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Abstract. It is generally accepted that the inner crust of neutron stars is formed by
a Coulomb lattice of nuclei immersed in a gas of quasi-free neutrons. We discuss the
implications of the inhomogeneity of the crust and of nuclear shell effects on the linear
response and on the superfluid properties of the system, as well as on the structure of
vortices.

1. Introduction

The first study of the structure of the inner crust of neutron stars based on detailed

quantum calculations was the paper published by Negele and Vautherin in 1973 [1].

Their work was truly ahead of their times, as is demonstrated by the fact that it has

received about two thirds of its about 400 citations after the year 1995, and only about

10% in the decade following its publication [2]. This reflects the theoretical effort

deployed in recent times towards a detailed understanding of the complex physics of

the crust. It also indicates that the basic structure of the crust as described by Negele

and Vautherin - a Coulomb lattice formed by spherical nuclei immersed in a sea of

quasi-free neutrons, with a lattice step that decreases going towards the core of the star

- is still valid today, at least for nucleon densities up to about 0.03 fm−3. The precise

determination of the density range in which spherical nuclei are energetically favoured,

as compared to other phases with different spatial structures, is an open and important
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issue. Also the isotopic composition of the crust depends on the details of the calculation

and in particular on pairing correlations [3]. For a recent, general review of the physics

of the inner crust, we refer to [4].

In the conclusions of their study, Negele and Vautherin remarked that ’the degree

to which the nuclei in the free neutron regime resemble ordinary nuclei’ is striking, and

that ’this similarity is also manifested in the behaviour of the single-particle energies’.

In the present contribution, various issues associated with the persistence of the shell

structure in the low-density part of the inner crust will be discussed. Of notice that

shell effects have mostly been considered in connection with the calculation of ground

state energies. Here, we shall focus on the role of inhomogeneities and quantal finite-size

effects concerning the linear response and the superfluidity of the crust. These effects

turn out to be particularly important in the microscopic description of vortices, which,

arguably, are the most direct manifestation of superfluidity of the crust in a rotating

pulsar, as in atomic Fermi gases [5].

2. Shell effects and linear response

Going from the surface towards the center of a neutron star, the separation energy of

neutrons from nuclei diminishes, until at densities larger than about 4 ×1011 g cm−3,

neutrons start to drip out of nuclei and to occupy states in the continuum part of the

spectrum. This defines the beginning of the inner crust, which extends over a density

range of about three orders of magnitude, until the core of the star is reached for

densities of the order of 1.4 ×1014 g cm−3 ( or 0.08 fm−3), and neutron star matter

becomes homogeneous.

Many studies have addressed the structure of the inner crust, using the liquid drop

approximation, semiclassical methods, Hartree-Fock quantum calculations or molecular

dynamics simulations. A Coulomb lattice of spherical nuclei appears generally to be

the favoured phase up to about 0.03 fm−3. Most calculations in this phase have

been based on the Wigner-Seitz (WS) approximation, in which one deals with a single

elementary cell of the Coulomb lattice, approximating it with a sphere. One then

minimizes the energy of neutron, proton and electron matter in β-equilibrium within

the WS cell, whose radius is considered as a variational parameter, determining the

isotopic composition of the cell. According to the few studies which have taken the

band structure of the Coulomb lattice into account [6, 7], the WS approximation turns

out to be rather reliable, but this is a topic that should be further investigated, in

particular when the radius of the WS cell becomes smaller than about 20 fm and the

results of calculations show a marked dependence on the specific boundary conditions

[8].

In the following we shall present results obtained in a WS cell of radius RWS = 33.1

fm, containing 1314 neutrons and with Z = 50 protons at the center. This cell is

representative of nucleon density n ≈ 1.5 × 1013g/cm3 ( n ≈ 0.01 fm−3).

In Fig. 1 we show the neutron and proton mean fields, as well as the neutron and
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Figure 1. Neutron and proton mean field potentials (a) and densities (b) in the 1364Sn
Wigner-Seitz cell containing 50 protons and 1314 neutrons. The thin solid and dashed
lines in (a) indicate the neutron and proton Fermi energies.

proton densities resulting from a self-consistent, spherical HF calculation performed

with the effective interaction SLy4, imposing that the wavefunctions vanish at the edge

of the cell . The neutron and proton Fermi energies lie at EF = 5.5 MeV and -35.1 MeV

respectively. Notice that the neutron continuum spectrum starts at E ≈ −3.5 MeV,

and that the bound neutron single-particle levels are occupied by about 130 neutrons.

In the HF calculation, we deal with discrete states in the spherical WS cell, and

the potential goes to zero at the edge of the cell. It proves of interest to extrapolate

the HF potential of the WS cell from the wide central region where it is about constant

up to infinity. The energy dependence of the phase shifts calculated in the extrapolated

neutron potential is shown in Fig. 2. One finds several resonant single-particle states

in the continuum, corresponding to values of the orbital angular momentum l up to

10. The centroid and the width of the resonances are given in Table 1. The centroid

is taken to be the equal to the energy at which the phase shift δlj(E) reaches the value

π/2 or 3π/2 with positive slope, while the width is obtained from the full width at half

maximum of the function dδlj(E)/dE.

As displayed in Table 1, some of the states have a rather narrow width, of the

order of a few MeV. The spacing between resonances in 1364Sn corresponds to a typical

oscillator frequency ~ω ≈ 8 MeV, a value which is not very different from that typical

of a heavy nucleus of mass number A ≈ 200 (that is, with a similar number of bound

nucleons), according to the standard estimate ~ω ≈ 41A−1/3 MeV. These resonances can

play an important role in different contexts. In particular, they determine the linear

response of the nucleus immersed in the neutron sea.

In Fig. 3 the particle-hole transitions which are associated with the largest values

of the strength of the quadrupole and octupole operators dU/drY20 and dU/drY30 are

displayed; U denotes the local neutron HF field associated with the zero-range SLy4 force

(similar results would be obtained using the neutron density instead of U). In all cases,

they involve unbound states whose quantum numbers {l, j} correspond to those reported

in Table 1, and whose energies lie close to those of the corresponding centroids. Easy
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Figure 2. Phase shifts calculated as a function of energy for different values of the total
and orbital angular momentum of the neutron single-particle states in the exrtapolated
HF potential of the 1364Sn WS cell. The phase shifts associated with spin down
(j = l− 1/2) and spin up (j = l + 1/2) neutron single-particle orbitals are reported in
(a) and (b) respectively. The continuum spectrum starts at E ≈ -3.5 MeV (cf. Fig.
1).

l j Eres
lj [MeV] Γres

lj [MeV]

4 9/2 -2.1 0.08

4 7/2 -0.2 1.0

6 11/2 0.2 0.04

7 15/2 2.4 0.08

7 13/2 8.7 2.5

8 17/2 9.9 1.7

8 15/2 20.3 8.0

9 19/2 18.3 4.5

10 21/2 28.7 9.0

Table 1. Total and orbital angular momentum lj, energies Eres and widths Γres of
the resonant neutron single particle states calculated extrapolating the HF potential
of the 1364Sn WS cell up to infinity (cf. Fig. 1 and 2).

to recognize are low-lying octupole transitions, having an energy approximately given

by ∆E ≈ ~ω, and high-lying quadrupole and octupole transitions having ∆E ≈ 2~ω

and ∆E ≈ 3~ω respectively. In other words, the typical shell structure of the response

observed in atomic nuclei is preserved in the inner crust, as can be seen in Fig. 4,

where the octupole strength calculated in the Random Phase Approximation (RPA)

is displayed. It is found (see ref. [9]) that the strength evolves in a rather continuous

fashion going from atomic nuclei into the inner crust. These results should be contrasted

with those obtained making use of the operator rλ, which heavily weight the free neutron

part of the cell. In that case, the strength associated with the response of bound or

resonant states is overwhelmed by the response of the free neutrons [10, 11].
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Figure 3. Neutron particle-hole transitions associated with the largest values of the
strength of the operator dU/drY20 and dU/drY30 in the WS cell 1364Sn. Neutron
single-particle levels of even and odd parity are drawn by solid and dashed lines, and
are labeled by the usual spherical quantum numbers {nlj}. Solid and dashed arrows
refer to 2+ and to 3− transitions. The neutron Fermi energy is represented by the
thick dashed line.
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Figure 4. Strength functions associated with the octupole operator dU/drY30 in the
1364Sn WS cell. The discrete unperturbed and RPA responses are shown by the open
and filled histograms (in units of MeV2 fm−2). The dashed and solid curves (in units
of MeV fm−2) are obtained folding the unperturbed and the RPA discrete response
with a Lorentzian curve having a width of 1 MeV.

3. Pairing correlations in the Wigner-Seitz cell

On the basis of BCS theory and using standard nucleon-nucleon potentials, one finds that

neutron matter in the 1S0 channel is superfluid at the densities and at the temperatures

(T ≈ 0.01 MeV) typical of the inner crust. If one ignores its inhomogeneities, the inner

crust can be considered as a macroscopic piece of neutron matter, where superfluid flow

can fully develop. At a density n ≈ 0.01 fm−3 (corresponding to a Fermi momentum

kF ≈ 0.65 fm−1) one would estimate a value ξ ≈ ~2kF/mπ∆ ≈ 6.5 fm for the coherence

length, using the value ∆ ≈ 2 MeV calculated in uniform matter at this density with

the bare nucleon-nucleon force. This is smaller than the coherence length in the atomic

nucleus (ξ ≈ 20 fm, using ∆ ≈ 1 MeV and kF ≈ 1.5 fm−1), where however superflow is
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limited by the small value of the nuclear radius.

The typical values of the coherence length in the inner crust are several times larger

than the diffusivity of the nuclear potential, and the application of the results obtained

in neutron matter to the actual case of the inner crust requires a careful consideration of

its inhomogeneous character. Pethick and Ravenhall wrote in 1995 that since ’the spatial

variation of superfluid gaps is not well understood theoretically, even in the absence of

superfluid flow, the properties of vortices in such an inhomogeneous medium are even

less well understood from basic theory’ [12]. Much progress has been made since then

concerning pairing correlations. The spatial dependence of the pairing gap has been

studied by several groups at the mean field level, using parametrized potentials or self-

consistent Hartree-Fock-Bogoliubov (HFB) theory [13, 14, 15, 16, 17, 18]. According to

the Local Density Approximation (LDA), one expects that the gap should be suppressed

in the interior of the nucleus, because there the local Fermi momentum is usually larger

than in the external neutron gas. The effect is reduced in actual HFB calculations,

because LDA does not take into account proximity effects: close to the nuclear surface,

a Cooper pair feels both the interior of the nuclear impurity and the external free neutron

superfluid. As a result, the value of the gap close to the Fermi energy is decreased by

a few hundred keV compared to the value in neutron matter, leading to an increase

of the specific heat of the crust which can affect the earliest phases of neutron star

cooling, at least in some astrophysical scenarios [15, 17, 19]. Nonetheless, the influence

of the inhomogeneities on the pairing gap at the mean field level is considerably smaller

than typical uncertainties adscribed to the existing calculations of medium polarization

effects.

Within this context one can mention the fact that two ’ab initio’ calculations of

the gaps in uniform neutron matter carried out recently with the help of Montecarlo

techniques [20, 21, 22] are found to be in rather poor agreement with each other.

Furthermore, one is still lacking a critical comparison and assessment of the differences

existing between these calculations and studies based on the renormalization group [23]

or on Brueckner and Nambu-Gorkov theory [24, 25], in particular concerning the role

played by collective modes.

In spite of quantitative differences, all these calculations predict a reduction of

the pairing gap as compared to the BCS results. This is because polarization effects

in neutron matter are dominated by the repulsion induced by spin fluctuations. This

is different from what is found in atomic nuclei, in which the exchange of collective,

low-lying surface modes between Cooper pair partners induces an attractive pairing

interaction which enhances the gap. Also in this case, the quantitative aspects of such

results are lively debated [26, 27, 28, 29].

The inhomogeneous WS cell poses a particularly interesting challenge, due to the

interplay of the free neutron and of the nuclear phase. Some calculations have used

a density functional obtained interpolating between a functional adopted in neutron

matter and a functional used in atomic nuclei [30]. Only exploratory calculations have

directly addressed medium renormalization effects in the inner crust [31, 32]. They
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have explicitly included the coupling with the vibrations of the systems in the WS cell

(cf. Section 2), and indicate that the screening of the gap due to spin fluctuations is

counterbalanced to some extent by density fluctuations associated with the dynamics of

the surface of the nucleus. This leads to characteristic changes in the spatial dependence

of the pairing gap close to the nuclear surface. Of notice that the effect of the vibrations

of the Coulomb lattice on the pairing induced interaction has never been considered

[33].

It would be important to have evidence of superfluidity in the crust directly

associated with astronomical observations. As we have already mentioned, superfluidity

affects the thermal properties of the crust. This can influence neutron star cooling, but

simulations generally show that cooling is much more sensitive to the properties of the

core [34]. However, recent observations of rapid cooling of the crust after accretion have

open exciting perspectives, because this phenomenon directly depends on the properties

of the crust. Simulations indicate that neutron superfluidity in the crust is indeed needed

to obtain agreement with the data [35, 36].

4. Vortex structure and pinning to nuclei

In keeping with the ansatz that neutron star matter is superfluid, the rotation of the

star should induce the formation of vortices in the inner crust.

While there is a rich literature concerning vortices in condensed matter, only few

studies have been devoted to the quantum structure of vortices in neutron matter in

general [37] and in neutron stars in particular [38, 39, 40, 41]. It turns out that shell

structure can play an important role in a microscopic study of a vortex in the inner crust.

This is because vortices are excitations based on Cooper pairs made out of single-particle

states having different parity.

In what follows we shall only consider the axially symmetric case, in which the

vortex axis coincides with the z−axis. The vortex can be characterized by a pairing

field

∆(ρ, z, φ) = ∆(ρ, z)eiνφ, (1)

where the second factor depends only on the azimuthal angle φ about the z-axis. The

index ν is the vortex number. It indicates the number of quanta of angular momentum

carried by each Cooper pair. In particular, if we set ν = 0 we obtain the usual HFB

equations (no vortex). Setting instead ν = 1, we can describe a vortex excitation,

in which each Cooper pair carries one unit of angular momentum along the z−axis.

Experiments on superfluids indicate that it is energetically more favorable to develop

an array of ν = 1 vortices rather than a few vortices carrying many quanta of angular

momentum. In the following we shall assume that this is also the case in neutron stars.

When the vortex axis goes through the center of one of the nuclei building the

Coulomb lattice, it is said that the vortex is pinned. The associated pairing field is

axially symmetric (cf. Fig. 5), in keeping with the spherical symmetry of the nuclear

mean field.
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For a given value of m, the projection of the orbital angular momentum on the

z−axis, and indicating the other quantum numbers by the index q, the quasiparticle

amplitudes have the form

vqm(ρ, z, φ) = Vqm(ρ, z)eimφ

uqm(ρ, z, φ) = Uqm(ρ, z)ei(m−ν)φ (2)

with the property Vq,m(ρ, z) = Vq,−m+ν(ρ, z), which for ν = 1 leads to an azimuthal

current given by

J(ρ, z, φ) = − i~
mρ

∑

qm

v∗
qm(ρ, z, φ)

∂vqm(ρ, z, φ)

∂φ
, (3)

with the associated velocity field J/n. For large values of ρ Eq. (3) leads to the well

known Onsager profile, v = J/n = ~/2mρ.

Figure 5. (left) Geometry used to calculate the pairing gaps shown in the right panel.
(Right) Pairing gaps as a function of ρ in the equatorial plane (z = 0) associated with
four different configurations (vortex pinned on a nucleus in the WS cell : solid curve;
vortex in uniform neutron matter: short dashed curve; nucleus in the WS cell: dashed
curve; uniform neutron matter: dotted curve) calculated for an asymptotic neutron
density 0.01 fm−3 at large values of ρ.

Aside from axial symmetry, the system has mirror symmetry with respect to the

x − y plane (see Fig. 5), so that ∆(ρ, z) = ∆(ρ,−z). Applying the parity operator Π̂

(φ → φ + π and z → −z) to the pairing field one obtains

Π̂∆(ρ, z)eiνφ = eiνπ∆(ρ, z)eiνφ, (4)

implying that for ν = 1 the Cooper pairs are constructed out of single-particle levels of

opposite parity. As discussed in Section 2, the persistence of the shell structure in the

WS cell implies the existence of resonant states of different parity, which are separated

by an energy ~ω ≈ 8 MeV. This hinders the formation of a vortex within the nuclear

volume as compared to the uniform situation. The pairing gap associated with a vortex

pinned on a spherical nucleus, obtained solving the HFB equations in the WS cell [41],
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is shown by the solid line in the right panel of Fig. 6, as a function of the distance

from the vortex axis in the equatorial plane of the nucleus. Also displayed are the gaps

calculated: (a) in the WS cell without a vortex (ν = 0), (b) in the ground state of

uniform neutron matter (ν = 0), (c) for a vortex in uniform matter (ν = 1). In all cases

the same pairing force was used, namely, a density-dependent, zero-range interaction

whose parameters are tuned to reproduce the gap obtained with the bare force.

It is seen that the gap of the pinned vortex is strongly suppressed not only in the

interior of the nucleus, but also in a rather thick layer at the interface between the

nucleus and the neutron gas. The vortex radius can be estimated as the distance from

the z−axis at which ∆ reaches a value equal to 90% of its asymptotic value. In the case

displayed in Fig. 5, it has a value of about 12 fm, that is, about 6 fm larger than in

uniform matter (cf. the solid and the short-dashed curve).

An important issue is whether the vortex lines tend to be pinned to the nuclei

forming the Coulomb lattice. If for some reason vortices were catastrophically unpinned

from the nuclei, they could release angular momentum to the neutron star surface and

the angular velocity of the star would show a sudden increase [42]. This might explain

the irregularities (glitches) observed in the period of the radiation emitted by a large

number of pulsars [43]. Consequently an important quantity which can be obtained from

a microscopic study of the vortex structure is the pinning energy, namely, the difference

between the energy of the system when the axis of the vortex goes through the center

of the nucleus and when the axis of a vortex line is placed far from the nuclei.

According to semiclassical models [44, 45, 46], the pinning energy reflects a

competition between the kinetic energy flow and the condensation energy. In such a

competition, the size of the vortex core, defining the region in which the gap vanishes,

is generally smaller than the nuclear radius; then the pinning energy may be negative,

vortices being attracted by nuclei. This is in keeping with the fact that the loss of

condensation energy associated with the vortex core can be less severe if the vortex goes

through the nucleus, where the gap was already small in the absence of the vortex, as

compared to the outer neutron gas.

The large vortex radii found in the quantum calculations strongly influence the

contribution of the condensation energy and of the flow energy to the pinning energy,

invalidating the semiclassical approximation, and changing the dependence of the

pinning energy on density in a qualitative way. In spite of the progress accomplished

in the understanding of the basic vortex structure, at present it is still not possible to

calculate a reliable value of the pinning energy. This is because of the uncertainties

adscribed to the effective interactions, concerning not only the influence of medium

polarization effects on the pairing interaction, but also the effective mass associated

with the interaction used to calculate the mean field, a quantity which affects, among

other properties, the spacing between resonances.

The strength of the interaction between a segment of a vortex line and a nucleus

is one of the basic elements determining the vortex dynamics in the crust. The latter

constitutes a complex problem (cf. Sect. 8.3 in [4] for a review), although it is simplified
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to some extent because vortices can safely assumed to be isolated, their radius (of the

order of the coherence length) being much smaller than the intervortex distance (of the

order of 10−4 cm for a millisecond pulsar). An attempt towards a detailed description

of the interaction of a vortex line with the Coulomb lattice has been made recently [47].

The motion of the line is determined by the equations of classical mechanics including

the force exerted by the nuclei of the lattice, the vortex tension, the hydrodynamical

Magnus force which tends to push the vortex towards the surface of the star as well

as a dissipative force that accounts for electron scattering and for the generation of

vortex waves (Kelvin modes). In particular, the Magnus force depends on the relative

velocity vrel between the vortex line and the macroscopic superfluid flow produced by

the ensemble of the vortices. For values of vrel below a critical value, which is determined

by the absolute value of the pinning energy, one finds that the vortex line is immobilized

within the lattice. Above this velocity the vortex can move through the lattice towards

the surface of the star where it disappears transferring its angular momentum to the

non superfluid, rigid components of the star. Pinning energies of the order of 1 MeV

correspond to critical velocities of the order of 106 − 107 cm/s, which allow the system

to store enough angular momentum to drive a giant glitch.

The axial symmetry adopted in the previous discussion is appropriate for the

interaction of a vortex with isolated, spherical nuclei. However, according to several

calculations based on the semiclassical Thomas Fermi approximation, on quantum

HF theory, or on molecular dynamics, in the deeper layers of the crust the stable

nuclear configuration changes with increasing volume fraction of the nuclei, going

through a sequence of shapes, from spheres to cylinders (spaghetti), slabs (lasagna),

tubes and bubbles, until the homogeneous phase becomes favoured and the core of

the star is reached (cf. Section 3.3 in [4]). The interaction between a vortex and

one of these structures has never been computed microscopically (with the partial

exception of the cylinder, cf. [39]). A systematic analysis would require full three-

dimensional calculations, which should explore different configurations, considering

different alignments of the vortex lines with respect to the various shapes.

5. Conclusions

We have presented an overview of recent progress made in the study of the quantal

structure of the inner crust of neutron stars. We have shown that quantum microscopic

calculations are needed, to reveal qualitative effects associated with the inhomogeneous

nature of the inner crust and neutron shell effects in the continuum. We have also

indicated some of the areas where much work remains to be done, in particular

concerning a quantitative treatment to deal with the effects associated with band

structure, with the influence of medium polarization on superfluidity and with the

connection between the microscopic structure of vortices and their dynamics in the

star.
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