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Abstract.
Integral transform approaches are numerous in many fields of physics, but in most

cases limited to the use of the Laplace kernel. However, it is well known that the
inversion of the Laplace transform is very problematic, so that the function related to
the physical observable is in most cases unaccessible. The great advantage of kernels
of bell-shaped form has been demonstrated in few-body nuclear systems. In fact the
use of the Lorentz kernel has allowed to overcome the stumbling block of the ab initio
description of reactions to the full continuum of systems of more than three particles.
The problem of finding kernels of similar form, applicable to many-body problems
deserves particular attention. If this search were successful the integral transform
approach might represent the only viable ab initio access to many observables that are
not calculable directly.

1. Introduction

Integral transform approaches to physical problems are common to many fields in

physics, e.g. nuclear physics, condensed matter physics and quantum chromo-dynamics.

The motivation to use such approaches originates from the fact that, while one is often

unable to evaluate a physical quantity of interest X , directly, one can calculate a few of

its integral properties. Particularly interesting are integral transforms. They can give

information on X . However, a sufficiently detailed reconstruction of X (inversion of the

transform) is sometimes a formidable task or even impossible. One of the reasons is that

in many cases the integral property known to be accessible by a numerical technique

is the Laplace transform (LT ). This occurs in the numerous physical processes that

are described by diffusion equations. Problems involving LT s also arise in computing

statistical functions, which is very common in many fields.

From the Mellin’s inverse formula (Bromwich integral) for the inverse Laplace

transform [1], one sees that it is necessary that the LT is computable in the complex

half-plane of convergence. In this case X can be computed by evaluation of a complex
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path integral, which can be a formidable task. However, in the common situation when

the Laplace transform is computable (or measurable) on the real and positive axis only,

the problem is extremely ill-posed. This case is much more complicated because of the

absence of an exact inversion formula. In addition, as it will be explained below, one can

say that among ill-posed problems, the inversion of the LT is one of the worst. There

are some more or less efficient numerical methods available for computing the inverse

transform [2, 3], however, in general when the input is numerically noisy and incomplete

it may be impossible to obtain a stable result [4].

In the last fifteen years it has been shown that an integral transform approach with

a bell-shaped kernel, namely the Lorentzian function [5], helps in solving a longstanding

problem in few-body physics, i.e. the calculation of reactions involving states in the far

continuum of four- ([6]-[10]) and even six- [11] and seven- [12] body systems (for a review

see [13]). The scope of this contribution is to (i) clarify why the Lorentzian function is a

good kernel (section 1), (ii) discuss the limits of this approach (section 2) (iii) define the

open problems (section 3) and (iv) suggest possible directions to explore for finding

solutions (section 4).

2. Why is the Lorentzian function is a good kernel ?

To illustrate what is the intrinsic origin of the difficulties in inverting transforms with

the Laplace kernel or, similarly, with the Stieltjes kernel [14, 15], consider figure 1. The

upper panel shows two functions r1(E) and r2(E), while in the middle panel their LT s

are plotted, i.e.

Φ(σ) =

∫
K(σ,E) r(E) dE , (2.1)

with K(σ,E) = e−σE. As one can see the curves in figure 1(a) do not resemble the curves

in figure 1(b). The functios ri(E) exhibit a peak, while the LT s are monotonically

decreasing. Moreover, one sees that though r1(E) and r2(E) are rather different they

lead to very similar LT s. Considering that both transforms could lie within the error of

a numerical calculation one understands that it is impossible by inversion to distinguish

between the curves in 1(a). The reason is that the Laplace kernel has spread the

information over a very large domain. As shown in 1(c) the situation is different for the

Lorentz integral transform (LIT), where the kernel of the transform is the Lorentzian

function

K(σR, σI , E) =
1

(E − σR)2 + σ2
I

. (2.2)

The form of the functions in 1(c) is preserved and the relative difference between

the LITs, is of the same order as it is for the functions in 1(a).

We do not intend to discuss here the problem of the inversion of integral transforms,

which are known in mathematics under the name of ill-posed problems. An extended

literature exists about this topic (see e.g. [16]). We only want to mention that, contrary

to what the unfortunate name might suggest, they can be solved using regularization
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Figure 1. (a): The functions r1 and r2, (b): their Laplace transforms, (c) their
Lorentz transforms with σI = 10.

methods. Such methods are very efficient when the kernel is bell shaped with a

controllable width. A clarifying discussion about this point can be found in [17].

In relation to what has been said above, one could think that the perfect kernel is a

δ−function, i.e. K(σR, E) = δ(σR−E). In fact in this case the function and its transform

would coincide. While this clearly does not help, the Lorentzian function, which up to

normalization turns to the δ-function at σI → 0, has the necessary characteristics, as

have the Gaussian functions or other bell-shaped kernels.

However, it is clear that the other conditio sine qua non for applying an integral

transform approach to physical problems is that the transform is calculable in practice.

In [5] it was suggested that the Lorentzian kernel might satisfy both requisites when

applied to a specially difficult and unsolved problem, i.e. the exact (ab initio) calculation

of perturbation induced reactions to states in the continuum (scattering states) of a

many-body system. In the following we will shortly summarize why this is the case.

More extensive information can be found in [13], where the successful applications of

what is now known as the Lorentz integral transform method have been reviewed and

the procedure to apply it also to non-perturbative reactions has been outlined.
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2.1. Short summary of the LIT method

Very often physical quantities of interest have (or may be reformulated to have) the

following structure

r(E) =
∑∫

dγ〈Q|Ψγ〉〈Ψγ|Q′〉δ(Eγ − E), (2.3)

where the integration and summation go over all the complete and orthonormal set of

eigenstates |Ψγ〉 of an hamiltonian Ĥ and the norms 〈Q|Q〉 and 〈Q′|Q′〉 are finite.

When the energy E and the number of particles in a system increases the direct

calculation of the quantity r(E) becomes prohibitive. The difficulty is related to the

fact that in these cases a great number of continuum spectrum states |Ψγ〉 contribute

to r(E) and the structure of these states is very complicated.

In order to overcome the problem one can consider instead an integral transform

with a smooth kernel K(σ,E). This yields

Φ(σ) =
∑∫

dγ〈Q|Ψγ〉K(σ,Eγ)〈Ψγ|Q′〉

=
∑∫

dγ〈Q|K̂(σ, Ĥ)|Ψγ〉〈Ψγ|Q′〉. (2.4)

Using the closure property one obtains

Φ(σ) = 〈Q|K̂(σ, Ĥ)|Q′〉. (2.5)

The right–hand side of (2.5) requires only the knowledge of the finite norm functions

|Q〉 and |Q′〉 and avoids completely the full knowledge of the spectrum of Ĥ. (It is clear

that what is presented here can be considered as a generalization of the sum rule, namely

the moment method).

Choosing for K(σ,E) the Lorentzian function

K(σ,E) =
1

(E − E0 − σR)2 + σ2
I

. (2.6)

where

σ = E0 + σR + iσI σI 6= 0, (2.7)

and E0 is the ground–state energy, one has

L(σR, σI) = 〈Q| 1

(Ĥ − E0 − σR + iσI)

1

(Ĥ − E0 − σR − iσI)
|Q′〉

≡ 〈Ψ̃|Ψ̃′〉 , (2.8)

where the ‘LIT functions’ Ψ̃ and Ψ̃′ are solutions to the inhomogeneous equations(
Ĥ − E0 − σR − iσI

)
|Ψ̃〉 = |Q〉 , (2.9)(

Ĥ − E0 − σR − iσI

)
|Ψ̃′〉 = |Q′〉 . (2.10)

Let us suppose that |Q〉 = |Q′〉). In this case L(σ) equals to 〈Ψ̃|Ψ̃〉 (〈Ψ̃′|Ψ̃′〉). Since

for σI 6= 0 the integral in (2.1) does exist, the norm of |Ψ̃〉 (|Ψ̃′〉) is finite. This implies
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that |Ψ̃〉 and |Ψ̃′〉 are localized functions. This means that in contrast to continuum

spectrum problems, in order to construct a solution, it is not necessary here to reproduce

a complicated large distance asymptotic behaviour in the coordinate representation

or singularity structure in the momentum representation. This is a very substantial

simplification.

3. What are the present limits of LIT applications ?

The LIT method has been successfully applied to quite a few physical problems. They

regard electroweak reactions with few-body systems. An extension to many body

systems, however, encounters at present some limits. They become clear in the following

where we describe how one calculates the LIT L(σR, σI) of equation (2.8)..

Most of the LIT applications have been solved by using complete many-body basis

and expanding |Ψ̃〉 and |Ψ̃′〉 over N localized states. A convenient choice is to use N

linear combinations of states that diagonalize the hamiltonian matrix. We denote these

combinations |ϕN
ν 〉 and the eigenvalues εN

ν . The index N is to remind that they both

depend on N . If the continuum starts at E = Eth then at sufficiently high N the states

|ϕN〉 having εN
ν < Eth will represent approximately the bound states. The other states

will gradually fill in the continuum as N increases. The expansions of our localized LIT

functions read as

|Ψ̃〉 =
N∑
ν

〈ϕN
ν |Q〉

εN
ν − E0 − σR − iσI

|ϕN
ν 〉 , (3.1)

|Ψ̃′〉 =
∑

ν

〈ϕN
ν |Q′〉

εN
ν − E0 − σR − iσI

|ϕN
ν 〉 . (3.2)

Substituting (3.1) and (3.2) into (2.8) yields the following expression for the LIT,

L(σR, σI) =
∑

ν

〈Q|ϕN
ν 〉〈ϕN

ν |Q′〉
(εN

ν − E0 − σR)2 + σ2
I

, (3.3)

and for the common case |Q′〉 = |Q〉

L(σR, σI) =
∑

ν

|〈ϕN
ν |Q〉|2

(εN
ν − E0 − σR)2 + σ2

I

. (3.4)

From (3.3) and (3.5) it is clear that in this way L(σR, σI) becomes a sum of Lorentzians.

The spacing between the corresponding eigenvalues with εN
ν > Eth depends on N and

in a given energy interval the density of these eigenvalues increases with N . (Since the

extension of the basis states grows with N , this resembles the increase of the density of

states in a box, when its size increases). For the reliability of the inversion one needs to

reach the regime where one has a sufficient number of levels εN
ν in a [σR − σI , σR + σI ]

interval.
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In a similar way one can obtain other integral transforms with bell shaped kernels

e.g. the Gauss integral transform (GIT) K(σR, σI , E) = e−(E−σR)2/σ2
I :

G(σR, σI) =
∑

ν

|〈ϕN
ν |Q〉|2e−(εN

ν −σR)2/σ2
I . (3.5)

It is clear that for a many-body system this is a formidable task, because of the

larger and larger degeneracy of states with increasing N and the little chance that out

of the many states a significant number is found within the σI extension. In this resides

the limit of the LIT method if one wants to extend it to many-body systems.

A more efficient procedure can be applied using the Lanczos approach. This consists

in rewriting L(σR, σI) as

L(σ) = − 1

σI

Im

{
〈Q| 1

σR + iσI + E0 − Ĥ
|Q′〉

}
. (3.6)

and then as a continuous fraction in function of the Lanczos coefficients ai and bi

L(σ) = − 1

σI

Im


〈Q|Q′〉

z − a0 − b21

z−a1−
b22

z−a2−b23...

 . (3.7)

This has the big advantage that one has not to diagonalize or invert the hamiltonian

matrix, however the problem of extending the method to many-body systems remains

similar to the previous case.

Important remarks:

• We would like to emphasize that, contrary to discretization approaches to the

continuum, here the use of a discrete basis is perfectly legitimate, because of the

bound state like boundary conditions of |Ψ̃〉(|Ψ̃′〉). The continuum spectrum is

recovered with a controlled resolution by the regularization when inverting the

transform.

• One can notice that equation (3.5) corresponds to the following common procedure.

This consists in diagonalizing the hamiltonian on a discrete basis and then folding

the |〈ϕN
ν |Q〉|2 with a Lorentzian function (or a Gaussian function), in order to

simulate the “experimental window“. However, as equation (3.5) clearly states,

this does not represent r(E) itself, but its LIT (GIT), that has to be inverted

(see [13], figure 5 and relative discussion).

• Considering our discussion one realizes that, within the eigenvalue approach, the

difficulties in generalizing the integral transform method to many body systems do

not lie in the kernels, that may be chosen conveniently, but in handling very large

basis.

4. Open problems

The problem of calculating exactly (ab initio) reactions to continuum states (scattering

states) of many-body systems is one of the oldest open problems in Quantum Mechanics.
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Many important steps have been made in the last years towards a solution, thanks to

the integral transform method. However, much has still to be done and we summarize

the main problems in the following.

• Application of the LIT method to few-body non-perturbative processes

(hadron scattering). The LIT method has been applied successfully only to inclusive

and exclusive perturbation induced processes. The formalism for applications to

non perturbative processes already exists. One can find it briefly discussed in

section 2.3 of [13]. It is essentially a reformulation with the Lorentz kernel of the

original idea in [14] with the Stieltjes kernel.

• Spectra presenting narrow resonances. From (2.9) and (2.10) it is clear that

the smaller the width σI the more slowly the LIT functions Ψ̃ approach zero at

large distances, making it very hard to find accurate transforms [18]. In particular

using expansions of |Ψ̃〉 over basis states one has to make sure that a sufficient

number of |φN
ν 〉 states have energies εN

ν in the resonance region Therefore very

narrow resonances can be hardly resolved.

• Integral transforms and many-body methods. In section 3 it has been

explained that for an extension of the LIT method to a larger number of particles

one has to be able to handle very large basis. Investigating the use of the Coupled

Cluster method to calculate the LIT is one of the interesting directions [19]. In

alternative one could search for other kernels, that allow the calculation of the

transform by some other methods. Due to the large use of MC approaches, not

only in nuclear physics, but also in many other fields, from condensed matter to

QCD, it would be very interesting to explore the applicability of Monte Carlo (MC)

techniques to integral transforms with kernels other than the Laplace one. In the

following section we suggest possible investigations along this line.

5. New directions to explore

As discussed in section 2 a good kernel has to be bell-shaped and has to generate a

transform that can be calculated. The Laplace kernel leads to transforms of the kind

Φ(τ) = 〈Q|e[−(Ĥ−E0)τ ]|Q′〉. (5.1)

that are usually calculated by MC techniques (evolution in imaginary time). However,

the kernel does not have the desired form. One difference between the Laplace and the

Lorentz kernel is that the former is a function of one parameter (besides the integration

variable), while the latter is a function of two parameters that have a specific function:

one allows to regulate the width of the bell, the other, is connected to its maximum

and allows to scan the function of interest over its domain. Therefore one should think

of other two or more parameter kernels that are such combinations of exponentials to

generate bell shaped kernels. One of them could be e.g. [20]

K(σ, τ1, τ2, E) = Θ(E − σ)
[
e[−(E−σ) τ1] − e[−(E−σ) τ2]

]
τ2 > τ1 > 0 . (5.2)
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This is a bell shaped function that, with suitable choices of the parameters, allows to

vary at wish both the width and the centroid. The Heaviside step function Θ ensures

both that the exponents remain negative and that K(σ, τ1, τ2, E) is positive definite.

What is to investigate is whether a MC algorithm could be deviced to calculate

Φ(σ, τ1, τ2, ) = 〈Q|Θ(Ĥ − σ)
[
e[−(Ĥ−σ) τ1] − e[−(Ĥ−σ) τ2]

]
|Q′〉 , (5.3)

via imaginary time evolution as (5.1). Alternatively one can think of another

representation of the δ-function, i.e.

K(σ, τ, E) = τe−|(E−σ)| τ (5.4)

where again τ and σ allow to change width and centroid of the kernel, respectively. The

presence of the absolute value in the exponent again requires to deal with operators that

contain the Θ operator. This might represent a problem.

Given the large number of physical problems in many different fields, that are

connected to Laplace transforms, an effort to investigate the use of kernels like those

proposed here, if successful, could open the way to many very interesting developments.

References

[1] Davies B 2002 Integral transforms and their application, Third ed. (New York: Springer) p.43
[2] Jaines E T 1978 The Maximum Entropy Formalism ed R D Levune and M Tribus (Cambridge:

MIT Press)
[3] Kryzhniy V V 2004 J. Comp. Phys 199 618
[4] Acton F S 1970 Numerical Methods that Work (New York: Harper & Row)
[5] Efros V D, Leidemann W and Orlandini G 1994 Phys. Lett. B 338 130
[6] Efros V D, Leidemann and Orlandini G 1997 Phys. Rev. Lett. 78 432
[7] Efros V D, Leidemann W and Orlandini G 1997 Phys. Rev. Lett. 78 4015
[8] Gazit D, Bacca S, Barnea N, Leidemann W and Orlandini G 2006 Phys. Rev. Lett. 96 112301
[9] Gazit D and Barnea N 2007 Phys. Rev. Lett. 98 192501

[10] Bacca S, Barnea N, Leidemann N, and Orlandini G 2009 Phys. Rev. Lett. 102 162501
[11] Bacca S, Marchisio M A, Barnea N, Leidemann W and Orlandini G 2002 Phys. Rev. Lett. 89

052502
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