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Abstract. In recent years impressive progress has been made in the development
of highly accurate energy density functionals, which allow to treat medium-heavy
nuclei. In this approach one tries to describe not only the ground state but also
the first relevant excited states. In general, higher accuracy requires a larger set
of parameters, which must be carefully chosen to avoid redundancy. Following this
line of development, it is unavoidable that the connection of the functional with the
bare nucleon-nucleon interaction becomes more and more elusive. In principle, the
construction of a density functional from a density matrix expansion based on the
effective nucleon-nucleon interaction is possible, and indeed the approach has been
followed by few authors. However, to what extent a density functional based on such
a microscopic approach can reach the accuracy of the fully phenomenological ones
remains an open question. A related question is to establish which part of a functional
can be actually derived by a microscopic approach and which part, on the contrary,
must be left as purely phenomenological. In this paper we discuss the main problems
that are encountered when the microscopic approach is followed. To this purpose we
will use the method we have recently introduced to illustrate the different aspects of
these problems. In particular we will discuss the possible connection of the density
functional with the nuclear matter Equation of State and the distinct features of finite
size effects proper of nuclei.
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1. Introduction

The microscopic calculation of ground state energy and particle density of medium and

heavy nuclei based on realistic nucleon-nucleon interaction requires the solution of a

formidable many-body problem. For this reason effective nucleon-nucleon interactions

have been introduced, like the Skyrme [1] and Gogny [2] forces. They simplify

enormously the problem since, by construction, they must be used at the mean field level,

and the calculation of the mean single particle potential and of the ground state energy

becomes easily manageable. The number of parameters which enter these effective

forces is typically around ten and they are adjusted to reproduce finite nuclei and some

equilibrium nuclear matter properties. However, recently also data from a theoretically

determined neutron matter Equation of State (EOS) [3] have been used as input (see

also an older attempt in this direction in [4]). Generally these forces give rise to an

effective nucleon mass m∗ < m with typically m∗/m ' 0.7 in the non-relativistic

framework. With these ingredients nuclear mean field theories are very successful to

describe nuclear properties as, e.g. binding energies, radii. Their use can be extended

to the evaluation of more realistic single level schemes, of the nuclear excitation spectra,

in particular giant resonances, of the fission barriers, of the nucleon-nucleus optical

potential, and so on. The price to be payed is that the connection with the bare

nucleon-nucleon interaction is not apparent. The first attempt to connect the effective

NN interaction and the underlying bare interaction was the density matrix expansion of

Negele and Vautherin [5], based on the assumption that the effective NN interaction can

be identified essentially with the Brueckner G-matrix calculated in nuclear matter and

on the gradient expansion of the non-local one-body density matrix. See also another

attempts in the same direction in Ref. [6, 7, 8]. This approach was recently generalized

to include also the vector (spin) part of the density matrix at the same level of accuracy

as the scalar part [9]. The challenging program of deriving the effective interaction to be

used in nuclear structure studies from the bare NN interaction has still to be completed

.

An approach similar to the Skyrme-like one is the energy density functional (EDF)

approach, where the basic quantity to start with is directly the functional that expresses

the energy in terms of the matter density and its gradients. The functional must be

minimized to obtain the actual ground state energy and matter density profile. Following

the method of Kohn and Sham [10, 11, 12, 13, 14, 15, 16], developed in atomic, molecular

and solid state physics, the minimization procedure can be performed by introducing a

set of auxiliary single particle states and taking for the kinetic energy the Slater form in

this basis. In this way the minimization procedure gives Hartree-like equations for the

single particle states, where the interaction part includes in an effective way the overall

exchange and correlation contributions. The latter, in condensed matter physics, is

taken from accurate calculations for the homogeneous electron system or in a purely

phenomenological fashion. This is not the usual way of proceeding in nuclear physics,

although it exists, to our knowledge, an earlier attempt in this direction, see ref. [17].
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In this paper we will discuss to what extent the EDF approach in nuclear structure

can be based on microscopic many-body results on nuclear matter Equation of State

(EOS) and which accuracy can be reached. To this purpose we will rely on recent

achievements along this line of research and we will analyze the main open problems

that hinder the development of the microscopic many-body theory of the nuclear EDF.

2. Basic formalism

Despite the fact that the applicability of the KS-DFT approach to self-bound systems,

as nuclei, is not obvious [18, 19, 20, 21, 22], it is commonly believed that the basis of

KS-DFT lies in the Hohenberg-Kohn (HK) theorem [23], which states that for a Fermi

system, with a non-degenerate ground state, the total energy can be expressed as a

functional of the density ρ(r) only. Such a functional reaches its variational minimum

when evaluated with the exact ground state density. Furthermore, in the standard

KS-DFT method one introduces an auxiliary set of A orthonormal single particle wave

functions ψi(r), where A is the number of particles, and the density is assumed to be

given by

ρ(r) = Σi,s,t|ψi(r, s, t)|2 (1)

where s and t stand for spin and iso-spin indices. The variational procedure to minimize

the functional is performed in terms of the orbitals instead of the density. As in

condensed matter and atomic physics the HK functional E[ρ(r)] is split into two parts:

E = T0[ρ] + W [ρ] [10]. The first piece T0 corresponds to the uncorrelated part of the

kinetic energy and within the KS method it is written as

T0 =
~2

2m

∑
i,s,t

∫
d3r|∇ψi(r, s, t)|2. (2)

The other piece W [ρ] contains the potential energy as well as the correlated part of the

kinetic energy.

Then, upon variation, one gets a closed set of A Hartree-like equations with an

effective potential, the functional derivative of W [ρ] with respect to the local density

ρ(r). Since the latter depends on the density, and therefore on the ψi’s, a self-consistent

procedure is necessary. The equations are exact but they only can be of some use if a

reliable approximation is found for the otherwise unknown density functional W [ρ]. It

has to be stressed that in the KS-DFT formalism the exact ground state wave function

is actually not known, the density being the basic quantity. In nuclear physics, contrary

to the situation in condensed matter and atomic physics, the contribution of the spin-

orbit interaction to the energy functional is very important. Non-local contributions

have been included in DFT in several ways already long ago (see [24] for a recent review

of this topic). Consequently, the spin-orbit part also can be split in an uncorrelated part

Es.o. plus a remainder. The form of the uncorrelated spin-orbit part is taken exactly as

in the Skyrme [1] or Gogny forces [2]. We thus write for the functional in the nuclear case

E = T0+Es.o.+Eint+EC , where we explicitly split off the Coulomb energy EC because it
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is a quite distinct part in the Hamiltonian. It shall be treated, as usual, at lowest order,

i.e. the direct term plus the exchange contribution in the Slater approximation, that

is EH
C = (1/2)

∫ ∫
d3rd3r′ρp(r)|r − r′|−1ρp(r

′), and Eex
C = −(3/4)(3/π)1/3

∫
d3rρp(r)

4/3

with EC = EH
C + Eex

C and ρp/n the proton/neutron density.

Let us now discuss the nuclear energy functional contribution Eint[ρn, ρp] which

contains the nuclear potential energy as well as additional correlations. We shall split

it in a finite range term EFR
int [ρn, ρp] to account for correct surface properties and a

bulk correlation part E∞
int[ρn, ρp] that we take from a microscopic infinite nuclear matter

calculation [25]. Thus our final KS-DFT -like functional reads:

E = T0 + Es.o. + E∞
int + EFR

int + EC . (3)

For the finite range term we make the simplest phenomenological ansatz possible

EFR
int [ρn, ρp] =

1

2

∑

t,t′

∫ ∫
d3rd3r′ρt(r)vt,t′(r− r′)ρt′(r

′)

− 1

2

∑

t,t′
γt,t′

∫
d3rρt(r)ρt′(r) (4)

with t = proton/neutron and γt,t′ the volume integral of vt,t′(r). The substraction

in (4) is made in order not to contaminate the bulk part, determined from the

microscopic infinite matter calculation. Finite range terms have already been used

earlier, generalizing usual Skyrme functionals (see e.g [28, 29, 30]). In this study, for the

finite range form factor vt,t′(r) we make a simple Gaussian ansatz: vt,t′(r) = Vt,t′e
−r2/r0

2
.

We choose a minimum of three open parameters: Vp,p = Vn,n = VL, Vn,p = Vp,n = VU ,

and r0. The only undetermined and most important piece in (3) is then the bulk

contribution E∞
int. As already mentioned, we obtain E∞

int from microscopic infinite

matter calculations, using a realistic bare force, together with a converged hole-line

expansion [25]. We first reproduce by interpolating functions the correlation part of

the ground state energy per particle of symmetric and pure neutron matters, and then

make a quadratic interpolation for asymmetric matter. Finally the total correlation

contribution to the energy functional in local density approximation reads:

E∞
int[ρp, ρn] =

∫
d3r[Ps(ρ)(1− β2) + Pn(ρ)β2]ρ (5)

where Ps and Pn are two interpolating polynomials for symmetric and pure neutron

matter, respectively, at the density ρ = ρp + ρn, and β = (ρn − ρp)/ρ is the asymmetry

parameter. The interpolating polynomial for symmetric matter has been constrained

to allow a minimum exactly at the energy E/A = - 16.00 MeV and Fermi momentum

kF = 1.36 fm−1, i.e. ρ0= 0.16 fm−3. This is within the uncertainty of the numerical

microscopic calculations of the EOS. It has to be stressed that the use of a polynomial

in density is just for practical reasons.

The constrained fit was performed by keeping the EOS as smooth as possible,

thus allowing for some very small deviations from the microscopic calculations below

saturation density. An interpolating fit which goes exactly through the calculated EOS,
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Figure 1. EOS of symmetric and neutron matter obtained by the microscopic
calculation (squares) and the corresponding polynomial fits (solid lines).For comparison
the microscopic EOS of Refs. [27] are also displayed by open circles

as performed in [25], gives a not good enough saturation point (typically E/A = -15.6

MeV, kF =1.38 fm−1).

As discussed in [26], the low density behavior of the nuclear matter EOS is quite

intricate and usually not reproduced by Skyrme and Gogny functionals ( see also ref.

[25]), missing quite a substantial part of binding. We show our EOS for nuclear and

neutron matter in Fig. 1. Since we want to construct the EDF, as much as possible, on

the basis of the microscopic calculations, the bulk part E∞
int of the functional, directly

related to bare NN and TBF (three-body forces), is determined once and for all and we

will use it in (3) together with LDA.

The only open parameters are, therefore, the ones contained in the finite range

surface part, Eq.(4), and the strength of the spin-orbit contribution, that we fit to

reproduce finite nuclei properties. We, thus, follow exactly the strategy employed in

condensed matter. On the contrary, in nuclear physics, almost exclusively a different

strategy is usually adopted (see, however, Ref.[17] with some ingredients similar as

in the present approach ): functionals like the one of (3), i.e. bulk, surface, etc.,

were globally parametrized with typically of the order of ten parameters which, then,

were determined fitting simultaneously some equilibrium nuclear matter (binding energy

per particle, saturation density, incompressibiliy, etc.) and finite nuclei properties.
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However, in this way, bulk and surface are not properly separated and early attempts

used to miss important infinite nuclear matter properties, as, e.g. stability of neutron

matter at high density [2] and other stability criteria. Modern Skyrme forces , like

the Saclay-Lyon (SLy) ones, explicitly use the high density part (ρ/ρ0 > 0.65) of

microscopic neutron matter calculations for the EOS in the fitting procedure [3] and

thus avoid collapse. Therefore, modern functionals usually reproduce reasonably well

microscopically determined EOS for neutron and nuclear matter [25]. Examples are,

among others, the SLy-forces [3] (see Fig.1 in [25]) and the Fayans functional DF3

(see e.g. Fig. 3 in [30]). In this presentation we follow the just discussed alternative

approach, that is different on a qualitative level from the usual and allows, via the fit,

to reproduce very accurately the microscopic infinite matter results in the whole range

of densities considered. This may be important for surface properties and neutron skins

in exotic nuclei, what shall be investigated in the future.

For open shell nuclei, we still have to add pairing. The formal generalization of the

rigorous HK theorem to paired system has been given in Ref. [31]. In the present work

our main objective is to discuss the KS-DFT scheme for the non pairing part, thus we

add pairing in a very simple way within the BCS approach. For this we simply take the

density dependent delta force defined in Ref [32] for m = m∗ with the same parameters

and in particular with the same cutoff. As far as this amounts to a cutoff of ∼ 10 MeV

into the continuum for finite nuclei, we have to deal with single-particle energy levels

lying in the continuum. We have simulated it by taking in the pairing window all the

quasi-bound levels, i.e. the levels retained by the centrifugal (neutrons) and centrifugal

plus Coulomb (protons) barriers. This treatment of the continuum works properly, at

least for nuclei not far from the stability valley as it has been extensively shown in [33].

In this way we obtain two-neutron (S2n) and two-proton (S2p) energy separations for

magic proton and neutron numbers in quite good agreement with the experiment (see

also below).

In our calculations the two-body center of mass correction has been included in the

self-consistent calculation using the pocket formula, based on the harmonic oscillator,

derived in Ref.[34] which nicely reproduces the exact correction as it has been shown

in [35]. Our functional is now fully defined and, henceforth, we call it BCP-functional.

Preliminary results based on this functional have been presented in ref. [36, 37].

3. Fitting procedure and general results

In this section we discuss the fitting protocol to determine the open parameters of our

functional and the accuracy that can be reached following the scheme described in the

previous section. To this purpose we make a comparison between our recent results

and the ones that can be obtained with the Gogny functional, which is one of the most

accurate phenomenological functional. In this paper we follow a novel strategy, recently

proposed [38], for the fitting procedure to obtain the set of parameters for the surface

and spin-orbit part of the functional, that we call the BCP09 functional. Contrary to
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our previous works we no longer use the binding energies of spherical nuclei for the

fit but, following the suggestion of Ref. [38], we use a set of deformed nuclei carefully

chosen in the rare earth, actinide and super-heavy regions instead. The underlying

philosophy behind this choice [38] is that for spherical nuclei the fluctuations in the two

most relevant collective variables, namely, the quadrupole deformation and the pairing

correlations are large (i.e. the minimum in those variables is broad in some sense) and

therefore correlations beyond mean field are important and difficult to evaluate. On the

other hand, for deformed nuclei the minimum as a function of the quadrupole degree of

freedom is stiffer than its counterpart in spherical nuclei and the additional correlations

(rotational energy correction mainly) are not so difficult to compute in a mean field

model.

In order to fit the three free parameters of the surface part (VU , VL and r0) of BCP

and the spin-orbit strength WLS we have taken as in [38] 84 well deformed nuclei in the

rare earth, actinide and super-heavy regions where the experimental binding energies

are known. The four parameters are determined by minimizing the mean square root

deviation of the binding energy σE. The theoretical binding energy has been computed

as the Hartree- Fock- Bogoliubov (HFB) mean field energy plus a rotational energy

correction, which differs from the standard one [39] by a phenomenological factor to

account for the approximate calculation of the Yoccoz moment of inertia. We also

consider an additional correction factor (not relevant in the present calculation) to

deal with the weak deformation regime (see, for instance, [40]). Also a correction to

the binding energy ensuing from the finite size of the harmonic oscillator basis used,

as estimated in [41], has been included. Axial symmetry has been preserved in the

HFB calculation as the nuclei chosen are not expected to develop triaxiality. On the

other hand reflection symmetry is allowed to be broken in the solution of the HFB

equation, to allow for octupole deformation in the ground state which is relevant for

a few of the actinides considered. The calculation of the 84 ground states for a set

of parameters can be carried out in a powerful personal computer in around half an

hour. As a consequence of this figure, an unconstrained and blind search of the four

parameters leading to the absolute minimum of σE is a task out of the scope of the

present exploratory considerations. Fortunately, the expression for the binding energy

depends linearly on three out of the four free parameters (VU , VL and WLS) and the

method suggested by Bertsch et al. [42] in those situation should work well. We

have implemented Bertsch’s procedure for the three parameters VU , VL and WLS and

performed systematic calculations for as a function of the other parameter r0. Usually,

for a given r0 value and with a reasonable choice of starting parameters, the linearized

Bertsch’s method leads to a local minimum of σE in a couple of iterations. The reason

is that the correlation matrix of Bertsch’s method has in our case two eigenvalues which

are two to three orders of magnitude smaller than the remaining one. This fact points to

the existence of only one free parameter (a linear combination of VU , VL and WLS with

weights corresponding to the components of the eigenvector of the largest eigenvalue).

At this point it has to be mentioned that the fact that the expression of the binding
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energy is linear in VU , VL and WLS by no means imply the value of binding energy to

be globally a linear function of those quantities. The reason is that the binding energy

is obtained after a self-consistent HFB calculation and the self-consistency breaks the

linear dependence of the wave function on the parameters mentioned above. As a

consequence, Bertsch method is only valid locally what implies that the procedure will

end up in different minimum depending upon the values of the initial parameters. A

careful analysis of the results obtained so far indicates that the spin-orbit strength is

the most sensitive starting parameter and therefore a search on this degree of freedom

should be carried out in addition to the search on r0.

Using this new protocol we have performed a fit using for the bulk density dependent

part of the functional new interpolating polynomials for the nuclear matter equation of

state in a wider range of density with respect to the previous ones (BCP1 and BCP2

in ref. [36, 37]) The new fit has still a binding energy per nucleon E/A = 16 MeV at

saturation density ρ0 = 0.16 fm −3 (for a compressibility of 220 MeV). For the spin-orbit

strength we choose to stay around the WLS = 95 MeV value and perform a minimization

of σE for different values of r0 from 0.85 fm up to 1.00 fm. The minimum value of σE was

obtained for r0 = 0.9 fm. The values of the other parameters are VU = −137.024 MeV,

−117.854 MeV and WLS = 95.43 MeV fm5 for a value of σE of 0.545 MeV. In order

to check for the suitability of the spin-orbit strength value used we performed another

two minimizations of σE fixing r0 at 0.9 fm but taking WLS = 90.90 MeV fm5 and

102.51 MeV fm5. The values of σE obtained are 0.569 MeV and 0.566 MeV respectively,

supporting the assignment of WLS = 95.43 MeV fm5 as the value leading to the lowest

σE (this check is incomplete as a more extensive search in the two parameters should be

performed; work in this direction is in progress and will be reported in a near future).

In Fig. 2 we show the individual differences in binding energy (B) between the

theoretical results and the experimental ones for the 84 nuclei considered. The quantity

∆B = BExp−BTh has been plotted as a function of the number of neutrons N and the

values corresponding to the same isotope are joined with lines. Two sets of parameters

have been considered, namely one with r0 = 0.9 fm producing the lowest value of σE

(full dots) and other with a slightly higher value σE = 0.577 MeV and obtained fixing

r0 = 0.94 fm (circles). It is worth pointing out that the absolute value of ∆B never

exceeds 1.2 MeV. We also observe that the change in parameters only produce minor

changes in the ∆B’s. Finally, we notice that the actinides and superheavies look a little

bit too underbound as compared to the rare earth isotopes. Finding the origin of such

a relative underbinding will help to improve the quality of the fit reducing the value of

σE. Although the value of σE was obtained by considering an optimal set of deformed

nuclei ( those with a well established deformation ) it is very likely that the σE value

for a complete set of nuclei from proton drip line to neutron drip line will be promising.

In order to compare the results obtained with BCP 09 with others of other

interactions we have performed calculations with the Gogny force and the most recent

parametrization D1M that was made up with the idea of producing a mass table.

Unfortunately, the details of how the theoretical binding energy was obtained are not
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Figure 2. (Color online) The difference in binding energies with respect to the
experimental value for the 84 nuclei considered as a function of neutron number.
Results for E/A =16 MeV, r0 = 0.9 fm that yield σE = 0.545 MeV are plotted as
full (blue) dots, whereas results for E/A =16 MeV, r0 = 0.94 fm that yield σE = 0.577
MeV are plotted as open (green) circles. The group of points to the left corresponds to
the rare earth isotopes whereas the one to the right are for the actinides and superheavy.

detailed enough as to allow a reproduction of them (the main uncertainty is in the

quadrupole motion zero point energy correction). We have decided to use the same

protocol as with BCP 09, that is, the rotational energy correction and the finite size

of the basis effect are included, and we have left out the zero point energy correction

mentioned above. As a consequence, our values for σE of D1M are too high and in order

to make a more fair comparison we just shifted all the binding energies computed by a

constant quantity (2.8 MeV) obtained as to minimize σE. With this readjustment we

obtain for D1M and the 84 nuclei considered the value σE = 0.54 MeV which is slightly

better than our value but, on the other hand, of similar quality to the one of the BCP 09

functional. In Fig. 3 we have plotted the individual values of ∆B both for BCP 09 and

Gogny D1M. We notice how the behavior of ∆B for the Gogny D1M as a function of N

for each isotopic chain is different from the one of BCP 09; decreasing with increasing

N in the case of Gogny D1M whereas it is increasing with increasing N for BCP 09. It

is also worth to point out that Gogny D1M force produces results in the actinide and

super-heavy nuclei which are more spread out than the ones of the BCP 09 functional.

By comparing both results we can conclude that, at least for the 84 deformed nuclei

considered, the performance of BCP 09 is as good as the one of Gogny D1M and at a

fraction of the computational cost (the absence of exchange terms and non local pairing
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Figure 3. (Color online) Same as Fig. 2 but this time the BCP results with E/A =16
MeV, r0 = 0.9 fm that yield σE = 0.545 MeV are compared to those of the Gogny
D1M force. See text for further details.

in BCP makes the numerical evaluation of the quantities entering the HFB equation

much faster than for the Gogny D1M case). This is an encouraging starting point for a

more detailed study of the viability of BCP 09 in the description of low energy nuclear

structure.

Next we want to explore the ability of our proposed BCP09 energy density

functional to describe nuclear ground-state properties of other nuclei not included in

the fitting protocol used to obtain the free parameters that describe the surface and

spin-orbit contributions to the functional.

To this end we have computed the ground-state energies of 161 even-even and

306 odd spherical nuclei. These nuclei are chosen to be spherical according to the

deformation properties of the compilation of Möller and Nix [44]. To deal with odd

nuclei, we have used the blocking approach on top of the BCS calculation. The

differences ∆B = EBCP − EExp, where EBCP are the theoretical predictions of the

BCP09 functional and EExp the experimental values taken from [45], are displayed in

Fig. 4. The agreement found between the theoretical prediction and the experimental

values is fairly good finding an energy rms σE ' 1.3 MeV. It should be mention that

both, even-even and odd nuclei, give basically the same rms when they are considered

separately. From the figure we can see that the theoretical ground-state energies are

scattered, rather symmetrically, around ∆B = 0 within a window of about ± 3 MeV

with the only exception of the nucleus 150
68 Er. Combining these values for 467 spherical
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Figure 4. (Color online) Energy differences as a function of mass number for a set of
161 spherical nuclei (black points) and 306 spherical odd nuclei (red points).

nuclei with the results obtained for the 84 deformed nuclei used in the fitting protocol,

we find a global rms σE '1.2 MeV, a value that can be improved if the analysis of the

ground-state energies include more deformed nuclei.

In Fig. 5 we show the differences between the calculated and experimental charge

radii ∆R = RBCP − RExp. In this Figure we have displayed the differences ∆R for

88 even-even and 111 odd spherical nuclei for which the experimental charge radii are

known [46]. From this Figure we see that the BCP09 energy density functional predicts,

on the average, smaller charge radii than the experimental values. With few exceptions,

the theoretical charge radii are scattered within a window of 0.04 fm around an average

values ∆R = -0.02 fm. The global quality of this fit of the charge radii is given by rms

σR=0.030 fm and again the rms of the even-even and odd nuclei are basically the same.

This global rms can be compared with one provided by the HFB-8 model [47] which

is σR=0.0275 fm, however computed using 782 experimental data. As compared with

the results provided by the earlier BCP2 functional, that included some experimental

charge radii in the fit, the σR values are roughly the same, but in the case of the BCP2

functional the theoretical charge radii are rather overestimated, at least for light nuclei.

After having defined a performing functional in the realm of nuclear masses one
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Figure 5. (Color online) Differences of radii are shown as a function of mass number
for a set of 88 spherical nuclei (black points) and 111 spherical odd nuclei (red points)

has to check its suitability in describing other nuclear properties like deformations. A

detailed study of deformations with BCP 09 is underway and will be reported in the

future, but in order to give a taste of the results already obtained we show in Fig. 6 the

typical outcome of a fission barrier calculation for the nucleus 240Pu that has also been

discussed in Ref. [37] for early versions of the BCP functional. In fission studies the

energy of the system obtained in the HFB framework is obtained as a function of the

quadrupole moment by constraining the HFB solution. In this way a potential energy

curve (PEC) is obtained that in the present case is displayed in the lower panel of Fig. 6

for the BCP1 and BCP09 functionals and the Gogny D1S force. The BCP1 and BCP09

curves have been shifted by 0.65 MeV and 4.5 MeV respectively as to make the first

minimum at Q2 = 14 b (β2 = 0.26 ) coincide in energy. After the first (ground state)

minimum there is a barrier (first fission barrier) that is higher for D1S than for the

BCP functionals. The height of this barrier is known to be very sensitive to triaxial

effects which are still not accounted for in the present calculation. After the first fission

barrier there is an additional excited local minimum at Q2 = 46 b (β2 =0.73) that

corresponds to the fission isomer. The excitation energy of the fission isomer obtained

with the two BCP functionals is more or less the same with a value of 3.5 MeV. For
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the Gogny D1S the result is slightly higher (around 4.5 MeV). The following maximum

corresponds to the second fission barrier which is definitely much higher for Gogny D1S

than for the BCP functional. After the second fission barrier the typical decrease of

the energy consequence of the Coulomb repulsion between the nascent fragments (the

real shape of the nucleus is depicted at the corresponding Q2 value as a contour plot of

the real density at a value of the contour of 0.08 fm−3). As the two fragments are still

connected by the neck the nuclear part of the interaction still has an effect, explaining

the differences observed between the three calculations. Finally, in the upper panel

of Fig. 6 the octupole (Q3) and hexadecapole (Q4) moments of the mass distribution

obtained with the three functionals/interactions are shown. The values lie on top of each

others indicating (as the multipole moments considered are the most relevant) that the

shapes of the nucleus along the whole fission path are essentially the same for the three

calculations.

4. Open problems

The problems to be clarified in the EDF approach can be in general classified in two

categories. On one hand, the use of the nuclear matter EOS must be taken with care

since the microscopic calculations cannot reach the accuracy usually required in nuclear

structure calculations and contains intrinsic and unavoidable uncertainties discussed

below. On the other hand, finite size effects must be included in the functional with

a minimal set of parameters. The procedure of doing that is not straightforward and

requires extensive analysis.

4.1. Nuclear matter EOS

Following the KS scheme, the nuclear EOS calculated microscopically should be included

in the EDF mainly by an analytic fit that reproduces accurately both the nuclear

matter and neutron matter results. In this way the saturation point, as well the whole

density dependence of the binding energy, can be incorporated in the EDF. However,

the microscopic calculations cannot be considered without any uncertainty. Besides the

point of numerical accuracy, it is well known that it is necessary to introduce three-body

forces in the microscopic calculations in order to reproduce the correct saturation point,

which however contains necessarily a phenomenological uncertainty. Therefore the TBF

can be adjusted to reproduce different saturation points. Furthermore the microscopic

data do not fix uniquely the fitted EOS. We found that the quality of the nuclear data

fitting is very sensitive to the saturation point of the interpolated EOS. The optimal

value of the energy per particle at saturation seems to be close to -16 MeV, but even a

shift as small as 0.1 MeV of this quantity can deteriorate appreciably the quality of the

nuclear data fit. This should be a general feature, independent of the particular EDF

that is used. Less sensitivity seems to be present for the saturation density. For the

EOS obtained from the BHF theory, the TBF contribution below saturation is quite
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Figure 6. (Color online) In the lower panel the potential energy curve as a function
of the quadrupole moment Q2 for the two BCP functionals and Gogny force used in
the calculations is shown. In the upper panel, the octupole and hexadecapole moments
are displayed again for the three interactions/force used. The lines lie on top of each
other and are hardly distinguisable. See text for further details.

small and the BHF is expected to be accurate at low density, so that the main problem

can be considered as how to fix the saturation point.

Of course the just discussed sensitivity on the saturation point could be considered

a not serious problem, in view of the phenomenological uncertainty that affects its

position.

All these problems appear absent for the neutron matter EOS, for which the TBF

contribution is smaller and correlation energy is substantially reduced.

A separate discussion is needed for the type and strength of the TBF that are used

in microscopic nuclear matter calculations. The numerical calculations of the binding

energy of nuclear few-body systems, like triton and alpha particle, can be performed

numerically very accurately. If realistic two-body forces, like the Argonne v18 potential,

are used the binding energies turn out systematically underestimated. To remedy to
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this drawback usually one adds a semi-phenomenological TBF, like the Urbana model

[48], that is adjusted to reproduce the experimental binding energies. The unpleasant

discovery is that the use of the same TBF in microscopic calculations for nuclear matter

does not produce a good saturation point. The TBF appear too repulsive. Indeed,

in general semi-phenomenological TBF’s contain a repulsive and attractive part, and

the standard procedure is to reduce the repulsive component in order to get a good

saturation point. At phenomenological level this means that one needs at least a four-

body force in a non-relativistic many-body scheme.

It has to be mentioned in this respect that non-local two-body forces [49] which

are able to reproduce the binding energy of few-nucleons systems fail to reproduce the

correct saturation point, that then turns out to be at too high density and too low

energy [50].

Recently [51] it has been shown that one can get a reasonable saturation point by

keeping the TBF obtained by fitting few-body systems if for the effective two-body force

the so-called Vlow interaction is used. The latter is obtained by projecting out the high

momenta of the bare NN interaction and renormalizing accordingly the interaction at

low momenta. The resulting interaction is then phase-equivalent to the original bare

NN interaction up to the momentum cutoff, but it is much softer, and therefore it can be

treated perturbatively. Nuclear matter calculations with Vlow are not saturating, most

probably because they misses the effects of the Pauli principle and of the self-consistent

single particle potential, which are distint features of the G-matrix. The final saturation

point is a consequence of the compensation between the too large attraction of Vlow and

the too large repulsion of the TBF. All these uncertainties are of course embodied in

the final EOS and affect the detailed properties of the resulting EDF.

Unfortunately there is a more basic problem for the low density EOS. At low enough

density symmetric matter is expected to be unstable towards cluster formation. The

picture of an homogeneous matter cannot be kept at very low density. The real EOS

is therefore altered by the appearance of clusters of different sizes. However the EOS

which includes cluster formation cannot be used in the EDF, since such a proliferation of

light nuclei cannot be present in the low density region of finite nuclei. This is a general

problem for any EDF. The absence of clusters at the nuclear surface is due to the small

value of the diffusion of the density profile, which prevents any long range correlation

to dominate. This fact offers a partial justification of taking the homogeneous matter

EOS at the BHF level. Indeed, short range correlations are well taken into account by

the BHF procedure, and therefore the corresponding EOS should be able to describe

the properties of the bulk contribution to the nuclear EDF even in the surface region.

This problem still needs further analysis before it can be considered satisfactorily

solved.
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4.2. Incorporating the nuclear matter EOS in the EDF

In the standard KS procedure the kinetic energy contribution is taken at the independent

particle level with an effective mass equal to the bare one. This is in agreement with

the BHF scheme, where the kinetic energy part is also kept at the free value and the

whole correlation contribution is included in the interaction energy part coming from

the G-matrix. This means that also the correlated part of the kinetic energy is included

in the G-matrix contribution. Indeed the momentum dependence of the G-matrix is

clearly the origin of the deviation of the effective mass value from the bare one. It

would not be difficult to separate this effect from the G-matrix contribution, so that

the kinetic energy would include a (density dependent) effective mass, while leaving the

rest of correlations as a genuine interaction energy. This leaves some freedom to the

way the nuclear matter EOS is actually included in the EDF, which allows to go beyond

the usual KS scheme. It can be expected that different procedures are not necessarily

equivalent. This problem has still to be analyzed in detail.

4.3. Finite size effects

The density matrix expansion of Negele and Vautherin [5] suggests that the surface

contribution to the binding energy of nuclei may also be extracted from nuclear

matter calculations. This would be very welcome, since this would further reduce

the number of adjustable parameters and link the functional even more to the

microscopic approach. Essentially only the spin-orbit and pairing contributions would

then need some phenomenological adjustments. However, the G-matrix also has spin-

spin interaction terms and, in principle, the spin orbit also could be extracted if the

vector part of the one-body density matrix is properly taken into account [9]. To what

extent such a goal can be achieved remains an open problem. Let us, however, point

to some possible improvements over the past procedures. In first place we want to

point out that it is our believe that neither the DME of Negele- Vautherin, nor the one

of Campi-Bouissy [6] are the optimal procedures. We have long standing experience

with the semiclassical DME of Wigner and Kirkwood which is based on a systematic

expansion in powers of ~. Most accurate results are obtained, at least for the scalar part

of the one- body density matrix, with this method [8]. A second problem stems from

the way how the G-matrix of an infinite matter calculation is used for a finite nucleus.

The standard procedure is the LDA, that is one replaces the kF dependence by a density

dependence via the standard relation kF ∼ ρ1/3(R). The kF dependence enters mostly

into the Pauli operator Θ(p2
1/2m−kF )Θ(p2

2/2m−kF ). However, dependence also can be

in the self consistent single particle energies. We want to point out that just replacing

kF by ρ(R) is not necessarily the best procedure. Our argument goes as follows. The

two particle propagator entering the G-matrix equation

G0(E; Ĥ1, Ĥ2) = [Θ(Ĥ1 − µ)Θ(Ĥ2 − µ)][E − Ĥ1 − Ĥ2 − iη]−1 (6)
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has an obvious semiclassical, i.e. ~ → 0 limit, namely we just replace the single

particle Hamiltonians Ĥi by their classical counterparts Hcl.,i(R,p) with R,p the

phase space variables of position and momenta. With this approximation the two

particles move according to their respective classical Hamiltonians, each. Supposing

for simplicity a local mean field V (R) (the argument can be generalized to nonlocal

mean field potentials), we see that in the semiclassical two body propagator two local

chemical potentials appear: µ(R1) and µ(R2) (µ(Ri) = µ− V (Ri)) and, therefore, two

Fermi momenta and, thus, two densities at positions R1,2 appear in the semiclassical

propagator and correspondingly in the G-matrix. Since the effective range of the

interaction is over 2 fm wide, this non locality in the densities may be of quite some

importance. One may call this the Non Local Density Approximation (NLDA). The

standard LDA is recovered in putting R1 = R2 = R. This NLDA effect may be more

important, or at least of equal importance, than to keep gradient expansions of the

density itself. It could be interesting to test this. Since finite size effects are surface

effects, one may argue that only relatively low densities will be involved. It has recently

been shown, that at least in neutron matter for low densities a separable force works very

well for the G-matrix [52], reducing very much the numerical effort. So eventually one

could combine the NLDA approach with a separable force to get to a surface term. Of

course, one will not imagine that with such a procedure one will hit the good result right

on the spot. But even if the result is only semi quantitatively correct, it still may lead

to a reduction of the open parameters and to more insight into the underlying physics.

This may be then a first step in the direction to get everything from the microscopic

input, i.e. from the underlying bare forces, also for finite nuclei.

5. Conclusions and prospects

We have presented a formulation of the energy functional method that enables to keep, to

a certain extent, the connection with the nuclear matter Equation of State as calculated

microscopically from many-body theory and realistic nucleon-nucleon interactions. The

functional is constructed following closely the Kohn and Sham method, where the bulk

part of the functional is taken directly from the microscopic calculations and kept fixed

in the fitting procedure of the adjustable parameters of the functional. The latter include

the surface part of the functional and the spin-orbit strength, ending up with a total

of four free parameters. The pairing interaction and the corresponding strength has

been taken from the simplest standard choices. Despite the analysis was not carried

out up to the optimal level, leaving space for refinements, the accuracy of the results

can compete with the one obtained with the best purely phenomenological functional

like Gogny. These promising results open the possibility of building an energy density

functional closely connected with the bare nucleon-nucleon forces. Developments in this

direction could be obtained along the density matrix expansion method of ref. [5, 9] or its

refinements, which could further reduce the number of adjustable parameters. However,

we pointed out the various open problems that must be solved before this project can be
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completed. The incorporation of the nuclear EOS in the density functional can be done

in different ways, and this leaves some ambiguity in the direction of a universal nuclear

functional. Furthermore the very low density part of the EOS cannot be taken literarily

from microscopic calculations of homogeneous nuclear matter. In fact cluster formation

is expected to dominate this region of the EOS. This appears a serious problem for any

density functional theory which is constructed in such a way to be compatible with the

nuclear matter case. Further studies and analysis are needed to proceed further in this

project on the nuclear density functional.

6. Acknowledgments

Work supported in part by MICINN (Spain) grants FPA2007-66069 and FPA2008-

03865-E/IN2P3, and by the Consolider-Ingenio 2010 program (Spain) CPAN, CSD2007-

00042. X. V. also acknowledges the support from FIS2008-01661 (Spain and FEDER)

and 2009SGR-1289 (Spain). This work was supported by CompStar, a Research

Networking Programme of the European Science Foundation.



Energy density functional on a microscopic basis 20

References

[1] D. Vautherin, D.M. Brink, Phys. Rev. C5 (1972) 626.
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[8] V.B. Soubbotin, X. Viñas, Nucl.Phys. A665, 291 (2000)
[9] T. Duguet and T. Lesinski, arXiv:0907.1043 (2009).

[10] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[11] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).
[12] H. Eschrig, The Fundamentals of Density Functional Theory (B. G. Teubner, Stuttgart, 1996).
[13] A. E. Mattsson, Science 298, 759 (2002).
[14] J. P. Perdew and K.Schmidt, Density Functional Theory and Its Applications to Materials, V. Van

Doren et al. Eds. CP577 (American Institute of Physics, Melville NY, 2001)
[15] Jianmin Tao, J. P. Perdew, V. N. Staroverov and G. F. Scuseria, Phys. Rev. Lett. 91, 146401

(2003).
[16] Jianmin Tao and J. P. Perdew, Phys. Rev. Lett.95, 196403 (2005).
[17] S.A. Fayans, JETP Lett. 68, 109 (1998); S.A.Fayans,D.Zawischa, Int.J.Mod.Phys. B15, 1684

(2001).
[18] T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001).
[19] J. Engel, Phys. Rev. C75, 014306 (2007).
[20] J. Dobackzewski, M. V. Stoitsov, W. Nazarewiczand P.-G. Reinhard, Phys. Rev. C76, 054315

(2007).
[21] B. G. Giraud, B. K. Jenning ands B. R. Barret, arXiv:0707.3099 (2007); B. G. Giraud,

arXiv:0707.3901 (2007)
[22] First ”FIDIPRO-JSPS Workshop on Energy Density Functionals in Nuclei”, Jyvaskyla, October

25-27, 2007; ”Formal aspects of Nuclear Energy Density Functional Methods”, Saclay, November
5-7, 2007.

[23] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[24] J. Engel, Lecture Notes in Physics 620, 56 (2003), C. Fiolhais, F. Nogueira and M. Marques Eds.

(Springer-Verlag, Berlin, 2003).
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[34] M.N. Butler, D.W.L. Sprung and J. Martorell, Nucl. Phys. A422, 157 (1984).
[35] V.B. Soubbotin, V.I. Tselyaev and X. Viñas, Phys. Rev. C67 (2003) 014324.
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