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Abstract. This contribution to the “Open Problems in Nuclear Structure Theory”
special edition looks at some issues with using Time-Dependent Hartree Fock and
related techniques to study structural phenomena in nuclear physics. We limit the
discussion to structures like giant resonances and discuss some open questions regarding
the interpretation of TDHF calculations.

1. Introduction

The time-dependent Hartree-Fock (TDHF) approach was written down by Dirac in the

1930s [1] but first applied in anger to nuclear physics problems in the 1970s. As a

method able to deal with large amplitude motion, the application of TDHF has been

most prominent in reaction dynamics. Though such studies shed much light on nuclear

structure as well as reaction mechanisms, we concentrate in this contribution on the

use of TDHF in studies of giant resonances in which one is purely concerned with the

structure of a single nuclide.

Giant resonances are collective excitation modes, occurring largely above the

particle emission threshold and usually characterised by their multipolarity and spin

and isospin character. The basic microscopic approach (within the realm of mean field

models) to calculating giant resonances is the Random Phase Approximation (RPA).

The RPA can be derived as the small-amplitude limit of TDHF, so in principle TDHF

should do all RPA does and more. Usually RPA calculations of giant resonances

calculate the strength function defined as

S(E) =
∑
ν

∣∣∣〈ν|F̂ |0〉
∣∣∣2 δ(E − Eν), (1)

where F̂ is the operator describing the excitation mode of interest. In TDHF, this

quantity is calculated by exciting the system with the operator F̂ and following the

time-dependent expectation value of the same operator 〈F̂ 〉(t). According to linear

response theory, the strength function can be calculated in TDHF as [2]

S(E) = − 1

π
Im

(
F̃ (E)

f̃(E)

)
, (2)
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Figure 1. The total giant monopole response (“Full Response”) in 16O and the
response of the proton 1s state to that state alone being excited. The calculation is a
continuum calculation since the edge of the box is not reached by the flux up until the
final time of 1024 fm/c. This relatively small final time gives an energy resolution of
∼1.2 MeV.

where F̃ (E) = F̃ (h̄ω) is the Fourier transform of the time-dependent response 〈F̂ 〉(t) and

f̃(E) = f̃(h̄ω) is the Fourier transform of the time-dependence of the external excitation

F̂ causing the resonance. Note that the expression (2) holds under the assumption that

the response depends linearly on the strength of the external field [3, 4].

Early TDHF calculations for giant resonances concentrated on monopole resonances

[5, 6, 7] since they require only a spherical one-dimensional code, and were also restricted

to simplified forms of effective interactions. However, the principles of extracting

information from the calculations remain the same as more powerful computers led to

the ability to calculate giant resonances with non-spherical instantaneous deformations

and those built on nuclei of arbitrary shape [8, 9, 10, 11, 12]. In addition to the increase

in computer power allowing the relaxation of symmetry assumptions, it is also the

combined sophistication and simplicity of the Skyrme-type interactions that allow useful

TDHF calculations to take place [13].

2. Observables, Excitation Operators and Modes

A general question that arises in the study of giant resonances is what are the interesting

quantities to calculate? As mentioned, the standard quantity calculated in RPA is the

strength function, which can be related to an experimental cross section, though it is

not an instrinsic property of the nucleus, but also on the particular experiment and the

associated momentum transfer [7, 14]. One interesting possibility that TDHF allows is

the direct simulation of a realistic time-profile for the excitation and an analysis of the

results, or even the direct simulation of a collision. It is an open question whether one

will get results more closely related to the experimental situation, but there is scope to

try.
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A typical RPA analysis of the strength looks also at individual contributions

from particular particles in the basis of the uncorrelated ground state. This is less

straightforward to do in TDHF. In practical TDHF calculations a large basis of

unperturbed single particles states is not needed (or desirable) as the excitations are

realised by time-evolved single particle states with a different Slater Determinant at each

time. Combining this set of Slater Determinants by means of a Fourier transform then

corresponds to the RPA case. By an analysis of the excitation energies, though, it can

be possible to identify the dominant single particle state in a structure in the strength

function [15], when indeed a single one is dominant. There is no analogue in TDHF

with the so-called unperturbed RPA response. However, one can be imaginative in the

way that one excites the nucleus. Figure 1 shows the giant monopole resonance in 16O

using the SkM* force in which the total response is shown, alongside the response of the

π1s orbital to an excitation of only the π1s orbital, which shows that the π1s orbital is

responsible for the structure around 30MeV. The interpretation, however, is not trival.

The excitation of the π1s state induces oscillations in the other single particle states.

This overall excitation is different to the total GMR excitation, so the peak positions

do not line up exactly. Unlike in RPA, we cannot easily disentangle the contributions

from each particle state. Comparing with RPA calculations can therefore be difficult.

In RPA, moreover, one can isolate the contribution to the response easily from different

parts of the residual interaction, which, as well-known is obtained as a second derivative

of the Hartree-Fock energy density expressd in terms of the static densities. In TDHF

one does not explicitly construt the residual interaction, the only ingredient being the

time-dependent mean-field, and the ability to understand which parts of the interaction

are contributing is understood in a different way. One cannot simply count up which

parts of the underlying interaction in TDHF give rise to the strength as in RPA.

As well as a straightforward multipolar decomposition, there are many possibilities

for combining space and time functions of the excitation of the nucleus that are allowed

by TDHF - e.g. one can excite only the surface, only protons, only specific orbitals, with

angular momentum, with a sudden kick, with a fast or slow external field or a harmonic

driving force, all of which can give information about the structure of the nucleus. One

can also look for new kinds of excitation that may arise such as the axial spin-twist

mode [16], though how to think of a clean signal for its observation is another matter.

TDHF with no spatial constraints permits, and demands, a completely general

spatial response to a particular excitation. One cannot (in general) give a nucleus a

monopole excitation and expect no quadrupole to be excited in addition. At any given

frequency, one might attempt to find the normal modes of excitation, presumably in

a multipolarity basis [17]. An example of this mode mixing is easily seen in monopole

calculations of the inducement of isovector modes to isoscalar excitations and vice versa

[18].

The study of giant resonances and collective modes (by whatever theoretical

method) has been of considerable use in understanding the link between effective

interactions and the properties of nuclear matter [4] and has been used for understanding
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how effective interactions fitted to ground state data can be further constrained by

excited state properties [19, 20, 21]. What further role can TDHF play in this area?

Constraining those terms in the functional which are made of time-odd densities,

including those that arise only from the tensor force [22], is certainly now a possibility

given the existing TDHF codes, and a suitable suite of observables needs to be chosen.

Nuclear matter properties can also be probed in collisions and TDHF gives an ideal

method to combine understanding the properties of nuclear matter simultaneously on

structure and reaction observables.

As a final point about the comparison between RPA and TDHF, we bring up

the ground state energy correlations. As is well known, particle-hole correlations are

explicitly taken into account in RPA, contributing through the Y amplitudes to the

response function and the ground state energy [24]. To the best of our knowledge,

no attempt has been made to realise an approach to use TDHF to calculte the same

correlated ground state as in RPA [25], though some interesting uses are made of

time-dependent methods to build in certain classes of ground state correlations [26].

Today’s symmetry unrestricted TDHF codes could in principle be used to build in more

sophisticated correlations.

3. Nonlinearities

TDHF is inherently able to deal with nonlinearities in the sense that the nuclear response

to an excitation is not, in TDHF, necessarily proportional to the magnitude of the
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Figure 2. Nonlinearities induced by a strong instantaneous boost with kick size
k = 0.01 fm−2 compared with a smaller kick in the linear regime
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excitation. As an example of the kind of size of effect that appears, the nonlinear

response of a monpole excitation in 16O is presented in figure 2. In extracting information

from the nonlinear regime, different groups have taken different approaches, including a

spectral analysis [15], an exploration of the coupling matrix elements between different

modes [17], an information-theoretic approach [27], in terms of quasiperiodic orbits [28],

or the analysis of level-spacing [18]. There has, so far, been little attempt to unify

or compare different approaches to exploring nonlinearities - though the information-

theoretic approaches are looking more at the inherent nonlinearities of the TDHF

equations than the linearity of the response. As well as a lack of comparison of

existing methods for exploring nonlinearities, we are not aware of work coupling particle-

vibration coupling with time-depdendence.

4. The Continuum and the Open Quantum System

The two topics of the continuum and open quantum systems are related in that giant

resonances can decay by particle emission. TDHF inherently preserves the norm of the

wavefunction and so to study particle emission in TDHF one must couple the nucleus

to the environment and allow emitted particles to disappear into the continuum. The

easiest way of doing this is to use a large coordinate space grid in which the normal

TDHF equations are solved, but consider a small region of the grid in which the nucleus

is said to exist - and in which region alone nuclear observables are calculated [7]. This is

practical only in one-dimension [7, 9]. In a full three-dimensional calculation such large

boxes become prohibitive. Non-uniform gridding and absorbing boundaries can help

[12], though it cannot give an exact solution. One possible route to a proper treatment

of the continuum is to use some form of exact boundary condition [29]. It is an open

question whether such an approach will be sufficiently efficient in the case of 3D TDHF.

Note that it is the reflecting boundaries and the discretisation of the continuum

that allows for the kind of nonlinear analysis in [18] and [27]. It also allows for the

construction of periodic orbits. If the system is treated as an open quantum systems

with nucleus and environment, then dealing with periodic orbits for the nucleus only

will require some serious thought.

The process of separating the space into a nucleus and the environment is necessary

to treat the continuum. It has its problems, though, in that the point at which to make

the cut is chosen with rules of thumb, and results depend slightly on where the choice is

made. As an example, Figure 3 shows the time-evolution of the isoscalar giant monopole

moment for 16O with a kick size of 0.0001 fm−2, in a 240fm box with time evolved to

1024 fm/c (and no flux hitting the edge of the box). The different lines show the result

of making different choices for the cut point. In detail, no two lines quite agree with

each other. The resulting Fourier transforms are shown, and show that the effect on

the strength is not strong, providing the cutoff between nucleus and environment is

taken at a large enough radius. Larger radii make nonlinearities more obvious for the

same external perturbation size, as indicated by the failure of the Fourier transform
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Figure 3. The response of 16O to an isoscalar monopole excitation, with the mean-
square radius measured out to a finite cut-off which is less than the total size of the
box. The left plot show the time-dependence of the mean-square radius, and the right
plot the Fourier transform.

to produce a positive function, though the strength in the peak region is remarkably

unchanged.

A better understanding of how TDHF can be interpreted as describing an open

quantum system is now called for, alongside a comparison to methods which explicitly

add an environmental coupling [30].

5. Beyond TDHF

In a sense, we have already talked about going “beyond TDHF” in considering the

entire nucleus + environment system as obeying the TDHF equations, but analysing a

restricted part of the density matrix and identfying it with the nucleus, thus allowing

the study of particle emission within a framework that preserves norm. However, there

are many ways one would like to go more genuinely beyond TDHF to improve our

understanding of nuclear structure. It is well-known that TDHF misses the collisional

width in giant resonances associated with 2p-2h (and higher) collisions. Various methods

exist, which have TDHF as a base, which can be used to look beyond TDHF [31, 32, 33],

including the inclusion of pairing, which is naturally an important ingredient for

structure studies [34]. The time is now ripe for some serious comparisons based on

the current generation of sophisticated codes.

6. Conclusion

We have outlined a few areas in which questions exist in the use of TDHF for

nuclear structure calculations. Many of these relate to the comparison of TDHF to

other methods. Since the recent advent of symmetry-unrestricted TDHF codes, these

questions will be able to be tackled.
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