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Abstract.

We discuss parity violating elastic electron scattering as a complementary tool in

the race for more precise determinations of neutron densities in nuclei. Isovector and

isoscalar densities and form factors in N > Z and N = Z stable nuclei are discussed

taking 208Pb and 28Si as examples. Distorted wave calculations of parity violating

asymmetries are shown and are compared to plane wave impulse approximation. The

extraction of the ratio between neutron and proton monopole form factors is discussed.

The isospin mixing produced by Coulomb interaction in the ground state of N = Z

nuclei with Skyrme selfconsistent mean fields is also discussed.

PACS numbers: 25.30.Bf, 21.10.Gv, 21.60.Jz
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1. Introduction

Knowledge of the neutron density distributions in atomic nuclei is of fundamental

importance to understand basic aspects of the nuclear structure, but contrary to what

happens with proton distributions, the experimental information available on neutrons

is still clearly insufficient. The neutron distributions, and in particular the neutron

radii of heavy nuclei are essential nuclear-structure observables that still remain elusive.

Improving our knowledge of the neutron density distributions in nuclei is one of the

strongest challenges in present nuclear structure activities.

An accurate measurement of the neutron densities in heavy nuclei would have

significant implications for nuclear structure. First of all, one should bear in mind

that because of the uncertainties in the neutron density, modern effective nuclear

forces are typically constructed without any constraint on them. However, a correct

parametrization of the isovector channel of the effective nuclear force is essential for the

description of phenomena in exotic neutron-rich nuclei such as halos [1] or neutron skins

[2]. Once these interactions are constrained to reproduce a neutron radius in a stable

nucleus such as 208Pb, they can make improved predictions for a variety of unstable

nuclei. The isospin dependence of the energy functional in nuclear matter would be

also constrained by this information. In particular, it would lead to an improved

neutron equation of state with important consequences in astrophysics [3] (including

the structure of neutron stars). Precise neutron density distributions in nuclei are also

required to make progress in atomic parity non-conservation (PNC) experiments [4].

As the accuracy of these experiments improves, they will need more and more precise

information on neutron densities because the parity violating interaction is basically

proportional to the overlap between the electrons in the atomic orbits and the neutrons

[5].

Electron-nucleus scattering has been in the past an excellent tool for studying

the nuclear structure. Much reliable information on electromagnetic form factors and

charge density distributions has been accumulated for stable nuclei [6] and it is expected

that the new facilities in GSI [7] and RIKEN [8] will provide a good opportunity to

extend the study of the charge density to unstable nuclei as well. Unfortunately, a

measurement of the neutron density distribution to a precision and detail comparable

to that of the proton one is hardly possible. Progress on our knowledge of the neutron

densities has been limited by the use of hadronic probes that are subject to large and

controversial uncertainties because of the not well known reaction mechanism. Neutron

density measurements are usually performed using probes having different sensitivities

to protons and neutrons. The methods used include hadron scattering, antiprotonic

atoms, as well as excitations of the giant-dipole resonance (GDR) and the spin-dipole

resonance (SDR). The latter have been especially used to determine neutron skin radii.

Neutron radii were extracted firstly from Coulomb energy differences [9] and from

neutron pickup reactions (p, d) and (d, t) [10], but since these reactions are mainly

sensitive to the tail of the neutron density, model assumptions were needed for the
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interior density. Hadron scattering and in particular proton-nucleus elastic scattering

at intermediate energies [11], is a well-established method for probing nuclear matter

density distributions of stable nuclei. Although the reaction is surface-dominated, it is

sensitive to both the surface and the interior neutron density. This reaction produces

large cross sections, but suffers from the complexity of the strong interaction. Therefore,

it is difficult to describe the reaction mechanism and to perform a model-independent

analysis of the data. In general, present hadron scattering interpretation involves a

strong model dependence of the results. Difference between neutron and proton density

distributions at large radial distances, on the nuclear surface, has been determined

with antiprotonic atoms [12], where a slow antiproton is captured into an atom. These

differences have also been determined by exciting the GDR [13]. This has been done in

inelastic alpha scattering to the GDR, where the cross section of the process depends

strongly on the ratio (Rn − Rp)/R. Unfortunately, the cross section of the GDR

excitation is very small relative to those of other overlapping resonances. Similarly, the

cross sections of the isovector SDR has been used to extract the neutron skin thickness

[14]. This resonance is excited in (p, n), or (3He, t) charge exchange reactions using

inverse kinematics.

To summarize, there have been many measurements of neutron densities with

strongly interacting probes. Unfortunately, the measured neutron densities are still

model-dependent and the error bars are much larger than those of proton densities

due to the uncertainties inherent to the strong interaction. As a result, no existing

measurement of neutron densities or radii has an established accuracy of 1%. As an

example, in 208Pb, while electron scattering experiments have determined the charge

radius to better than 0.001 fm, realistic estimates place the uncertainty in the neutron

radius at about 0.2 fm.

This situation has led to a further consideration of leptonic probes to investigate

neutron distributions. Elastic magnetic electron scattering from odd-N nuclei is sensitive

to the neutron magnetic moment and information about the odd neutron density can

be extracted. However, information about the whole neutron density cannot be directly

measured since most of the neutrons in a heavy nucleus are coupled to spin zero and

make no contribution to the magnetization. An exciting new possibility could be the

direct measurements of the neutron density form factors from the asymmetry in parity-

violating (PV) elastic polarized electron scattering [15]. The electroweak experiments

can be both accurate and model independent and the data can be interpreted with as

much confidence as electromagnetic (EM) scattering. PV electron-nucleus scattering

arises from the interference of EM and weak neutral amplitudes and it is a clean

and powerful tool for measuring the spatial distribution of neutrons in nuclei with

unprecedented accuracy.
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2. Parity violating electron scattering

2.1. Introduction

The first motivation for studying PV electron scattering from nuclei was to use it as a

tool to extract information on the weak neutral current (WNC) and thereby to test the

validity of the Standard Model (SM) in the low-energy regime [16, 17]. This possibility

lies in the fact that the PV asymmetry acquires a very simple, model-independent

expression in terms of basic coupling constants because nuclear structure effects cancel

out when certain conditions are met. Later on, the emphasis shifted to test nucleon

and nuclear structure with such probes. The first experiments in this line were aimed

to probe strange quark contributions to the form factors of the nucleon. The SAMPLE

experiment [18] measured the strange magnetic form factor at low momentum transfer.

The HAPPEX experiment made the most precise measurement yet of strange quarks

in the proton [19]. The results from these experiments suggest that strange quarks

do not make large contributions to the nucleon electric or magnetic form factors.

The contributions from strange quarks are less than 1 percent of the proton charge

distribution and no more than 4 percent of its magnetic moment. They are actually

compatible with zero [20].

The present interest on PV electron scattering is focused on one hand on the study

of the isospin mixing in nuclei. This is so because understanding the sensitivity of PV

electron scattering to the nuclear isospin mixing is crucial to determine the precision

up to which the SM constants can be deduced and to what extent strangeness effects

in the WNC can be studied. On the other hand, the focus is made on the study of

neutron densities. This is because the Z0 couples predominantly to neutrons. The

coupling of the Z0 with the proton depends on the small factor (1−4 sin2 θW ), while the

coupling with the neutron is more than ten times larger. This situation is opposite to

the EM charge coupling where electrons couple to protons and neutrons with strengths

1 and 0 respectively. This property of the weak interaction can be exploited to provide

information about the spatial distribution of neutrons in the nuclear ground state.

Indeed, this idea was proposed as part of the original study made in Ref. [15], namely

that a measurement of the PV-asymmetry in elastic electron-scattering can provide

a direct measurement of the Fourier Transform of the neutron density. In fact, this

measurement is now being carried out in the Parity Radius Experiment (PREX) [21] at

Jefferson Laboratory which has the goal of measuring the neutron radius of 208Pb to a

1% precision, using PV elastic electron scattering. This is an electroweak alternative to

the hadronic program and promises to measure the neutron radius of 208Pb accurately

and model independently. Another advantage of the electroweak program is related to

the possibility of calibrating proton-nucleus scattering to reproduce the neutron density

in a stable nucleus. This is analogous to use beta decay to calibrate the charge-exchange

reactions as a tool to extract the Gamow-Teller strength. Then, proton scattering could

be used in a wide variety of other nuclei, including radioactive beams with hydrogen

targets in inverse kinematics. In fact, the nuclear matter distribution in 6He and 8He
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has been already determined at GSI by using small angle proton scattering in inverse

kinematics [22].

It has also been proposed [23] that PV electron scattering can be used to determine

the type (skin or halo) of neutron distribution in neutron-rich stable nuclei. In particular,

asymmetries for skin-type neutron distributions are larger than those of halo-type

neutron distributions.

2.2. Formalism

Polarized electron scattering from unpolarized nuclei can be used to study parity

violation, since both electromagnetic and weak interactions contribute to the process

via γ and Z0 exchange, respectively. The PV asymmetry is given by [15]

A =
dσ+ − dσ−

dσ+ + dσ−
, (1)

where dσ+(dσ−) is the cross section for electrons longitudinally polarized parallel

(antiparallel) to their momentum and the asymmetry is proportional to the interference

between the γ and Z0 amplitude. For a J+ = 0+ target in Plane Wave Born

Approximation (PWBA) the asymmetry A can be written as

A = a
FW (q)

Fch(q)
, (2)

with a a linear function of Q2 proportional to the ratio between neutron and proton

numbers:

a =
GFQ2

4πα
√

2

N

Z
, (3)

where GF and α are the Fermi and fine-structure coupling constants, respectively, and

Q2 = −q2
µ = 4ǫ2 sin2(θe/2) is the four-momentum transfer in the scattering process.

FW (q) and Fch(q) are the elastic weak and EM charge form factors, respectively,

containing the dependence on the nuclear structure. These form factors are monopole

Coulomb-type and are defined as follows,

Fch(q) = GEp
(q)F 0

p +
N

Z
GEn

(q)F 0
n , (4)

and

FW (q) = GEp
(q)

[

F 0
n − Z

N
(1 − 4 sin2 θW )F 0

p

]

(5)

− GEn
(q)

[

F 0
n(1 − 4 sin2 θW ) − Z

N
F 0

p

]

,

where GEp
and GEn

are the charge form factors of the proton and the neutron

(GEp
(q = 0) = 1 and GEn

(q = 0) = 0) and θW is the Weinberg angle. The monopole

form factors for point nucleons are

F 0
p (q) =

1

Z

∫

d3rj0(qr)ρp(r), F 0
n(q) =

1

N

∫

d3rj0(qr)ρn(r) . (6)
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In these expressions the neutron and proton densities are normalized to the numbers of

their corresponding type of nucleons and F 0
p,n(q = 0) = 1. Therefore, we see that the

asymmetry, aside from a , depends mainly on the ratio of neutron to proton nuclear

form factor (F 0
n(q)/F 0

p (q)):

A = a





F 0
n(q)

F 0
p (q)

− Z
N

(1 − 4 sin2 θW ) − GEn (q)

GEp(q)

[

F 0
n(q)

F 0
p (q)

(1 − 4 sin2 θW ) − Z
N

]

1 + N
Z

GEn(q)

GEp(q)
F 0

n(q)
F 0

p (q)



 .(7)

At the q-values that are of our concern here, the charge form factor of the neutron (GEn
)

can be neglected and we can write

A = a
[

F 0
n(q)

F 0
p (q)

− Z

N
(1 − 4 sin2 θW )

]

. (8)

In a first approximation the radial distribution of mass can be assumed to follow that of

charge so that the radial dependence of the neutron density is that of the proton density

and they are both scaled by the N/Z factor (ρn(r) = ρp(r) N/Z). In this case F 0
n = F 0

p

for all q and one gets:

A0 = a
[

1 − Z

N
(1 − 4 sin2 θW )

]

, (9)

or

A0 ≈ a for Z/N < 1. (10)

For N = Z nuclei Eq. (9) leads to the usual expression:

A0
N=Z = a 4 sin2 θW , (11)

as obtained in the exact SU(2) isospin limit in Refs. [15, 24]. In nuclei, isospin is not

an exact symmetry, but still at q = 0, F 0
n = F 0

p . For q > 0 the assumption F 0
n = F 0

p

amounts to assume that the nuclear ground state is a good zero-isospin eigenstate. Then

only isoscalar matrix elements contribute and the WNC and EM form factors become

proportional. Since isospin is not an exact symmetry in nuclei the actual PV asymmetry

deviates from the linear Q2 dependence by a correction Γ, where

A = A0 [1 + Γ(q)] . (12)

The deviation Γ accounts not only for the effects of nuclear isospin mixing but also for

the strangeness content in the PV asymmetry, Γ = ΓI +Γs [24]. The last measurements

[20] give a strangeness density ρs consistent with zero at the q values of interest here,

and therefore we will discuss only Γ = ΓI in the next section.

Since F 0
p is well known from standard (parity conserving) electron scattering, a

precise information on F 0
n (hence on ρn) can be obtained by accurate measurements

of A at different q values. In the region 0 < q . 5R−1, that requires q values of the

order of A−1/3 GeV at most, the elastic cross section is sufficiently large to measure A
accurately [24].
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We note that in general a direct measurement of the q dependence of F 0
n/F 0

p is

obtained from the difference between the exact asymmetry A and the approximated

one A0 as:

F 0
n(q)

F 0
p (q)

= 1 +
[A−A0]

a
. (13)

This equation provides the means to obtain the experimental q-dependent ratio

(F 0
n(q)/F 0

p (q))exp from the experimental asymmetry values, A = Aexp, substituting

A0 and a by the known linear functions of Q2 in Eq. (3) and Eq. (9).

As already mentioned there are several corrections to the asymmetry expressed

by Eq. (8) that could interfere the neutron radius measurement. The corrections

have been studied in Ref. [25], concluding that they should not be an issue for the

interpretation of the experiment because they are either negligible or well under control.

These corrections include effects from strange quarks, neutron electric form factors,

parity admixtures in the ground state, dispersion corrections, meson exchange currents,

radiative corrections, contributions from excited states, and target impurities. By far

the largest correction to the asymmetry in heavy nuclei comes from Coulomb distortions

of the electron wave function. Distortion effects can be included exactly [24, 25, 26] by

solving numerically the Dirac equation for an electron moving in the Coulomb potential

(vector) plus the small weak neutral potential (axial-vector). The axial-vector potential

is given by

WW (r) =
α

sin2(2θW )

2π

mZ

∫ ∞

0

ρW (r′)
r′

r

(

e−mZ |r−r′| − e−mZ (r+r′)
)

dr′ (14)

where mZ is the mass of the Z0 boson and ρW (r) is the weak density (inverse Fourier

transform of the weak form factor of Eq. (5)). For massless electrons, one has positive

and negative helicity states that scatter from a V + A and V − A potentials. Thus,

one obtains the cross sections dσ+ (dσ−) entering in Eq. (1) from the phase shifts

which result from the numerical solution of the Dirac equation, involving a partial

wave expansion. For heavy nuclei, distortion corrections can be large but they can be

calculated with an accuracy significantly better than the 3% experimental error expected

for the asymmetry. When Coulomb distortion effects are taken into account we can still

define a distorted wave (DW) neutron to proton form factor ratio,
(

F 0
n(q)

F 0
p (q)

)

DW

= 1 +

[

ADW −A0
]

a
(15)

which is the actual ratio to be compared to experiment.

In what follows we show results of the asymmetries calculated from densities

obtained within selfconsistent mean field approximation, with and without Coulomb

distortion effects.

2.3. Selfconsistent mean field approach for quasiparticles

The nuclear structure calculation involved in the asymmetry, which basically concerns

the proton and neutron form factors, is performed within a selfconsistent deformed mean
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field approach with pairing correlations. To generate the ground-state wave function we

use a Skyrme density-dependent nucleon-nucleon interaction (SLy4 [27]). The Hartree-

Fock (HF) equations are solved iteratively and at the end of each iteration we solve

the BCS equations to generate the occupation probabilities in a consistent way. We

obtain the single-particle levels, occupation numbers, and wave functions. The latter

are expanded in a harmonic oscillator basis using 12 major shells. More details can be

found in Refs. [24, 28, 29].

In this approach the collective isospin mixing effect of the Coulomb force is

included non-perturbatively in the isospin-non-conserving HF mean field, along with

other collective effects such as pairing and deformation. As a result, the HF+BCS

ground state is made up of quasiparticles with rather complex admixtures of harmonic

oscillator wave functions in many different major shells. So far, this approximation is

known to provide optimal descriptions of charge form factors [30, 31] of heavy nuclei

and can be expected to be reliable for the theoretical description of the asymmetry.

3. Calculation of asymmetries

As a paradigmatic example of N > Z nuclei we show results for 208Pb. In Fig. 1a we

show the proton ρp and neutron ρn ground state densities of 208Pb from a HF(SLy4)

calculation. Also shown are the isoscalar (IS) (ρIS = ρp + ρn) and isovector (IV)

(ρIV = ρn − ρp) densities.

In Fig. 1b we show the corresponding proton F 0
p and neutron F 0

n form factors in

PWBA (see Eqs. (6)) together with Rnp(q) defined as:

Rnp(q) =
F 0

n(q)

F 0
p (q)

− 1 . (16)

In Fig. 2a we show the PV asymmetry in 208Pb obtained from both PWBA (dashed

line) and DWBA (solid line). The DWBA calculation is performed for an incident

electron energy of 850 MeV. It is worth noticing how the PWBA singularities become

smooth functions of q in the distorted case. In this kinematics, the expected asymmetry

amounts to 8.4·10−7 at q = 0.45 fm−1, which is the momentum transfer chosen at

PREX [21]. A word of caution should be made with regards to the effective transverse

momentum that should be used when comparing DWBA or experimental data to PWBA

calculations (see for instance Ref. [32] and references therein). A displacement in

q of the DWBA peaks relative to the PWBA peaks is clearly seen in Fig. 2. The

Coulomb distortion is also responsible for the anomalous behaviour of Rnp in DWBA as

q → 0. Actually, the isospin mixing effect is best explored when comparing the DWBA

asymmetry to that obtained also in DWBA but taking ρn = ρp N/Z (see figures 2 and

3 in Ref. [24]).

As an example of an N = Z nucleus we show results for 28Si. For this nucleus

the calculations are done with the same Skyrme interaction using constant pairing gaps

∆p,n =1 MeV. Figs. 3 and 4 contain similar results as Figs. 1 and 2, but for 28Si.
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Figure 1. Left panel: proton, neutron, IS and IV densities of 208Pb in its ground

state. Right panel: proton and neutron form factors together with Rnp, in PWBA.
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Figure 2. Left panel: Plane wave (PW) and distorted wave (DW) PV asymmetries

of 208Pb in its ground state. Right panel: for the same nucleus, the quantity Rnp in

plane wave (PW) and distorted wave (DW).
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Figure 3. Same as in Fig. 1, but for the N = Z nucleus 28Si.

The effects expected on the elastic parity-violating electron scattering at momentum

transfers extending up to about 1.5 fm−1 from the isospin-mixing in the nuclear ground-

state wave functions of a set of N = Z nuclei, including 28Si, have been studied in
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Figure 4. Same as in Fig. 2, but for the N = Z nucleus 28Si.

Ref. [24]. The small differences between the proton and neutron density distributions

yield both isoscalar and isovector ground-state Coulomb monopole matrix elements and

produce modifications in the PV asymmetry from the model-independent result obtained

in the absence of isospin-mixing.

Kinematic ranges where potential future measurements might be undertaken have

been discussed in Ref. [24] by studying both the deviations in the PV asymmetry Γ and

the experimental figure-of-merit. Isospin mixing will have a measurable effect on the

asymmetries in the range 0.5 ≤ q ≤ 1.0 fm−1.

4. Isospin mixing in N = Z nuclei

As seen in the previous section the PV asymmetry in N = Z nuclei is affected by the

isospin mixing in the ground state. Isospin impurities are discussed in the literature in

different schemes. In previous works [33] we evaluated isospin mixing by computing the

mean value of the T 2 operator in the ground state. In Refs. [34, 35] isospin mixing is

evaluated in terms of the overlaps between spherical neutron and proton single particle

wave functions with the same quantum numbers. The admixture of T = T0 + 1 in the

ground state with isospin T0 is given in terms of those overlaps [34, 35],

P (T = T0 + 1) ≈ 1

T0 + 1

∑

nlj

′
NnljCnlj , (17)

where Nnlj is the number of protons in the orbit (nlj) and Cnlj are the deviations from

unity of the overlaps,

Cnlj = 1 −
∫

Rp
nlj(r)R

n
nlj(r)r

2dr . (18)

In a more general framework where deformation and pairing are included, as it is

our case, a better formulation of the isospin mixing in the ground state wave function

of N = Z nuclei is given as

PT = 1 − 〈Ψp|Ψn〉 , (19)
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where Ψp,n are the proton and neutron wave functions in the selfconsistent HF+BCS

ground state. This expression takes into account all the possible overlaps between proton

and neutron single particle wave functions, as can be seen in the explicit expressions for

the BCS overlaps [36].

In Table 1 we show the isospin mixing probabilities (percentage) for various N = Z

nuclei obtained in this work using Eq. 19. Our HF(SLy4)+BCS calculations for 12C and
28Si with ∆p,n = 1 MeV give spherical (12C) and oblate (28Si, β = −0.25) solutions. For

the doubly closed nuclei 40Ca and 100Sn the spherical ground states have zero pairing

gaps. Also given in the table are the results obtained by Hamamoto et al. [34] (HF(Sk3)

and HF(SG2)), by Satula et al. [37] before (BR) and after (AR) rediagonalization, as

well as the values corresponding to the formulation in Bohr and Mottelson [38], p. 173.

In these works all the nuclei are spherical and no pairing correlations are included.

Table 1. Isospin mixing probabilities (percentage) for various N = Z nuclei obtained

in this and in other works (see text).

12C 28Si 40Ca 100Sn

This work SLy4 0.041 0.28 0.58 3.9

Hamamoto et al. Sk3 ∼0.05 - ∼0.6 ∼3.9

Hamamoto et al. SG2 ∼0.05 - ∼0.6 ∼4.8

Satula et al. SLy4 BR - ∼0.35 ∼0.6 ∼3.9

Satula et al. SLy4 AR - ∼0.45 ∼0.8 ∼6.2

Bohr and Mottelson 0.007 0.063 0.165 1.9

Our HF+BCS estimates are in accordance with other HF calculations [34, 35] and

are larger than the estimates given by the BM isospin mixing, obtained from a collective

model description of the isovector giant monopole resonance.

5. Conclusions

The accurate knowledge of the neutron density in the nucleus is a challenge to the present

understanding of the nuclear structure and its determination in a model independent

way is still an open problem. In this work we have shown that parity violating elastic

electron scattering is an attractive alternative to the use of hadronic probes as an

instrument to get information on neutron density distributions. The reason for that

is that, contrary to the strong force, the electroweak interaction is perfectly known and

therefore information on the nuclear structure can be extracted in a clean way. On

the other hand, while the standard parity conserving electron scattering is sensitive to

the nuclear charge distribution, parity violating electron scattering is mainly sensitive

to the neutron distributions. Thus, these experiments will allow to measure a nuclear

weak-charge density distribution and finally to determine the neutron distribution with

a highly improved accuracy as compared to hadronic probes, which could be calibrated
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afterwards to reproduce more precisely that information. Accurate measurements of the

PV asymmetries in N = Z nuclei will also highlight the issue of isospin mixing that still

remains an open problem too.

By a direct comparison to theory, these measurements will represent a critical test

to the nuclear models and will have a deep impact on nuclear structure, as well as on

atomic physics and astrophysics.
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