name of the Rose’].

“So you don’t have a unique answer to your questions?”
“Adson, if I had, I would teach theology in Paris.”
“Do they always have a right answer in Paris?”
“Never”, said William, “but there they are quite confident of their errors”.
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overwhelmingly present in practically all the modern sciences ranging from geology,
sociology, politics and medicine to physics and mathematics, there exists rich literature
related to the underlying mathematical tools. The use of them was relatively seldom
practiced in low-energy sub-atomic physics but we believe that our field of research
has numerous possibilities to profit from this evolution.

Our analysis aims at Hamiltonians of contemporary microscopic theories such as
Density Functional Theories including various realisations of the Nuclear Mean-Field
Methods, Nuclear Shell-Model and Nuclear Phenomenological Model Hamiltonians.
Despite an apparent diversity all these complex nuclear theories depend on a common
factor: their performance and especially their predictive power may considerably profit
from the modern advanced mathematical theories of statistically significant parameter
determination. The performance of realistic theories depends crucially on the adequate
selection of theory’s adjustable parameters. The latter depends on the choice and the
quality of the experimental-data input, and, what is strongly related, on the statistical
significance‖ of the resulting parameterisation.

The parameter determination is strongly influenced by theoretical modelling
since extraction of the experimental information often depends on model dependent
procedures (examples will be given below). Moreover, theories themselves attempt a
description of only a part of the physical reality whereas both the already established
and yet undiscovered mechanisms have their impact on the experimental result.
In this article we pose the problem of quantifying the unknown through probability
distributions within the framework of what could be dubbed elements of theory of
theoretical errors. Presenting our selection of Open Problems, we hope to contribute to
intensifying the interest in this field and hopefully accelerating the associated research.

We have chosen to limit our discussion to the spectral properties of the nuclear
systems i.e. the energy eigenvalues of the underlying Hamiltonians; other observables
can be included in the discussion with no major difficulty. The illustrations (but not
the considerations) are purposely limited to the problem of reproducing the single-
nucleonic energies in spherical doubly-magic nuclei. This will allow us to illustrate
examples of problems encountered when extracting the experimental information
before injecting it into the parameter determination algorithms. The discussion of
the parameter determination techniques is greatly facilitated by using a realistic
context, but simple enough to be able to construct exactly soluble test-cases with the
rapid solution possibilities. For that purpose we will select a toy-model Hamiltonian
containing the spherical Woods-Saxon central potential together with the spin-orbit
mean-field components. The reader is warned not to be mislead by the simplicity of the
chosen toy model as opposed to complexity of the microscopic theories aimed at. Since
the functioning of the inverse problem techniques is to far an extent not dependent on
their practical realisations, we will try to profit from the presented examples to pose
important, fundamental questions for the research to come.

‖ The issue of statistical significance is not void of interdisciplinary interest as the authors of [2]
observe with sarcasm: “Unfortunately, many practitioners of the parameter estimation never proceed
beyond determining the numerical values of the parameter fit. They deem a fit acceptable if a graph
of data and model ‘look good’. This approach is known as chi-by-the-eye. Luckily, its practitioners
get what they deserve”. Expressed more explicitly: parametrisations obtained in this way risk to
be unstable, statistically worthless and thus useless for extrapolations of any kind and in particular
killing the chances for an extraneous predictive power.
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2. Experimental information, built-in modelling and related uncertainties

The following discussion shows clearly, that the so-called experimental single particle
energies in spherical nuclei are highly complex, model dependent objects. The possibly
precise extracting of the energy information from experiment requires well designed
instrumentation, involves weak signals whose analysis deserve increased statistics data
- conditions that are not easy to meet especially for the exotic nuclei such as a very
important 132Sn nucleus. Its importance consists in the fact that together with 208Pb
these two spherical doubly-magic nuclei form the last strongholds when exploring the
exotic heavy and/or super-heavy nuclei.

The experimental information about the single-particle level-structure of even-
even doubly-magic nuclei with the proton number Z0 and neutron number N0

originates mainly from the (Z0 ± 1) and (N0 ± 1) nuclear neighbours. Population
of the single-particle or single-hole nucleonic levels in the (Ao ± 1) residual nuclei is
favoured through the light-projectile direct nucleon-transfer reactions such as (d,p),
(3He, d), (t,d) or (p,d), (d,3He), (d,t) on mass-A0 doubly-magic nuclei. In principle,
the results of such experiments directly reveal the j-shell structure around the magic
energy gaps, since each measured level does correspond to one single-particle or single-
hole energy state and the reactions of this type are capable of providing the excitation
energy, angular momentum and parity of the states in question. It is well known that
all the jπ characteristics of the low-lying states measured in the (Ao ± 1) residual
nuclei close to the stability line are in agreement with the expected sequence of single-
particle energy-levels in a spherical mean field containing the spin-orbit potential.
Nevertheless the separation energies of these low-lying states are not necessarily the
single-particle energies we are looking for. There are often other levels with the same jπ

in the same energy region, arising from excited core configurations or from coupling
to the collective vibration of the surface, which mix (i.e. strongly couple among
themselves through nuclear interactions thus giving rise to big matrix elements) with
the unperturbed single-particle state. As a result, even though the single-nucleon
strength may be maximum for the first state with the given jπ, it is distributed
among several other nuclear levels as well. To recover the single-nucleon energy, εκ,
one computes the centre of gravity of the jπ group using weight factors proportional
to the excitation strengths observed in the transfer reaction, viz.:

εκ =
∑

k

S(κ, k) eexc
k with the sum rule

∑

k

S(κ, k) = 1. (1)

Above, eexc
k is the measured energy of the kth level, and S(κ, k) is its spectroscopic

factor, i.e. the probability that the wave-function of the measured level k contains
the single particle state κ. This procedure has been justified by M. Baranger [3],
from a theoretical point of view. One has to stress that the appropriate use of (1) to
calculate the single-particle energy εκ requires that the sum rule is fulfilled i.e. that
(i) All the k-levels to which the single-particle state κ contributes are identified, and:
(ii) Spectroscopic factors have been determined precisely i.e. without any major bias.

The weighted-average procedure may be modified through a normalisation

εκ =
[ ∑

k

S(κ, k) · eexc
k

]
/
[∑

k

S(κ, k)
]

(2)

with the hope that even if, in view of the large experimental errors on the spectroscopic
factors, the sum rule

∑

k S(κ, k) = 1 is poorly approximated, the impact of the implied
uncertainties is diminished in this way.
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2.1. Extracting single-nucleon energies and associated uncertainties

A typical experiment on one-nucleon transfer reaction provides the spectrum of the
light ejectiles, i.e. the number of counts as a function of the ejectile energy, for many
detection angles in the laboratory system. These raw data are analyzed in order to
deduce, for each state populated in the residual nucleus, the differential cross section,
dσ
dΩ , as a function of θcm, the ejectile emission angle in the centre-of-mass system.

Depending on the experimental conditions, the functions dσ
dΩ(Ek) = f(θcm) are not

always determined with enough precision. For instance the detection efficiency may
be too small to measure some weakly populated states, the knowledge of detection
efficiency may be too fragmentary to compute the absolute value of dσ

dΩ , or the angular
range of detection may be too narrow to obtain the full angular distribution.

The above measurements provide the information about the single-nucleon state-
energies. Firstly, the measured angular distribution determines the orbital angular
momentum l of the ‘stripped’ or ‘picked-up’ nucleon and this assigns the angular
momentum and the parity to each level. The remaining ambiguity, whether the level
under consideration corresponds to j = (l + 1/2) or j = (l − 1/2) configuration, can
be removed when using polarized beams. Secondly, the absolute value of the cross
section gives a measure of the proportion in which a particular single-particle state
contributes to the given level jπ. More precisely, whereas the former aspect is well
under control for standard one-nucleon transfer reactions, the extraction of the so-
called ‘experimental’ value of the spectroscopic factor needs precise modelling of the
reaction process, since it is obtained through dividing the experimental cross section
by the theoretical value calculated under the assumption that the populated state is
a pure single-particle/hole state,

dσ

dΩ
(θ, Ei)

∣
∣
exp

= S(κ, i) ·
dσ

dΩ
(θ, Eκ)

∣
∣
th
. (3)

From the above expression, the spectroscopic factor should be a constant independent
of the angles, implying that the theoretical cross section would reproduce experiment
throughout the entire angle range. In practice this is not the case and to minimize
the error, the value of S is determined at the angle where the experimental cross
section has its maximum. This is clearly one of the aspects contributing to the final
uncertainties of the extracted level-energies.

The simplest useful reaction model, the Distorted Wave Born Approximation,
assumes a direct, one-step transfer process in which the transfers to specific states
are individually weak and may be treated using perturbation theory. The distorted
waves are provided by optical model potentials that describe the appropriate elastic
scattering in the entrance and exit channels. It is important to emphasize that various
types of optical potentials, while fitting the elastic scattering data equally well, may
give very different results for the shape of the angular distribution of the ejectile as
well as the values of the spectroscopic factors of the populated states. Moreover,
two potentials are needed, the one of which binds the transferred nucleon in the
exit channel as well as the one binding it in the entrance channel. The geometric
parameters of the binding potentials are rather poorly constrained so that they are
subject to rather large parametric uncertainties. Since the theoretical cross section
scales with the radius parameter, the derived spectroscopic factor can vary up to 30%
depending of the chosen parameter values.

The fact that the fit to the measured angular dependence of the cross-section,
dσ
dΩ(θ, Ei)|exp, is not satisfactory in the whole angular range signifies that in many
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cases the reaction model is too simple to describe the reality satisfactorily. One may
expect that a part of the discrepancies originates form the nuclear structure effects
not taken into account in the model as well as the influence of two-step transfer
processes including inelastic excitation of the target, projectile or residual nucleus.
Using more elaborate models for the transfer reactions such as the Coupled Channel
Born Approximation or Coupled Reaction Channels produces better fits whereas the
values of spectroscopic factors are often strongly altered.

It follows that the ambiguities related to the spectroscopic factors may be as large
as 30% in absolute values as a result of otherwise careful analyses. Thus even though
a level strongly populated in one-nucleon transfer reaction has been interpreted as
a pure single-particle state (because the value of its spectroscopic factor has been
found close to unity) such a result has still to be counter-checked by verifying whether
other states with the same value of spin and parity are not populated as well using
the same reaction. This is a very difficult task, dealing with large energy ranges and
very low values of the cross sections making the identification of the states a very
tough issue. In addition, it is worth recalling that the transfered angular momentum
strongly depends on the projectile energy. Therefore in order to obtain a complete
picture of all the states with all the expected jπ values, one would ideally need to
combine experimental results obtained in a large range of bombarding energies and
using various projectiles. Unfortunately, such complete studies are seldom available
in the literature and remain an Open Problem in this type of research.

2.2. Important textbook case: Single-nucleon energies in 208Pb

The doubly-magic, spherical nucleus 208Pb is considered to be one of the best studied
doubly-magic nuclei. It will be instructive to discuss the analysis of its single-particle
structure especially in view of an attempt of extending the analysis results to the much
poorer known nucleus of 132Sn, or even lighter doubly magic nuclei.

2.2.1. Excited states of the 208Pb core. The lowest excited state of the 208Pb nucleus,
at 2.614 MeV, is the well-known collective-oscillation octupole state of B(E3)=40W.u.
At higher excitation energies corresponding to about 3-to-4 MeV, there are several
states interpreted mainly in terms of combinations of one-particle one-hole (1p-1h)
excitations, some of them having negative parity (such as the 5− level at 3.198 MeV)
or positive parity (such as the 2+ level at 4.085 MeV). The octupole vibration of
208Pb is the most important in the fragmentation of the single-particle strengths in
the neighbouring odd-A nuclei because of both its low energy and its strong collectivity,
nevertheless the other states may also contribute to the fragmentation.

2.2.2. Deconvolution of the single-nucleon states around gaps at Z0=82 and N0=126.
The four odd-A nuclei close to 208Pb viz. 209

83Bi126,
207
81Tl126,

209
82 Pb127 and 207

82Pb125,
had been studied using several one-nucleon pick-up or stripping reactions, some thirty
years ago. At that time, the experiments had only focused on the dominant single-
particle or single-hole states, lying in a restricted range of excitation energies. Except
for a few cases, all the observed states were considered as pure single-nucleon states.
Their spectroscopic factors were assumed to be close to unity and used to test the
Distorted Wave Born Approximation procedures.

The resulting, lowest-lying excited states, denoted eexc
1 , are presented in table 1.
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Table 1. Proton and neutron levels around the two magic gaps at Z0=82 and
N0=126. Symbol eexc

1 represents the energy of the lowest state of each spin value
measured in 209

83Bi, 207
81Tl, 209Pb127, and 207Pb125. When written in bold, this

state is usually considered as a pure single-nucleon state, i.e. with a spectroscopic
factor close to unity [4]. The energies εκ of the single-nucleon states are computed
with (2), taking into account the N fragments which have been measured in the
quoted references. The shift in energy is the difference between the energy eexc

1
and the average energy, εκ. All the energies are given in MeV.

Proton levels around Z = 82 Neutron levels around N = 126

Level States in 209Bi Level States in 209Pb

eexc
1 N [ref] εκ shift eexc

1 N [ref] εκ shift

πh9/2 0.0000 1 [5] 0 0 νg9/2 0.0000 1 0 0
πf7/2 0.8963 2 [5] 1.31 0.41 νi11/2 0.7788 1 0.779 0
πi13/2 1.6086 5 [5] 1.97 0.36 νj15/2 1.423(1) 4 [8] 1.77 0.35
πf5/2 2.8262 5 [5] 3.44 0.61 νd5/2 1.5671 - - -
πp3/2 3.1195 - - - νs1/2 2.0322 - - -
πp1/2 3.633(4) - - - νg7/2 2.491(1) - - -

νd3/2 2.538(2) - - -

Level States in 207Tl Level States in 207Pb

eexc
1 N [ref] εκ shift eexc

1 N [ref] εκ shift

πs1/2 0.0000 3 [9] 0.10 0.10 νp1/2 0.0000 1 0 0
πd3/2 0.3510 1 [9] 0.351 0 νf5/2 0.5697 1 0.570 0
πh11/2 1.3481 2 [9] 1.44 0.10 νp3/2 0.8978 1 0.898 0
πd5/2 1.6827 6 [9] 2.08 0.40 νi13/2 1.6334 9 [6] 2.4 0.8
πg7/2 3.474(6) 5 [9] 4.18 0.71 νf7/2 2.3399 4 [7] 3.0 0.7

νh9/2 3.414(2) - - -

Some years later, by using other transfer reactions at higher bombarding energies,
many cases of fragmentation have been observed. This allows us to calculate several
values of εκ using (2), as shown in table 1. Unfortunately, these detailed results are not
available for all the average energies associated with the whole set of single-nucleon
levels of interest. The proton levels were studied in quite some detail, except for
the highest-excited ones lying above Z0=82. It turns out that because of their low
orbital momentum, the population of the latter is not favoured in the proton-stripping
reaction (4He,t) at 80 MeV bombarding energy [5]. The fragmentation of the neutron
levels is not very well documented; for instance, the fragments of the νj15/2 level
in 209Pb were sought because of the expected mixing with the νg9/2 ⊗ 3− coupling,
whereas none of the high-lying-level fragments were precisely studied. Similarly, no
fragment of the low-lying νp3/2 level in 207Pb could be identified in the reactions

(~d,t) at 200 MeV bombarding energy [6] or (3He,α) at 70 MeV [7], because of the
strong mismatch in transfered angular momentum. Those, together with previously
mentioned uncertainties prolongate the list of experimental Open Problems whose
solutions may contribute to narrowing the error distributions as discussed below.
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2.2.3. Impact of collective excitations: particle-vibration coupling. The differences
between eexc

1 and εκ amount to several hundreds of keV (see table 1). Such shifts can
be partly attributed to the octupole coupling, as in each of the four odd-A nuclei,
there are couples of single-particle levels with ∆l=3 (and ∆j=3):

πf7/2 ↔ πi13/2

πh11/2 ↔ πd5/2

}

and
νg9/2 ↔ νj15/2

νi13/2 ↔ νf7/2

}

. (4)

Within the particle-vibration-coupling approach [10], we expect two fragments for
each level [one of them related to the coupling between the single-particle lower-l
wave-function and the octupole 3− phonon wave-function coupled to the wave-function
with the higher-l, say l′, (l ⊗ 3−)l′ ] and the implied shift in energy is expected to be
a fraction of 2.614 MeV, the energy of the collective octupole state of the core (see
figure 10 of [10]). Even though the actual number of fragments is usually greater than
2, the mean value of the shifts (0.4 MeV) might be linked to 2.614 MeV what would
give about 15% in terms of energy. Noteworthy is the fact that the shifts calculated
in 207Pb are markedly larger, close to 30% of the 3− energy; but in that case the two
levels of interest are very far from the Fermi level, lying in the energy range in which
the mixing with many other configurations is expected.

Similarly, the quadrupole vibration can be at the origin of the fragmentation
involving couples of single-nucleon states, characterized by ∆l=2 (and ∆j=2), such
as πh9/2 ↔ πf5/2, πs1/2 ↔ πd5/2, and πd3/2 ↔ πg7/2. Once more, we can rate the
mean shift in energy (around 0.6 MeV, see table 1) in proportion of the 2+ energy,
what gives about 15%, in terms of energy.

The above estimates and the information in table 1 have been used to model
the typical error probability distributions, cf. Sects. 3-5. But we wish to emphasize,
anticipating the conclusions from the results presented below, that the experimental
information concerning not only the error estimates but also simply the too low a
number of the experimental levels is a vital Open Problem in the determination of
the nuclear Hamiltonians especially for lighter doubly-magic nuclei for which there are
much fewer single-particle levels known at present (compared to 208Pb).

3. In-exact theories, random variables and error probability distributions

In what follows, we arbitrarily oppose two, as it seems extreme types of modelling:
a. Academic modelling designed to clarify functioning of certain physical mechanisms
in abstraction from the detailed experimental data, as for instance over-viewing certain
general features of multi-phonon oscillations, and: b. Realistic modelling, optimised to
predict and/or to reproduce the experimental data related to real physical systems,
as for instance the energy spectra of atomic nuclei. The first family of such theories
is sometimes referred to as exact-, while the other one - due to a number of factors
discussed in some detail below - may lead to what is referred to as in-exact theories.

Inexact theories pertain to the description of physical systems whose complexity
exceeds our present-day theoretical knowledge. For instance, an insufficient knowledge
of elementary interactions may not allow to built up a description of adequate many-
body interactions. Alternatively, the complexity of physical systems may require that
complications of the formalism go beyond the present-day level of human motivation
(and capacities) - in particular if confronted with the lack of adequate contemporary
mathematical tools or numerical capacities. Both types of discussed theories do not
include all of the already discovered elements of knowledge and must not pretend to any
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completeness in describing the full reality. Therefore they must contain inadequacies
leading us directly to the notion of the theoretical errors.

From the mathematical point of view theoretical and measurement errors are
seen as random variables. It then follows that the observables which in the exact
theories would have been represented just by real numbers - in the inexact theories
turn into random variables (within certain intervals) and the associated probability
distributions. This article focuses on the combined theory and experimental
uncertainties and errors from the point of view of the associated probability
distributions.

3.1. Realistic in-exact theories and underlying postulates

Realistic modelling and associated theories, aim at describing with the possibly highest
fidelity a selected class of physical systems and phenomena. Such theories are not only
based on certain experimental input but also aim at predicting and/or interpreting the
outcome of measurements. We do not suggest that realistic theories are necessarily
inexact. However, in the nuclear structure theory context this will be manifestly the
case: in what follows the term realistic theory will be synonymous with inexact.

3.1.1. Realistic theories and the inverse problem. The number of experiments on any
class of processes or systems is necessarily finite and, moreover, ‘infinitesimally small’
as compared to the number of all similar processes or systems that can be found in
nature. Nevertheless, humans wish to model infinitely many physical situations using
the experience with the very restricted sets of data below referred to as samples. This
is what, among others, the inverse problem is about: using the results of observations
to infer the values of the parameters characterizing the system under investigation.
By doing so, equipped with a mathematical model, we may proceed to retrieve the
information about the unknown quantities of interest by an indirect measurement.
For instance by directly measuring the positions of say, 1s1/2 and 1d5/2 levels in a
certain nucleus we may hope to be able to infer through modelling the energy of the
1d3/2 level thus obtaining some information indirectly.

3.1.2. Realistic theories and errors of modelling. From now on we consider quantum
Hamiltonian systems i.e. the physical systems whose states can be described in
quantum mechanics with the help of the realistic energy operator

Ĥ = T̂ + V̂ (x̂, p) : Ĥψn = enψn → en = en(p). (5)

Above, x̂ represents observables (operators) such as position, momentum, spin, isospin
etc. and p - the full set of Hamiltonian parameters. Obviously the results of the theory,
here the nb bound-state discrete energies en, for n = 1, 2, . . . nb, are known functions
of parameters provided we have determined the parametric dependence of Ĥ on p
from the data. However, the data are known only within experimental uncertainties
which may include in addition to the usual instrumental errors also the errors coming
from the model-dependence in the data extraction-procedures as discussed in Sect. 2.

Moreover, working with inexact theories introduces inadequacies between the
experimental data and the theory predictions. Indeed, all mechanisms present in the
physical system, known or still unknown up to date, contribute to the measurement’s
outcome while only part of those mechanisms are modelled within the Hamiltonian
and thus only this part contributes to the theoretical spectra. Let the experimental
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data be represented by the set of discrete energies {εk} with k = 1, 2, . . . kε; observe
in passing that in general kε < nb, more precisely, kε � nb, but it may happen that
kε is comparable to np, the number of parameters: p ↔ {p} ≡ {p1, p2 . . . pnp

}. By
taking into account the uncertainties and using obvious notation we may write:

Theory → en = etrue
n + δen and εk = εtrue

k + δεk ← Exp. (6)

Above, etrue
n and εtrue

k are abstract ‘exact’ theory and ‘exact’ measurement results
that are introduced only to facilitate the discussion of the principles but they do not
appear explicitly it the final results. The theoretical and the experimental errors,
denoted δen and δεk, respectively, represent our lack of knowledge and thus, from
the point of view of mathematics, they can be seen as continuous random variables.
Undesired effects of the missing knowledge can be diminished through experience: for
instance we may learn that a certain experimental outcome is more probable than the
other. By introducing explicitly the implied probability distributions that quantify our
lack of knowledge, we explicitly introduce subjective elements into considerations.

In this way we arrive at what is known in applied mathematics as statistical
inference (or induction) problem and the idea of random sampling to infer certain
unknown aspects of the studied system (statisticians would say: population).

The usual approach when determining Hamiltonian parameters from the set of
data {εk} is to minimize the generalized distance between the theory predictions and
the data points. Such a distance can be, up to a normalisation, defined as

χ2(p) ∼

kexp

∑

k=1

wk{[ε
true
k + δεk]

︸ ︷︷ ︸

experiment

− [etrue
k + δek]

︸ ︷︷ ︸

theory

}2 →
∂χ2

∂pj
= 0, (7)

where wk are physicist’s choice positive weight factors. Let us shorten the notation
and write δen ≡ ēn and δεk ≡ ε̄k. Let the experimental and theoretical probability
distributions associated with each of these variables be ε̄k ↔ P e

k (ε̄k) and ēn ↔ P t
n(ēn).

In (7) there appear sums (alternatively differences) of two random variables, viz.
η̄k ≡ ε̄k + ēk, that are mutually independent. In such a case the minimized function
will be a weighted sum of quadratic expressions of the form wk{[εk − ek(p)] + η̄k}

2

depending on the probability distributions Dk(η̄k), in the following referred to as
‘noise’, for the variables η̄k; the latter are given through the k-dependent convolutions

Dk(η̄k) = (P e
k ∗ P

t
k)(η̄k) =

Z +∞

−∞

P
e
k (ε̄k − ēk)P

t
k(ēk)d ēk =

Z +∞

−∞

P
e
k (ε̄k) P

t
k(ēk − ε̄k)d ε̄k. (8)

One can see that any further consideration must depend on what we know (or what
we agree to accept as reasonable assumptions about) the distributions P e

k (ε̄k) and
P t

k(ēk). This step is clearly one of the Open Problems that, as we believe, will need
to be addressed in detail the future. Here we wish to focus on possibly simplified but
effective solutions and thus we reformulate the problem in (7) as follows.

3.2. Uncertainty distributions and their dynamical transforms

The idealized, ‘true model energies’, etrue
n , although conceptually important, remain

in practice unknown elements of the inexact theories, and since finding the ‘exact’
measurement result is a void issue, we may try to simplify the formulation. Let us
replace distributions {Dk(η̄k)} by a new set {Dk(ηk)} of the new random variables ηk.
Doing so we modify the minimisation in (7) by introducing a new function

χ2(p) ∼
∑

k wk{[εk + ηk]− ek(p)}2. (9)
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Let us also introduce a set of samples ηi ≡ {η1, η2, . . . ηkmax}i for i = 1, 2, . . . N ,
each variable sampled according to its Dk(ηk) distribution. Next by solving (here)
the Schrödinger equation we perform N minimisations to find the sets of the optimal
parameters p̄i ≡ {p̄1, p̄2, . . . p̄np

}i, the sets of implied eigenvalues ēk(i) ≡ {ek(p̄i)}
and the corresponding χ2({ek(p̄i)}. For the ensemble of ηi samples sufficiently large
(below we use N∼20 000) we may collect the occurrence histograms such as e.g.

N(χ̄,δχ) = N(χ ∈ [χ̄− 1
2δχ, χ̄+ 1

2δχ]) (10)

illustrating the quality of the generated spectra in terms of their r.m.s distribution or

N(p̄j ,δp̄j) = N(p̄j ∈ [p̄j −
1
2δp̄j, p̄j + 1

2δp̄j ]), (11)

showing the parametric uncertainties reflecting the ones in the input data and finally

N[ēk(i),δēk(i)] = N(ēk ∈ [ēk(i)− 1
2δēk(i), ēk(i) + 1

2δēk(i)]), (12)

illustrating, in which manner the uncertainties of the individual energy levels are
affected. Distributions in Eqs. (10-12) depend on the dynamics of the system through
interaction Hamiltonians underlying the equations of motion such as Schrödinger,
Dirac, Hartree-Fock etc. For that reason we refer to them as dynamical transforms of
the input uncertainty distributions of the inverse problem. In the detailed illustrations
we distinguish among the variants such as: the r.m.s. transforms represented by (10),
induced parameter-transforms by (11), energy transforms by (12), etc.

It will be instructive to illustrate the above notions using a simple but realistic
phenomenological model. We chose for that purpose the neutron single-particle levels
in 208Pb using the phenomenological Woods-Saxon Hamiltonian with parameters given
in table 2. The spectrum generated with the latter is then used for the noise testing
purposes replacing the true experimental input: we refer to such a spectrum as
‘pseudo-experimental’. This offers the advantage of allowing to vary the number of
levels to fit in excess of those known experimentally (similar type analysis will need
to be performed in the future for other, microscopic theories).

Table 2. Woods-Saxon potential parameters for the neutrons in 208Pb used
to generate the pseudo-experimental levels, among others for the purposes of the
noise testing. These parameters reproduce the ‘true’ experimental levels in Table 1
with the r.m.s. deviation of 0.164 MeV and the maximum error of 0.353 MeV.

V c
o rc

o ac
o λ rso

o aso

-39.520 1.371 0.694 26.133 1.255 0.500

Let us illustrate the impact of both the number of data points taken for the fit
and the broadness of the noise distribution of the data. Illustrations in figure 1 show
that if the number of data points is not large enough, the Hamiltonian is capable
of adapting itself and of reproducing any noise feature of the experimental input so
that the maximum of the distribution corresponds to χ2=0 (error-less fit to ‘any’
input !). Only when the number of data points is sufficiently large (actually larger
than the number of single-particle energies known from today’s experiments) can a
consistency between the resulting fit distribution and the input noise distribution be
(only partially !) achieved. Indeed, observe that (figure 1, right) the ‘noisy’ input and
output distributions lie close, but correspond to the maxima at χ 6= 0. Recall that the
noise-less (exact) input generates by definition of the pseudo-experimental spectrum,
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Figure 1. Histograms representing the r.m.s transforms of (10) obtained by
fitting to the pseudo-experimental data. In this case we assumed a common ‘noise’
Gaussian distributions Dk(ηk) → N (ηk), with the width parameters σ=0.1 and
0.4. Left: the results for 6 levels distributed symmetrically around the Fermi level
for the neutrons in 208Pb; Right - similar but using 21 highest-bound levels. The
curves are normalized so that the histogram area gives 1, but scaled, for better
legibility so that the highest maximum is at 1. The label ‘noise’ refers to the
input noise distributions, prior to fitting.

the exact χ = 0 solution always. Our observation can be viewed as intuitive: applying
a noise with the distribution width σ to an exact, pseudo-experimental spectrum,
shifts the centroid of the calculated distribution by an increment related to σ. In
all cases an improvement is achieved: the maximum probability is shifted towards
smaller χ.

Let us emphasize that the capacity of a Hamiltonian to reproduce a number
of energy levels exactly i.e. with χ = 0, is not only the question of the number of
adjustable parameters vs. the number of data points but also the question of adequacy.
If the data points form a parabolic dependence in function of a certain parameter while
the theory predicts a trigonometric one, even with non-trivially few data points it will
not be possible to reproduce the data exactly - unless infinite series are involved.
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Figure 2. Histograms representing the Schrödinger parameter-transforms of (11)
obtained by fitting to 6, 11 and 21 pseudo-experimental neutron levels in 208Pb,
assuming a common Gaussian noise distribution with σ=0.1 MeV, left, and 0.4
MeV, right. Vertical dashed lines give the position of the exact parameter values
from table 2. For comments on the double-maximum structure cf. Refs. [11, 12].
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Examples of the Schrödinger parameter-transforms for a few least-bound neutron
levels are shown in figure 2. Observe the double maximum structure, the so called
‘compact’ (rso

o ≈ 0.92 fm) and ’normal’ or ‘non-compact’ (rso
o ≈ 1.25 fm) geometries.

This mechanism is interesting and known to the experts: here, not entering into
details, it will be sufficient to observe that the single-maximum distribution reflecting
the single-maximum distribution of the input noise is obtained only at sufficiently
large number of pseudo-experimental levels.
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Figure 3. Schrödinger energy-transforms, (12), for a few neutron levels in 208Pb
when performing fits to 11 pseudo-experimental levels with the Gaussian noise
distributions of the width σ=0.1 MeV (left) and 0.4 MeV (right).

A few examples of the single-nucleon Schrödinger energy transforms defined
through (12) are illustrated in figure 3; observe that the widths corresponding to
various levels differ despite the fact that the input uncertainty distribution is common
for all the levels in the tests illustrated.

3.3. Theoretical-level errors caused by experimental-level uncertainties

It may be (and often is) very useful to know e.g. for the experiment programing, what
are the uncertainties in theoretically predicted positions of various levels caused by
a possibly large uncertainty in the inverse problem input information about specific
levels. For instance, it may happen that a certain experimental error on, say, fit-
input 1i11/2-level, may have no major impact on the results of the fitting algorithm,
whereas the same uncertainty on, say 2g7/2-level, may influence the positions of the
fitted levels considerably. Should a similar or any alternative scenario be established,
special measurement precision would be required on specific levels and possibly much
less so, on some others. This information will usually be very practical to know before
establishing the priorities of the related research program - and we give numerous
arguments in this article to indicate that the present-day experimental information
on the single-nucleon levels in spherical doubly-magic nuclei remains largely an Open
Problem for the future.

Information about a ‘level-to-level’ sensitivity can be obtained through a simple
simulation which consists in repeating the adjustment algorithm in function of the
displacement of the individual input-level energies (one level at the time). To illustrate
the problem we have varied the positions of the input levels of the adjustment
algorithm for the neutrons in 208Pb. The illustration of differences between the effects
caused by high-j orbitals (here: 1i11/2) and low-j orbitals (here 3d3/2) is presented in
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Figure 4. The energy differences as measures of the fit-output uncertainty in
the single-particle levels listed - caused by the displacement (as measures of the
input-level uncertainty) of the energy of the 1i11/2-level, left, and the 4s1/2-level,
right. The displacement window of 4 MeV is centred on the original positions
of these levels as obtained with the parameters in table 2. Fits using in total 11
pseudo-experimental levels.

figure 4. One may notice that the forms of the over-all dependence are different, e.g.
the strongest variation is approximately represented by the interval of only [−0.3,+0.3]
MeV for 1i11/2 and [−0.6,+0.6] MeV in the case of the 3d3/2-levels. Moreover, the
strength and the sign of the coupling depend significantly on the quantum numbers of
the concerned states: whereas the state 2f5/2 practically does not couple with 3d3/2 it
is among the strongest-coupling with the level 1i11/2. It is instructive to compare the
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Figure 5. Similar to that in figure 4 but for levels 2f7/2 (left) and 2g7/2 (right).

above results with the ones for 2f7/2 and 2g9/2 levels, figure 5. Observe in particular a
strong mutual coupling between the 2f7/2 and 2g7/2 levels (same sign) and the strong
but opposite sign couplings between 3p3/2 and 2f7/2, on the one hand, and between
3p3/2 and 2g7/2 on the other. The relative parity of orbitals does not seem to have
any direct role: observe that the same parity orbitals 1i11/2 and 1i13/2 couple with
opposite signs to the two considered orbitals in the left- and right-hand side diagrams.

One may conclude that the ‘level-to-level’ correlations through the adjustment
algorithm, if needed e.g. for the predictions and/or extrapolations of the level positions
in nuclei away from the tested ones (cf. Sect. 4), or for the experiment planning,
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may be very precious but will need to be examined individually, i.e. one level after
another. Moreover: these results suggest that the schematic treatment of the noise
parametrisation in terms of a common normal distribution is certainly not optimal and
will need to be replaced by both experimental and theoretical level-by-level analysis
of the uncertainties in order to construct a more intrinsically-consistent procedure.

4. Predictive power: Examples of neutron spectra in 132Sn nucleus

The 132Sn nucleus exhibits all the usual characteristics of the doubly-magic nuclei, first
of all the high energies of its first excited states. Indeed, the first excited 2+ state lies
at 4041 keV and the 3− state at 4351 keV. Moreover, there is only a weak quadrupole-
excitation probability associated with the first 2+ state, with B(E2) = 7(3) W.u.
accompanied by the collective octupole-excitation probability with B(E3) > 7 W.u.

The four odd-A nuclei close to 132Sn have not been yet studied using one-nucleon
transfer reactions. This prevents us to characterize any single-particle content of their
states so far identified using γ-spectroscopic studies following β-decay, and in some
cases by the prompt γ-decay of nuclei produced as fission fragments.

Considering the lowest excitation energies, denoted eexc
1 , as in table 1, we would

like to evaluate the energies ε̄ of all the single-neutron levels around N0=82. For
that purpose we will use: (i) The conclusions formulated in Sect. 2 for 208Pb, and:
(ii) The energy-shifts due to the fragmentations which have been measured, for
each level of interest, in the neighbouring isotopes and isotones lying closer to the
valley of β-stability. Single-particle quantities ε̄κ have the similar meaning as the
quantities denoted εκ in the preceding Sections except that in the absence of the
adequate experimental information about the neighbours of 132Sn, certain information
“extrapolated” from the area of 208Pb will be employed.
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Figure 6. Excited states having jπ=7/2− and 9/2− identified in the N=83
isotones (from [4]). The average energies (asterisks) are calculated using (2) from
the data of Z=56-62 nuclei listed in the text.

Let us begin with the example of the two neutron levels lying above the N0=82
gap: νf7/2 and νh9/2. In fact two jπ=7/2− states and two jπ=9/2− states have been
measured in the close-lying N=83 isotones, 139

56Ba83,
141
58Ce83,

143
60Nd83 and 145

62Sm83,
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using one-neutron transfer (d, p) reaction on stable targets. The corresponding neutron
levels are illustrated in figure 6, together with the related average energies calculated
according to (2): the latter give approximated positions of the expected single-particle
neutron-energies. We observe that the fragmentation of the νf7/2 levels results in an
energy shift of, approximately, 0.2 MeV, whereas the shift associated with the νh9/2

level amounts to, approximately, 0.1 MeV.
In a similar fashion many states measured in the N=81 isotones and the Z=51

isotopes that lie between 132Sn and the β-stability valley in the (Z,N)-plane can be
used to obtain the shifts in energy due to the fragmentations of the single-nucleon
levels. Some of the results of this type have been illustrated in [13]; all the results for
which the data exist today collected in the third column (‘shift 1’) in table 3.

Table 3. Energies of the first states measured in 133
50Sn83 and 131

50Sn81, usually
considered as pure single-nucleon states [4]. Excitation energies ε̄ of the single-
nucleon states are calculated from the eexc

1 energy and the shift in energy due to
the fragmentation. The empirical values of the binding energies (B.E.) take into
account the values of the total binding energies of the involved nuclei [14]. All
the energies are given in MeV. The data written in parentheses are tentative, and
since the identification of the corresponding states is rather questionable (new
experiments have to be performed to confirm both their energies and their spin-
parity assignments) these states are ignored in the following discussion.

Neutron levels around N=82

Level States in 133Sn

eexc
1 shift 1(a) shift 2(b) ε B. E.

νf7/2 0.0000 0.2 0.6(4) 0.6(4) -1.9(4)
νp3/2 (0.8537) - - - -
νh9/2 1.5609 0.1 0.6(5) 2.2(5) -0.3(5)
νp1/2 (1.6557) - - - -

Level States in 131Sn

eexc
1 shift 1(a) shift 2(b) ε B. E.

νd3/2 0.0000 0.25 0.6(4) 0.6(4) -7.9(4)

νh11/2 0.0651(c) 0.3 0.6(3) 0.7(3) -8.0(3)
νs1/2 0.3317 0.25 0.6(4) 0.9(4) -8.2(4)
νd5/2 1.6545 - 0.6(4) 2.3(4) -9.6(4)
νg7/2 2.4341 - 0.6(4) 3.0(4) -10.3(4)

(a)Shifts in energy due to the fragmentation measured in neighbouring nuclei. (b)The values

obtained through analogy by extrapolating from the data on 208Pb. The numbers in parentheses

give errors in the last digit. (c)From [15] .

Another possibility of the order of magnitude estimates of the energy-shifts is to
use the same proportions of the 2+ and 3− excitation energies as the ones found in
the 208Pb nucleus (cf. Sect. 2). Using these proportions we obtain the shifts of the
order of 0.6 MeV (15% of 4 MeV), for both the single-particle states coupled through
∆l=2 (and ∆j=2) and those coupled through ∆l=3 (and ∆j=3). These estimates are
given in the fourth columns (‘shift 2’) in table 3, together with the estimated errors.
The errors have been determined in such a way that the values of ‘shift 1’ and ‘shift 2’
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are consistent within the error bars. Finally the empirical values of binding energies
(B.E.) of the nucleon levels in the potential well of 132Sn are calculated using the total
binding energies of the involved nuclei [14] and the ε̄ values.
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Figure 7. Results of the extrapolation from the 208Pb to the 132Sn nucleus
for the neutrons. With a sample of N=20 000 sets ηi, cf. the comments around
equations (10-12), the parametric histograms resembling those in figure 2 have
been obtained (using 11 level simulation); the noise width σ=0.1MeV. With each
of the so obtained N=20 000 sets of parameters the results for the neutrons in
132Sn nucleus have been obtained. Solid bars give positions of experimetal levels
from table 3, dashed bars give positions of experimentally uncertain levels.

We have performed the calculations of the neutron levels in 132Sn using the
parameters of the ‘well studied’ nucleus 208Pb together with the uncertainties of the
theoretical predictions represented in the form of the histograms that resemble the ones
presented earlier. The results are illustrated in figure 7. Let us observe that except for
the orbitals 1g7/2 and 2f7/2, the ones that were discussed in the preceding Section with
the conclusion that they respond rather sensitively to the input errors all other levels
lie close to the experimental positions. Moreover, the newly estimated positions of the
levels from table 3 (marked with the dashed lines) lie closer to the theory predictions.
Another conclusion at this step of the analysis is that the initial input uncertainties
with the width σ of 0.1 MeV was most likely slightly too optimistic: a value of the
order of σ ∼0.15-to-0.2 MeV corresponds better to the estimated uncertainties.

Figure 7 can be seen as a prototype of the future illustrations of theory results
that include the cumulative theory and experiment uncertainties of the modelling.
Such diagrams, completed by the experimental uncertainty distributions that would
replace the dashed- and full-bars in the upper part of the figure would offer a much
more satisfying representation of our ignorance. The corresponding information (let
us emphasize: subjective, as the very notion of probability) would be nevertheless
the precious starting element for the planing of improvements. The levels identified
in this way as poorly known, with too broad uncertainty distributions, should be
re-examined with priority. Similarly, the levels manifesting an ‘unusual’ structure
of their histograms like the one for the 1g7/2 level in figure 7, should be re-examined
from the point of view of the quantum origin by, first of all, identifying the responsible
interaction: central, spin-orbit, tensor etc. Studies of the spectral properties of the
nuclear Hamiltonians and their spectroscopic predictive power, as illustrated above,
represent a series of, in our opinion fascinating, Open Problems for the near future.
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5. Instabilities of adjustment algorithms and ill-posed inverse problems

The problem of stability of the parameter optimisation¶ depends not only on the form
of the Hamiltonian but also on the number and the characteristics of the data points.
In applied mathematics this problem is related to the notion of ill-posedeness of the
inverse problem and it will be instructive to present its basic elements briefly.

Consider a normalised χ2-function obtained from the one in (9) by removing the
error (noise) factor η and fixing the normalisation in accordance with the literature,
cf. e.g. [16]:

χ2(p) =
1

(kε − np)
·

kε∑

k=1

wk [εk − ek(p)]2; (13)

as before, kε is the number of experimental levels and np the number of parameters.
Assuming that we are not too far from the solution we can linearize the problem

ek(p) ≈ ek(p0) +

np∑

j=1

(
∂ek

∂pj

)∣
∣
∣
p=p0

(pj − p0,j) (14)

according to the standards of the Newton algorithms. Abbreviating the notation

Jkj ≡
√

wk

(
∂ek

∂pj

)∣
∣
∣
p=p0

and bk =
√

wk [εk − ek(p0)], (15)

we may transform (13) into the form

χ2(p) =
1

(kε − np)
·

kε∑

k=1

[
np∑

j=1

Jkj · (pj − p0,j)− bk
] 2
. (16)

It is straightforward to show that the necessary conditions for the minimum of χ2 are
equivalent to the matrix relation (cf. e.g. [17]):

∂χ2

∂pi
= 0 → (JTJ) · (p− p0) = JT b with [Jkj ] ≡ J. (17)

Thus the inverse problem takes the algebraic form with the schematic structure

J · (p− p0) = b ↔ p− p0 = J−1b. (18)

Recall that J is in general rectangular kε × np matrix whereas p ∈ R
np and b ∈ R

kε .
To illustrate the problem of ill-conditioning we will remind the reader of the so-

called Singular Value Decomposition. Recall that any rectangular matrix A can be
decomposed as a product of three matrices (cf. e.g. [1, 2] and references therein)

A = U ·D · V T with U ∈ R
m×m, V ∈ R

n×n, D ∈ R
m×n, (19)

where the diagonal matrix D can be represented with the help of the eigenvalues
{dj ; j = 1, 2, . . . min(m,n)} and written down symbolically in the form:

D = diag{d1, d2, . . . dmin(m,n)}. (20)

Applying the above decomposition to a real, orthogonal matrix J for which J−1 = JT :

(p− p0) = JT b ↔ JT = V ·DT · UT (21)

¶ Ill-posedeness of the inverse problem leads to instability of the parameter adjustment procedures:
narrow distributions of the input noise leading to broad distributions in terms of outcome parameters.
The instability manifests itself also through the divergence of the parameter correlation matrix and
that of confidence intervals - obviously highly undesired effects.
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where

DT = diag
{

1
d1

, 1
d2

, . . . 1
dp

; 0, 0, . . . 0
}
. (22)

In other words, if the diagonal matrix D in the decomposition of J has very small
or zero eigenvalues, actually quite a common case, then J−1 in (18) is getting singular
and no stable solution for the Hamiltonian parameters can be obtained. We say that
the inverse problem is ill-posed.

It follows from linear algebra that the above singularity manifests a correlation:
one or more components of p are functions of the others. The singularities and thus the
possible destabilizing inter-dependence among the parameters depend in turn on the
number and the characteristics of the data points, and as we will point out shortly, even
one parameter-divergence of this type causes the divergence of the whole correlation
matrix. Indeed, it can be shown [16] that the correlation matrix takes the form

〈(pi − 〈pi〉) · (pj − 〈pj〉)〉 ∼ χ
2(p) (JTJ)−1

ij , (23)

whereas from Eqs. (20)-(22) it is possible to show that

[(JTJ)−1]ij =

r∑

`=1

Vi`
1

d
2

`

[V T ]`j . (24)

If in (22) one or more dk → 0, then (JTJ)−1 tends to infinity and generally, the
confidence intervals (pi − 〈pi〉) of all parameters diverge. This conclusion shows
once again the importance of analysis of the statistical significance of the parameter
adjustment procedures if the predictive power of the resulting Hamiltonian is aimed
at. We believe that this is one of the important Open Problems in today’s progress
in the physically meaningful applications of the nuclear microscopic theories.
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Figure 8. Left: Illustration of the χ2-test in function of the depth and radius
parameters of the central Woods-Saxon potential for the neutrons in 208Pb,
evaluated for 11 levels close to the Fermi energy. The remaining four parameters of
the potential are fixed at the values from table 2. Right: Results of the N=20 000
minimisations over all the six parameters of the potential to fit the same 11
pseudo-experimental levels as in the left-hand side, each time changing the noise
hypothesis (cf. discussion around Eqs. (10-12)). Observe the same parametric
correlations visible from both types of tests.

It can easily be shown that the presence of inter-parametric correlations manifest
itself in the form of deep valleys of the χ2-test plots that can be illustrated in terms
of projections onto certain hyper-planes in the space of p ∈ R

np . Illustration of this
type is shown in figure 8 (left) for the correlation between the radius and the potential
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depth parameters of the central potential in the case of the Woods-Saxon Hamiltonian
with all other remaining parameters fixed. The generalisation of this test for the case
of minimisation over all adjustable parameters does not change the conclusion: the
two parameters are strongly, but not fully correlated; indeed, the full, exact correlation
would imply that the bottom of the valley rest at the zero-value. Let us emphasize
that the details of the behaviour change with the number of the experimental levels
taken into considerations.

We may remark at this point that: a. Examining of the possible presence of the
parametric correlations is a prerequisite; only after having established the stability of
the adjustment, cf. Eqs. (22-23), we may decide about the next steps of the procedure;
b. Fortunately, the methods of regularization of the unstable algorithms are copiously
described in the textbooks and specialized literature - it is usually sufficient to select
the optimal approach. But the solution of the problem begins with the first item
above rather than proceeding according to the ‘chi-by-the-eye’ approach mentioned in
the third footnote of this article.

6. Summary - Predictive power of nuclear Hamiltonians: Open Problems

We have discussed the question of the statistically-significant determination of the
nuclear physics Hamiltonians through conscious adjustment of its free parameters -
the method known in applied mathematics as the inverse problem. In contrast to
sometimes formulated opinions, these are the inherent theory and modelling errors
that lead to the most important parametric uncertainties of the Hamiltonians and not
necessarily the experimental errors. In our analysis we have distinguished between the
general discussion of the impact of theoretical and experimental errors on the theory’s
predictive power and a specific realm of applications: Illustrations using the example
of properties of single-nucleon levels of doubly-magic spherical nuclei.

The article advocates the new way of formulating and interpreting the theory
predictions: not only provide the theory’s numerical results (the present day situation)
but provide also their statistical significance represented e.g. by probability(ies) with
which the theoretical predictions are expected to apply in nature.

The 1st series of Open Problems consists then in constructing the error probability
distributions that would quantify in the best possible, even though always a subjec-
tive way, the degree of the missing knowledge. In the application to the single-nucleon
spectra, it would be important to extend the analysis to all doubly-magic spherical
nuclei, gradually and systematically including the impact of pairing correlations, cou-
pling with the surface oscillations (quadrupole and octupole), as well as the coupling
with the continuum for the weakly bound states. The generalized modelling would in-
clude both the Hartree-Fock and phenomenological mean field theories as the first step.

For a given Hamiltonian, the functioning of the parameter adjustment algorithms
depends both on the number of data points as well as on their intrinsic characteristics
(such as e.g. deeply bound nucleonic states, high-j or low-j orbitals etc.) vs. the
number of parameters. Hamiltonians that can be called adequate in the context are
able to exactly reproduce the non-trivial number of data points, for instance typically
6-to-8 single-nucleon levels in all the doubly magic nuclei when using Woods-Saxon
potentials. We have demonstrated that for these low numbers of data points, the
discussed Hamiltonians are also capable of reproducing an infinite number of sets
of data points obtained from a selected initial set by a random noise perturbation.
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Such Hamiltonians reproduce then (within relatively broad limits) an arbitrary noise
exactly. It is therefore necessary to establish the lower limit for the numbers of levels in
the fit-input data set so that the Hamiltonian can be really constrained. On the basis
of the Woods-Saxon Hamiltonian tests we could establish that this number exceeds
the number of experimentally known single-particle levels even in the relatively well
studied 208Pb nucleus.

The 2nd series of Open Problems, specifically addressing the single-nucleon sub-
field of the project, would consist in as extended as possible an experimental study of
the new average one-nucleon energies introduced in section 2. Alternatively, a similar
type of information could be obtained from studying the so-called band-head energies
in the deformed nuclei; those also constrain specifically the mean-field Hamiltonians
and combining the two approaches seems a valuable complementary counter-checking
research to perform.

The 3rd series of Open Problems concerns an important general aspect of the
proposed new strategy and techniques: examining the inter-dependences among some
parameters of the Hamiltonian that remain ‘hidden’ i.e. we can discover them only
after having performed an analysis of the type discussed in section 5. This mechanism,
as discussed in the article, depends not only on the structure of the Hamiltonian but
also on the samples of the data used to solve the inverse problem - and thus should
be discussed on the case-by-case basis. Its importance consists in the fact that in the
presence of inter-relations, the parametric confidence intervals diverge rendering the
obtained Hamiltonians unsuited for extrapolations into the new areas of nuclei.
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