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1. Introduction

Despite the pairing in nuclei was established more than fifty years ago, the underlying

interaction processes that are responsible of this remarkable and important correlation

are not yet understood completely. The main reason of the difficulty is that the

microscopic theory of nuclear pairing must rely on the effective interaction among

nucleons, that is not known from first principles. Furthermore it is strong and therefore

it requires the solution of a complex many-body problem. Even in nuclear matter, where

the problem is hoped to be simplified to some extent, an accurate microscopic theory is

not available. Numerical Monte-Carlo ”exact” calculations are present in the literature

only for low-density pure neutron matter [1]. Unfortunately these Monte-Carlo estimates

are not in satisfactory agreement among each others [1] and in any case they can hardly

elucidate the microscopic mechanisms which are at the basis of the onset of pairing.

Besides the many-body aspects of the problem, at least other two features of the

nuclear pairing have to be mentioned. One is related to the fact that the pairing

phenomenon occurs close to the Fermi surface, while the bare nucleon-nucleon (NN)

potential necessarily involves also scattering to high energy (or momentum) due to its

strong hard core component, which is one of the main characteristics of the nuclear

interaction. It looks therefore natural to develop a procedure which removes the high

energy states and ”renormalize” the interaction into a region close to the Fermi energy.

This can be done in different ways, among which the most commonly used seems to

be the Renormalization Group (RG) Method [2]. A second feature is the relevance of

the single particle spectrum, not only because the density of states at the Fermi surface

plays of course a major role, but also because the whole single particle spectrum has

influence on the effective pairing interaction.

Despite these uncertainties of the microscopic theory of pairing in nuclear matter,

there is a commonly accepted point of view that the gap value ∆ is quite small at the

normal density ρ0, much smaller than typical values of heavy atomic nuclei. This is an

indication that the nuclear surface must play a major role in establishing the value of

the pairing gap in finite nuclei.

In the last few years relevant progresse have been made in the microscopic

calculations of pairing gap in nuclei [3, 4, 5, 6, 7, 8, 9, 10]. The main established results

is that the bare NN interaction, renormalized by projecting out the high momenta, is a

reasonable starting point that is able to produce a pairing gap which shows a discrepancy

with respect to the experimental value not larger than a factor 2. In view of the great

sensitivity of the gap to the effective interaction this result does not appear obvious.

The effective pairing interaction constructed within this renormalization scheme [11]

explains qualitatively also the surface relevance. Indeed, this interaction at the surface

can exceed the value inside by one order of magnitude. Direct effect of the surface

enhancement of the gap was presented in [12, 13] for semi-infinite nuclear matter and

in [14] for a nuclear slab.

The role of the surface is also apparent in explaining the puzzling value of the
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Figure 1. Cooper pair distribution for the 120Sn nucleus. The self-consistent mean
field is found with the Energy Density Functional DF3 of [18] .

coherence length extracted from the pairing gap. In fact, for a pairing gap of the order

of 1 MeV, the coherence length is expected to be much larger than the size of the nucleus.

It can be argued that at the surface the pairing gap is larger and the coherence length

shorter, i.e. the size of the Cooper pairs should shrink. This was explicitly shown in a

recent paper by N. Pillet, N. Sandulescu, and P. Schuck [15] on the basis of the HFB

approach and the effective D1S Gogny force. It was shown that Cooper pairs in nuclei

preferentially are located in the surface region, with a small size (2 − 3 fm). In [16],

it was examined to what extent the effect found in [15] is general and independent of

the specific choice of NN force. This investigation was carried out for a slab of nuclear

matter, and the pairing characteristics obtained with the Gogny force were compared

with those with the realistic Paris and Argonne v18 forces. The results obtained with

the two realistic forces agree with each other within an accuracy of about 10% and agree

qualitatively with those of the Gogny force. In [17] an analogous analysis, with the Paris

potential, was made for the nucleus 120Sn which is a standard polygon for examining

nuclear pairing. Again the results turned out to be very close to those of [15]. One of

them is shown in figure 1, where the “probability” distribution of Cooper pairs,

p(R) = 4πR2

∫
κ2(R, r) d3r, (1)

is displayed. Here R, r are c.m. and relative coordinates. In Fig. 1 this quantity is

normalized to the total number of Cooper pairs, NCp =
∫

p(R)dR ' 10. One can see

that Cooper pairs, indeed, are strongly concentrated on the surface.

Besides the renormalization of the bare interaction of the high momentum

components, other physical effects should be included in a microscopic approach, like

the ones related to the effective mass, or more generally, the single particle spectrum

and the many-body renormalization of the pairing interaction. The role of these and

other features of the microscopic scheme are still to be clarified.

In this paper we will try to summarize the recent achievements and the main open
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problems that hinder the development of an accurate microscopic many-body theory of

the nuclear pairing.

2. Renormalization of the high energy components

The pairing gap in nuclei is of the order of 1-2 MeV, while the typical energy scale of the

bare NN interaction is of few hundreds MeV. This indicates the difficulty of controlling

the microscopic construction of the effective pairing interaction Veff at the Fermi surface.

In the BCS approach a simplified estimate is commonly used, the so called weak coupling

limit. In this approximation the relationship between the gap ∆F at the Fermi energy

and the effective interaction has the form

∆F ≈ 2εF exp(1/νFVeff) , (2)

where εF is the Fermi energy and νF = m∗kF/π2 is the density of state at the Fermi

energy. The exponential dependence makes the problem particularly delicate, since a

small change in the effective interaction can result in substantial change of the pairing

gap. In phenomenological theories, like the Finite Fermi System (FFS) theory or the

Hartree-Fock-Bogolyubov method with effective forces, the value of Veff is considered as a

phenomenological parameter (or a set of parameters) to be used to fit the data. Despite

the undoubt success of the phenomenological approaches, the challenge of ab initio

evaluation of the pairing gap remains one of the most fundamental and not completely

solved problems in nuclear physics.

Let us first consider the problem of reducing the interaction to an effective one

close to the Fermi energy. In general language this can be seen as a typical case

that can be approached by an ”Effective Theory”, where the low energy phenomena

are decoupled from the high energy components. In this procedure the resulting low

energy effective interaction is expected to be independent of the particular form of the

high energy components. However the procedure is not unique. The RG method has

been particularly developed for the reduction of the general NN interaction keeping

the deuteron properties and NN phase shifts up to the energy where they are well

established. In this way a potential, phase equivalent to a known realistic NN potential,

can be obtained, which contains only momenta up to a certain cut-off. The extension of

this procedure to the many-body problem appears in general to require the introduction

of strong three-body forces. It has been applied also to the pairing problem. To illustrate

the difficulty of decoupling low and high momentum components for the pairing problem,

we consider the simple case of nuclear matter in the BCS approximation. The BCS

equation for the gap ∆(k) can be written as

∆(k) = −
∑

k′

V (k, k′)

2
√

ε(k′)2 + ∆(k′)2
∆(k′) , (3)

where V is the free NN potential, ε(k) = e(k) − µ, e(k) is the single particle spectrum

and µ, the chemical potential. It is possible to project out the momenta larger than a
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cutoff kc by introducing the interaction Veff(k, k′), which is restricted to momenta k < kc.

It satisfies the integral equation

Veff(k, k′) = V (k, k′) −
∑

k′′>kc

V (k, k′′)Veff(k
′′, k′)

2Ek′′
, (4)

where E(k) =
√

ε(k)2 + ∆(k)2. The gap equation, restricted to momenta k < kc and

with the original interaction V replaced by Veff, is exactly equivalent to the original gap

equation. The relevance of this equation is that for a not too small cut-off the gap ∆(k)

can be neglected in E(k) to a very good approximation and the effective interaction Veff

depends only on the normal single particle spectrum above the cutoff kc. In the RG

approach the low momenta interaction Vlow−k(k, k′) is constructed in such a way to keep

the half-on-shell two-body T-matrix in free space and therefore the phase shifts. To the

extent that the pairing gap is determined only by the phase shifts, the two approaches

are therefore equivalent.

3. The single particle spectrum and the effective mass

The pairing gap value is strongly affected by the density of state at the Fermi level, as

the weak coupling limit (2) indicates. In turn, the density of state is proportional to

the effective mass. As it is well known, one has to distinguish between the so-called k-

mass, which is generated by the momentum dependence of the single particle potential,

and the e-mass, which is generated by the energy dependence of the single particle self-

energy. The total effective mass is just the product of these two effective masses. The

inclusion of an energy dependent single particle self-energy produces also the so-called

Z-factor, i.e. the quasi-particle strength.

In nuclear matter the four-dimensional gap equation incorporating the momentum

and energy dependent irreducible particle-particle vertex V(k, ε; k′, ε′) and the self-

energy Σ(k, ε), reads [19, 20, 21]

∆(k, ε) = −
∫

d3k′

(2π)3

∫
dε′

2πi
V(k, ε; k′, ε′)

∆(k′, ε′)

D(k′, ε′)
, (5)

with

D(k, ε) = (GGs)−1 = [M(k, +ε) − ε − i0][M(k,−ε) + ε − i0] + ∆2(k, ε) (6)

and

M(k, ε) =
k2

2m
+ Σ(k, µ + ε) − µ , (7)

where we define for convenience the energy ε relative to the chemical potential µ.

Gs and G in (6) are, correspondingly, the single particle Green functions with and

without pairing. For realistic systems, V and Σ cannot be determined in exact way

and significant approximations have to be performed. The usual BCS approximation

amounts to replacing the interaction vertex by the (energy independent) bare nucleon-

nucleon potential V , and the nucleon self-energy by some realistic s.p. spectrum. The
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Figure 2. Momentum dependence of the effective mass m∗(k) at different Fermi
momentum values kF.

latter is characterized by the single particle potential, that can have, in nuclear matter,

a momentum dependence which persists even at high momenta. To illustrate this point

we have reported in Fig. 2 the effective mass obtained within the BHF approximation

as a function of momentum at different Fermi momenta. The effective mass has usually

a peak close to the Fermi momentum, but it is substantially different from the bare one

even at high momenta.

As shown in detail in Ref. [21], energy dependence of the self-energy can be taken

into account explicitly provided the interaction vertex remains static, V(k, ε; k′, ε′) =

Ṽ (k, k′). In this case, the general gap equation (6) is reduced to the form

∆(k) = −
∑

k′

Ṽ (k, k′)Z(k′)

2
√

Ms(k′)2 + ∆(k′)2
∆(k′) , (8)

which reminds the BCS gap equation (3), with the “symmetrized” s.p. energy

Ms(k) ≡ Re

(
M(k, +ek) + M(k,−ek)

2

)
(9)

appearing in the denominator and with the kernel modified by the spectral factor

Z(k) ≡
√

Ms(k)2 + ∆(k)2
2

π

∫ ∞

0

dε Im

(
1

D(k, ε)

)
. (10)

In table 1 the neutron effective masses at the Fermi surface m∗(kF) of symmetric

and asymmetric, (N − Z)/A = 1/6, nuclear matter found within the BHF approach

at the equilibrium density ρ0 is compared with those of Skyrme forces. In the second

line, the difference δ(m∗/m)anm = (m∗/m)anm − (m∗/m)snm is given. As one can see,

the SLy4 effective mass is rather close to the BHF one at the Fermi surface. Other
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Figure 3. Effective mass m∗
F at the Fermi surface depending on the Fermi momentum

kF.

Table 1. Comparison of the neutron effective mass in the symmetric and asymmetric
nuclear matter from the BHF calculation with that of different kinds of the Skyrme
force.

SKP [22] SKM* [23] SLy4 [24] BHF
(m∗/m)snm 0.85 0.71 0.74 0.78
δ(m∗/m)anm 0.22 0.12 -0.04 −(0.03÷ 0.05)

two kinds of Skyrme force give absolutely different isotopic asymmetry dependence of

m∗. The density dependence of the effective mass in symmetric nuclear matter for

BHF and the considered Skyrme forces is reported in figure 3. Around saturation the

trends are smooth, but at lower density the BHF effective mass has a behavior that

interpolates between different Skyrme forces, and therefore it cannot be reproduced by

a given Skyrme force.

To illustrate the relevance of the high momenta components k > kc on determining

the effective pairing interaction Veff around the Fermi momentum, we present in figure

4 the value of Veff at the Fermi momentum obtained by solving Eq. (4). We take

kc =
√

2kF and consider three cases : i) the free spectrum, ii) the spectrum obtained

from the BHF calculation, and iii) the spectrum with a constant effective mass, taken

at the Fermi momentum and from the BHF results. The calculations are performed in

the density range relevant for the bulk and surface regions of finite nuclei.
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Figure 4. Effective pairing interaction for the free single particle spectrum (dotted
line), the BHF spectrum (full line) and the constant effective mass spectrum (dashed
line).

Figure 5. Pairing gap at the Fermi momentum for the three cases of free single
particle spectrum considered in Fig. (4).

The substantial difference between cases i) and iii) shows the relevance of the high

momentum components of the single particle spectrum. On the other hand, the strong

overlap of the curves corresponding to the cases ii) and iii) suggests that the details of

the momentum dependence of the effective mass are less relevant. This will be helpful

for the analysis in finite nuclei, where the approximation of a constant effective mass

will be made. The corresponding pairing gaps at the Fermi momenta are reported in

figure 5.

4. The many-body problem

In atomic nuclei, a new branch of low-laying collective excitations appear, the surface

vibrations (”phonons”). They could be interpreted as a Goldstone mode corresponding

to spontaneous breaking of translation invariance in nuclei [25]. The ghost dipole 1−1 -
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phonon is the head of this branch. In the self-consistent FFS theory or other self-

consistent approaches, say, the SHF+RPA (or SHFB+qRPA) method, the constraint

ω1−1
= 0 is fulfilled identically and the next members of the branch of natural parity

states, 2+
1 , 3−1 and so on, have small excitation energies, less of a typical distance between

neighboring shells, ω0 ' εF/A1/3. Up to now, only phenomenological approaches were

used to describe the surface vibrations and their role in the gap equation via the induced

interaction. The latter was examined by the Milano group in a series of papers using

various approaches, with the application to the nucleus 120Sn. In Ref. [4] the study

was performed within the Nuclear Field Theory (see [26] and References therein) in the

two-phonon approximation. One and two-phonon terms of the induced interaction were

taken into account, as well as the corresponding corrections to the single-particle states.

The latter includes both shifts of the single-particle energies and spread of their strength

which is analogous to the Z-factor in (8). The ”direct” term of the gap, ∆dir ' 0.7 MeV,

was found in [4] with the Argonne v14 NN-potential and the mean field generated by the

SLy4 Skyrme force with the effective mass m∗ ' 0.7m. It is one half of the experimental

gap (in [4], which is estimated as ∆exp ' 1.4 MeV, while the simplest 3-point formula

yields ∆
(3p)
exp ' 1.3 MeV). By including all the corrections due to low-laying surface

vibrations, the complete value ∆ = ∆dir+ind turns out to be in agreement with the

experiment.

In [27] the induced interaction itself was analyzed in detail, again concentrating on

low-lying (ωL < 5 MeV) surface vibrations. The Vlow−k potential was used as the free

NN-interaction, instead of Argonne v14 in [4], and again the experimental value of the

gap was obtained as a sum of practically equal ”direct” and ”induced” contributions

multiplied by the Z-factor representing the quasiparticle strength at the Fermi surface.

The latter was estimated on the basis of calculations in [4] as Z = 0.7.

An essentially different approach was used in [5] where all collective states with

spin values J ≤ 5 and excitation energies ωJ < 30 MeV were included into the induced

interaction term. The surface vibrations discussed above are only a part of them. Both

the natural and unnatural parity states contribute to the sum. The qRPA method with

the SLy4 Skyrme force was used for every Jπ-channel. The fragmentation and self-

energy effects were approximately taken into account with the following relation for the

total effective pairing interaction:

< 12|Vdir+ind|34 >= Z < 12|Vdir + Vind|34 > , (11)

where Z = 0.7 value again was used. A short notation |12 > is used in (11) for the two-

particle basis states. To make easier the analysis and comparison with other calculations,

separate calculations of the gap from Vdir (Argonne v14) and Vind, both without the Z-

factor, were made in [5]. They give ∆dir = 1.04 MeV and ∆ind = 1.11 MeV. Using the

recipe of Eq. (11), yields the average gap ∆F = 1.47 MeV which is again close to the

experiment.

In our opinion, each method used in these papers has some weak points which could

be criticized. In the first case, the contribution of so-called tadpole diagrams [25, 28]
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was neglected, see also discussion in [29]. In the last case, the use of Skyrme force in the

particle-hole spin and spin-isospin channels (unnatural parity states) is questionable.

Indeed, the Skyrme parameters were fitted only to phenomena which are related to

”scalar” Landau–Migdal amplitudes, F, F ′. The combinations which determine the

spin-dependent amplitudes G, G′ were not checked up to now by an attempt to describe

corresponding phenomena, e.g. magnetic moments, M1-transitions, and so on. This

problem is discussed also in [5], and some complementary calculation was made with

G = G′ = 0. It resulted in a very strong induced interaction yielding very big gap

∆F = 2.12 MeV. This could be considered as an estimate of the uncertainty of such

calculations with the use of phenomenological forces. Indeed, even the amplitudes

F, F ′ which are known sufficiently well in vicinity of the Fermi surface could change

significantly when high energy excitations are considered. Another questionable point

is the use in this calculation scheme of the Z-factor found only from the low-lying surface

vibrations. The high energy response function included into the Vind will contribute to

the Z-factor as well. This contribution comes mainly from the spin-isospin channel and

could be estimated as Znm ' 0.8 [30].

We see that the problem of the screening effect is, indeed, very difficult, and some

approximations must be introduced in the calculations. In our opinion, the fact that

essentially different methods were used in [4] and [5] with different results for ∆ind

shows by itself that the problem of finding contribution of the induced interaction into

the pairing gap in atomic nuclei is far from being solved.

5. Solution of the “ab initio” gap equation in finite nuclei

The explicit form of the gap equation (5) in the coordinate representation for a non-

uniform system is as follows [31]:

∆(r1, r2, ε) =

∫
V(r1, r2, r3, r4; E = 2µ, ε, ε′)×

× G(r3, r5, ε
′)Gs(r4, r6,−ε′)∆(r5, r6, ε

′)
dε′

2πi
dr3dr4dr5dr6. (12)

As in Sections 2-4, single-particle energies ε, ε′ are counted off the chemical potential

µ. Dealing with nuclear matter, we set µ = µ0 ' −16 MeV (the leading term in the

Weizsaecker mass formula), whereas we have µ ' −8 MeV for stable atomic nuclei, as

the 120Sn nucleus considered below. As it was discussed above, in this Section we limit

ourselves with the simplest Brueckner-like approach in which the irreducible vertex V
coincides with the free NN -potential, V = V , which is independent of energy. In

this case, the gap ∆ is also independent of energy; hence, the product of two Green’s

functions in (12) can be integrated with respect to ε′:

As(r1, r2, r3, r4) =

∫
dε′

2πi
G(r1, r2, ε

′)Gs(r3, r4,−ε′). (13)

The gap equation (12) can be written in a compact form as

∆ = V As∆. (14)
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Below we deal with the BCS gap equation, not the general one, Eq. (12). This explains

why the term ab initio in the title of the Section is in quotes. In fact, we speak just

about the first step into the problem, i.e. the solution of the BCS-like gap equation

with the free NN -potential as the pairing interaction. The mean field potential (or

more general, the mass operator) used in this solution is taken as a phenomenological

input. To go beyond the BCS approximation it is necessary, within an ab initio method,

to calculate, first, the mass operator and, second, corrections to the interaction block V
in the gap equation (12). The latter includes the induced interaction discussed above

(see also Ref. [32]) and three-body forces [33]. It turns out that, even at the level of

this simplest ab initio calculations, serious contradictions are still present.

The integral equation (14) can be reduced to the form adopted in the Bogoliubov

method,

∆ = −V κ, (15)

where the abnormal density matrix κ = As∆ can be expressed in terms of u , v-functions,

κ(r1, r2) =
∑

i

ui(r1)vi(r2), (16)

which satisfy the system of Bogoliubov equations. The summation in (16) is over the

complete set of Bogoliubov functions with the eigen energies Ei > 0.

The Milano group was the first who, in a series of papers [3, 4], [5] and Refs.

therein, solved the gap equation (15) with the realistic Argonne NN -force v14 for the

nucleus 120Sn. The latter was chosen for a definite reason. Indeed, the chain of semi-

magic tin isotopes is a traditional polygon for examining nuclear pairing [22], [18].

The nucleus under discussion is in the middle of the chain and the number of neutrons

participating in the pairing, those above the closed shell N = 50, is sufficiently big to use

the approximation of the ”developed” pairing, used, in fact, in (15). This approximation

implies neglecting the particle number fluctuations [34] typical of the BCS-like theories.

The set of Bogoliubov equations was solved directly in the basis {λ} of the states with a

fixed limiting energy Emax. Such direct method is difficult because of a slow convergence

of sums over intermediate states λ in the gap equation. These sums are analogous to

integrals in the momentum space in the gap equation for infinite nuclear matter, see

Section 2. In [3] the value of Emax=600 MeV was used, and in [4, 5], Emax=800 MeV.

The analysis of [7] showed that the use of such big value of Emax permits to find ∆ only

with accuracy of 10%. In [3] the Shell Model basis was used with the Saxon-Woods

potential and the bare mass, m∗ = m, and the value ∆=2.2 MeV was obtained which is

by a factor one and half greater than the experimental one ('1.3÷1.4 MeV). Evidently,

this contradiction forced the authors to use in further works the self-consistent basis

of the Skyrme-Hartree-Fock (SHF) method with the density depending effective mass

m∗(ρ) 6= m. In particular, the popular Sly4 force was used, which is characterized by

a small effective mass, equal to m∗ ' 0.7m in nuclear matter at the normal nuclear

density. Solving the BCS gap equation with such a basis the value of ∆ ' 0.7 MeV was

obtained in [4] and ' 1.0 MeV in [5]. A close value for the gap in the BCS equation



Microscopic evaluation of the pairing gap 12

was found in [7] for the nuclear slab with parameters which mimic 120Sn nucleus. This

calculation was done with Argonne v18 potential which differs only slightly from the

v14 one, but the single-particle basis with m∗ = m was used. Remind that in [4, 5]

corrections to the BCS gap due to induced interaction were considered bringing the

results rather close to the experimental data as discussed in Section 4. The crucial

dependence of the gap on m∗, which is easily seen in weak coupling limit (2) for the

gap in nuclear matter, is, of course, the main reason of so strong variation of the BCS

gap from [3] to [5]. In finite nuclei, this dependence is weaker than in nuclear matter,

as the surface region plays here the main role and one has m∗(ρ) → m in this region.

However, the m∗ effect remains strong.

Recently, results from the ab initio BCS equation (15) for a number of semi-magic

nuclei were published [9, 10]. They are based on the soft realistic low-k force discussed

above which was calculated starting from the Argonne v18 potential, with the same self-

consistent Sly4 basis, i.e. the same effective mass, as in [5]. For the nucleus 120Sn under

consideration the value ∆'1.6 MeV was obtained. This value exceeds the experimental

one, which raises some questions. Indeed, although there are discrepancies in absolute

value of the corrections to the BCS gap (see for instance [5] and [35]), their sign is

more or less definite. All calculations of these corrections, to our knowledge, increase

∆ considerably. Hence the BCS equation has to lead to the gap value smaller than the

experimental one. In addition, there is a direct contradiction between the results of the

Milano group and the ones of Duguet with co-authors, despite the BCS problem was

solved with very similar inputs. Evidently, there is some difference in the method of

including the effective mass, which is hidden in [9, 10] under the renormalization of v18

into Vlow−k.

In [16] an attempt was taken to clarify the reasons of this contradiction. The BCS

gap equation (15) was solved for the same 120Sn nucleus with the separable form of

Paris potential, which simplifies calculations. Our experience of calculations for nuclear

slab [6, 7] shows that the difference between the Paris potential and the Argonne v18

one for the gap value is of the order of 0.1 MeV which is significantly smaller than

the deviation under discussion. For projecting out the high momenta contribution, the

so-called Local Potential Approximation (LPA) method was used. This new version of

the local approximation was introduced by our group for semi-infinite nuclear matter

and nuclear slab system, see the reviews [29, 36]. In general, this method is analogous

to the renormalization scheme for solving the gap equation in infinite nuclear matter

described in Section 2. To solve the gap equation in the form (14) for finite systems,

we split the complete Hilbert space S of the pairing problem into the model subspace

S0, including the single-particle states with energies less than a fixed value E0, and the

subsidiary one, S ′. Correspondingly, the two-particle propagator (13) is the sum

As = As
0 + A′ . (17)



Microscopic evaluation of the pairing gap 13

The notation becomes obvious if one expands (13) in the basis of single-particle functions

φλ(r),

As(r1, r2, r3, r4) =
∑

λ1λ2λ3λ4

As
λ1λ2λ3λ4

φ∗
λ1

(r1)φ
∗
λ2

(r2)φλ3(r3)φλ4(r4) . (18)

The model space propagator As
0 includes the terms of the sum (18) with single-particle

energies ελ < E0, A′ being the remaining part.

The gap equation is reduced to the one in the model space,

∆ = VeffA
s
0∆ , (19)

with the effective pairing interaction obeying the integral equation in the subsidiary

space,

Veff = V + V A′Veff . (20)

The LPA method concerns the solution of (20). Solving this equation directly in

coordinate space is rather complicated, not much simpler than the gap equation (14)

in the complete Hilbert space. The problem could be simplified with the use of the

LPA. It turned out that, with very high accuracy, for each point R, one can use the

formulas for the infinite system in the potential field U(R) (it explains the term LPA).

This simplifies equation for Veff significantly, in comparison with the initial equation for

∆. As a consequence, the subspace S ′ could be chosen as large as necessary. Validity

of the LPA could be justified by finding that, beginning from some value of E0, the

result for the gap doesn’t change under additional increase of E0. It turns out that

for a nuclear slab, the value of E0'20÷30 MeV is sufficient [6, 7]. For finite nuclei, it

should be taken a little bigger, E0 = 40 MeV [8]. In the slab calculations, we used the

bare nucleon mass, m∗ = m.In this case, the reduction of high momenta components of

the NN-force in (20) is, in fact, quite similar to the renormalization procedure resulting

in a low-k interaction [37]. The difference is that in the LPA the renormalization is

coordinate dependent.

The gap equation in the model space S0 was solved in the λ-representation with

the use of different single-particle bases φλ. A discretization method of the continuum

spectrum was used with the wall radius L=16 fm. Increasing the radius to L=24 fm does

not practically influence the results. The radial eigen-functions Rnlj(r) were found with

a step h=0.05 fm. We have used the Shell-Model basis with the Saxon–Woods potential

with a standard set of parameters and also with several self-consistent basis obtained

with different methods : the Generalized Energy Density Functional method by Fayans

et al. [18] with the functional DF3, and the SHF method as well with different kinds of

Skyrme forces. The bare mass, m∗=m, is used in the first method, just as in the Shell

Model, whereas in the SHF method the effective mass is not equal to m and is density

dependent. To clarify the role of the effective mass, we chose two kinds of the Skyrme

force, SKP and SKM*, for which the difference between m∗ and m is quite moderate,

and the popular SLy4 force, with significant difference of m∗ from m, see Fig. 6. We

see that the SKP effective mass deviates significantly from that for symmetric nuclear
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Figure 6. Coordinate dependence of the effective mass for different Skyrme forces in
the 120Sn nucleus.

matter, Fig. 3. This is due to the strong isospin asymmetry effect ((N −Z)/A = 1/6 for
120Sn nucleus) for this kind of Skyrme force. For SLy4 and SKM* this effect is rather

modest. Remind that the Sly4 basis was used in calculations of ∆ by Milano group and

by Duguet with coauthors as well. As to the calculation of the effective interaction in

the subspace S ′, we first put m∗=m. In table 2 the diagonal matrix elements ∆λλ of

the neutron gap in the 120Sn nucleus, for 5 levels nearby the Fermi level, are given for

each basis under consideration. The quantity ∆F is the corresponding Fermi-average

value: ∆F =
∑

λ (2j + 1)∆λλ/
∑

λ(2j + 1). As we see, in all cases except of the last one

the found value of the gap exceeds the experimental one, 1.4 MeV, significantly. This

indicates the necessity to take into account the difference between the effective and bare

masses in the ab initio BCS gap equation.

In Fig. 7, for each kind of mean field, the anomalous density ν(R) = κ(R, r = 0)

is displayed. Here the notation R = (r1 + r2)/2, r = r2 − r1 is used. As the gap ∆ is

proportional to this quantity, ν(R) depends on the effective mass in the same way as

the matrix elements ∆λλ in table 2. Indeed, the anomalous densities for the effective

forces DF3, SKP and SKM* are rather close to each other, whereas for the SLy4 force

with a small effective mass the anomalous density is suppressed significantly. There

is a pronounced surface maximum of ν(R) for all the cases. This leads to the surface

enhancement of the pairing gap found in [14] for the slab and in [15], for spherical nuclei.
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Table 2. Diagonal matrix elements ∆λλ (MeV) with the Paris potential for several
kinds of the self-consistent basis.

λ SW DF3 SKP SKM* SLy4
3s1/2 1.52 1.64 1.55 1.55 1.17
2d5/2 1.60 1.73 1.68 1.64 1.24
2d3/2 1.64 1.80 1.71 1.68 1.26
1g7/2 1.85 2.11 2.02 1.91 1.37
2h11/2 1.58 1.79 1.69 1.64 1.18
∆F 1.65 1.85 1.76 1.71 1.25

Figure 7. Anomalous density for the 120Sn nucleus calculated with different self-
consistent mean fields.

Until now, in the case of the Skyrme forces, we took into account the difference

between the effective and bare masses only inside the model space, whereas we put

m∗=m for calculating Veff. At this point, there is a principal difference between our LPA

method and calculations of [4, 5] and [9, 10], where the SLy4 effective mass was used for

all the λ-states. For a closer comparison, we made a modification of the LPA method,

which permits to take into account the density dependent effective mass m∗
n(ρn, ρp) for

a part of the space S ′, including momenta k < Λ, where Λ is a parameter. Following

the idea of LPA, with the potentials Un(R), Up(R) , it is natural to determine at each

point R the densities of each type τ = n, p of nucleons with quasi-classical formulas:

ρτ (R) = (kτ
F(R))3/3π2, kτ

F(R) = [2m∗
τ (ρn(R), ρp(R))(µτ − Uτ (R))]1/2, where µn, µp are

the chemical potentials of neutrons and protons in the nucleus under consideration. For
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Table 3. Diagonal matrix elements ∆λλ with the Paris potential for the Sly4 basis
depending on the way of account for the effective mass in equation for Veff.

λ SLy4 Sly4-1 Sly4-2 Sly4-3
3s1/2 1.17 1.07 0.88 0.76
2d5/2 1.24 1.13 0.93 0.80
2d3/2 1.26 1.15 0.95 0.83
1g7/2 1.37 1.23 0.99 0.85
2h11/2 1.18 1.08 0.88 0.75
∆F 1.25 1.14 0.92 0.80

Table 4. The same as in table 3, but for the Argonne v18 potential.

λ SLy4 Sly4-1 Sly4-2 Sly4-3
3s1/2 1.23 1.10 0.83 0.56
2d5/2 1.32 1.18 0.89 0.61
2d3/2 1.34 1.20 0.92 0.63
1g7/2 1.48 1.31 0.96 0.64
2h11/2 1.27 1.13 0.85 0.57
∆F 1.34 1.19 0.89 0.60

the functional SLy4 we made several alternative calculations with different values of Λ.

They are denoted as SLy4-1 (Λ=3 fm−1), SLy4-2 (Λ=4 fm−1) and SLy4-3 (Λ=6.2 fm−1).

The first two versions mimic calculations of [9, 10], the latter, of [4, 5]. The obtained

gap values are given in table 3.

Let us now repeat calculations with the SLy4 basis, but for Argonne force v18.

Results are given in table 4. Comparison with table 3 shows that the difference between

gap values for the Paris and Argonne force is of the same order (' 0.1 MeV) as for

the slab calculations [7], with the exception of the SLy4-3 version with the cutoff for

m∗ in the equation for Veff equal to Λ3 = 6.2 fm−1. In this case, the difference is

' 0.2 MeV. It is worth of noticing that the sign of the difference changes depending

on Λ. Namely the Argonne gap exceeds the Paris one for SLy4 (Λ = 0) and SLy4-1

(Λ1 = 3 fm−1) versions, but becomes smaller for SLy4-2 (Λ2 = 4 fm−1) and SLy4-3

runs. Such behavior is qualitatively clear.Indeed, the Paris potential is much harder of

the Argonne one, therefore the relative contribution to Veff of the momentum region,

say, between Λ2 and Λ3, is less than for the Argonne potential. Therefore, for the gap

equation itself, the role of the corresponding suppression of Veff due to putting m∗ < m

is less in the Paris case than in the Argonne one.

It is rather difficult to make a direct comparison of table 4 with results of [9]. In

the first column, the effective mass m∗ 6= m is introduced only in the model space,

for ελ < E0 = 40 MeV. In the free space, outside the nucleus, it corresponds to the

momentum cutoff Λ = 1.4 fm−1; inside the nucleus we have Λ ' 2 fm−1.We see that the

”average” value of Λ is less a bit of Λ = 2 fm−1 in [9]. In the second column (SLy4-1) we

deal with Λ = 3 fm−1. Thus, we should attribute to the gap value of [9] (∆ ' 1.6 MeV)



Microscopic evaluation of the pairing gap 17

Table 5. The same as in table 4, but for the SKM* Skyrme force.

λ SKM* SKM*-1 SKM*-2 SKM*-3
3s1/2 1.58 1.52 1.40 1.29
2d5/2 1.71 1.63 1.49 1.38
2d3/2 1.75 1.68 1.55 1.43
1g7/2 2.01 1.92 1.76 1.62
2h11/2 1.72 1.64 1.51 1.40
∆F 1.78 1.71 1.57 1.44

an average value of these two columns, ∆ ' 1.25 MeV, which is noticeably smaller.

For comparison with [4, 5] we should be guided by the last column (SLy4-3), as the

corresponding value Λ = 6.2 fm−1 was chosen to reproduce Emax = 800 MeV from these

calculations. Again, this correspondence is not literal as it takes place only outside the

nucleus where we have m∗ = m. Inside, due to m∗ 6= m, the same value of Emax should

correspond to smaller value of Λ ' 5.5 fm−1. Again we should take a value between

those of the 3-rd column and the last one, closer to the latter. In any case, it will be

closer to the result of [4] (' 0.7 MeV) than of [5] (' 1 MeV).

The main observation, common to table 3 (Paris) and table 4 (Argonne), is a

drastic dependence of the gap on the m∗(k) behavior in the subsidiary space. In fact, a

set of calculations with different cutoff Λ imitates, very roughly, the k-dependence of the

effective mass.In the case that the asymptotic limit m∗(k) → m occurs sufficiently far

away, the pairing gap in nuclei does depend on the effect of m∗ 6= m at high momenta.

It is absolutely lost in calculations of ∆ with low-k force found for small cutoff values.

Evidently, this is the main reason why gap values found in [9] by solving the BCS gap

equation are so high, keeping in mind corrections due to the induced interaction.

To confirm the leading role of the effective mass in the problem, we made a series

of analogous calculations for the SKM* force for which the effective mass in the nucleus

under consideration is much closer to m, than for the SLy4 one, see Fig. 6. The results

are given in table 5 with the notation similar to that of table 4. We see that even for the

SKM*-3 version with Λ = 6.2 fm−1 the result does not leave any room for contribution

of the induced interaction.

6. Discussion and conclusions

In this paper we briefly reviewed the status of the microscopic theory of nuclear pairing.

Although to date there is no consistent theory of nuclear matter pairing, progress has

been made in developing approximated methods yielding comparable results on the

density dependence of the pairing gap. However, the results cannot be applied to finite

nuclei directly because the nuclear surface plays a leading role in nuclear pairing and the

standard LDA fails at the nuclear surface. As to finite nuclei, some progress also exists

especially in solving the simplest, in fact BCS-type, ”ab initio” gap equation, where

the free NN potential is used as the effective pairing interaction. Even this equation
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is not completely microscopic as far as the phenomenological mean field is used. The

inherent technical problems were overcome, first, by the Milan group [3, 4, 5] and more

recently by other teams [9, 10] and [16]. In the first and the last cases, the nucleus
120Sn was considered as ”testing sample”, whereas in [9] several isotopic and isotonic

chains were considered. The Argonne v14 force was used in [3, 4, 5], the low-k force

with the cutoff Λ = 2 fm−1 in [9], and the Paris potential, in [16]. In this paper

we performed calculations analogous to [16] for the Argonne v18 potential which differ

only a bit from the v14 one. All the results differ from the experimental gap in 120Sn,

∆exp ' 1.3 ÷ 1.4 MeV, not more than by a factor two which shows relevance of the

ab initio BCS gap equation as a starting point for the microscopic theory of nuclear

pairing. However, more detailed comparison shows that there are contradictions even

at this ”first level” of the problem. Indeed, the BCS gap is ' 1 MeV in [5] and is

' 1.6 MeV in [9], whereas inputs look quite similar. Namely, both the calculations use

the SLy4 Skyrme force with the effective mass m∗ ' 0.7m; the Argonne v14 force is

used in [5] and the low-k force in [9], but the latter could be obtained from the first

one with the RGM procedure. The only important difference of the inputs is the size

of the momentum space where the effective mass contributes: k < kmax ' 6 fm−1 in

[5] and only k < Λ = 2 fm−1 in [9]. Indeed, the RGM equation is defined for the free

NN scattering where the equality m∗ = m is postulated. In fact, we deal with different

k-dependence of the effective mass. The equality m∗ ' 0.7m takes place for all momenta

in [5] and only for k < Λ, in [9]. This reason of the contradictory results of [5] and [9]

was discussed in [10] and was confirmed with the analysis of [16] for the Paris force and

in this paper, for the Argonne v18 force. We use the so-called LPA method developed by

us previously in which high momenta are excluded via some renormalization procedure

which recall the RGM one but is coordinate dependent and permits to introduce in

the high momentum space the effective mass into the equation for the effective pairing

interaction. For the same SLy4 basis, we changed ”by hands” the size of the space

where the equality m∗ ' 0.7m takes place, putting m∗ = m outside. Changing this

dividing point we evolve from the situation close to that of [9] to the one of [5], although

the correspondence, of course, is not literal. In the first limit, we obtained the value

of ∆F ' 1.25 MeV which is noticeably smaller than that in [9]. In the second one,

we obtained the result closer to that of [4] than of [5]. But, in our opinion, fixing

some numerical contradictions is not of primary importance. This disagreement can be

resolved. Much more important is the very high sensitivity of the pairing gap to the k-

dependence of the effective mass found in our analysis. This dependence could be hardly

guessed phenomenologically by a lucky Skyrme-type ansatz. Indeed, any such ansatz

deals with a number, not a function! Therefore an additional microscopic ingredient,

namely a theory of the k-dependent effective mass, is necessary even at this first level

of the problem.

The next open problem is the inclusion of the many-body corrections to the BCS gap

equation. The induced pairing interaction due to exchange by virtual surface vibrations

and other particle-hole excitations is the main of them [4, 5]. Up to now, this problem
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was studied only within phenomenological approaches and is far from being solved. Any

attempt to attack it from first principles hits the absence of the general microscopic

nuclear theory.
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