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Three-alpha continuum states

Pierre Descouvemont †
Physique Nucléaire Théorique et Physique Mathématique, CP229
Université Libre de Bruxelles (ULB), B1050 Brussels, Belgium

Abstract. We investigate three-α continuum states in the hyperspherical formalism
for J = 0+ and J = 2+. Two different types of α+α interactions are used: the shallow
Ali-Bodmer potential and the deep potential of Buck et al. We determine the 3α phase
shifts up to E = 6 MeV, in parallel with an analysis of resonances in the framework
of the Complex Scaling method. We show that shallow potentials provide additional
narrow resonances, in contrast with experimental data. Deep potentials, however, only
give rise to broad resonances, and are more consistent with the data.

PACS numbers: 21.60.Gx, 25.70.Ef, 24.10.Cn

1. Introduction

The 12C spectroscopy below the 3α threshold is well known since many years (see Ref. [1]

and references therein). The 0+ ground state and the 2+ first excited state (Ex = 4.44

MeV) have been investigated in many experimental and theoretical works, and their

properties are now well established. The situation, however, is very different above the

3α threshold. In the continuum region, the second 0+ state at Ex = 7.65 MeV plays

a very important role in nuclear physics and in astrophysics. This state cannot be

reproduced in standard [2, 3] or in no-core [4] shell model calculations. The 0+
2 state

is known to have a well-developed cluster structure and has been successfully described

by α cluster models [5, 6, 7, 8, 9]. Fermionic molecular dynamics (FMD) calculations

[10] also reproduce the 0+
2 resonance provided that α-cluster structures are introduced

in the FMD basis.

Historically, the interest for the 0+
2 state started with the prediction of Hoyle [11]

that a resonance with zero angular momentum should exist just above the α+8Be

threshold to explain the 12C abundance in the Universe. Soon after this suggestion,

the 0+
2 resonance, called the ”Hoyle state”, was observed experimentally 375 keV above

the 3α threshold [12, 13]. In astrophysics, the determination of the triple α reaction rate

at typical He-burning temperatures [14] is directly related to the properties of the Hoyle

state (energy, α and γ widths). Although recently challenged by CDCC calculations

[15], the 3α reaction rate is believed to be well understood.
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In nuclear physics the interest for the 0+
2 structure was recently revived by its

interpretation as a dilute cluster gas state of three weakly interacting α particles [16].

The analysis of electron inelastic scattering data [17], as well as cluster calculations [9]

suggest a large radius of the 0+
2 state, which reduces the overlap between the α particles.

This leads to the idea of a new form of nuclear matter, in analogy with the Bose-Einstein

condensates [16].

In the theoretical viewpoint, it seems well established that the Hoyle state presents

an α+8Be cluster structure [9, 18]. This form of α clustering is expected in light

nuclei close to the α breakup threshold [19], and has been observed in many nuclei

(see references in Ref. [7]). The specificity of the 12C nucleus is that 8Be, the other

constituent of the α+8Be system, presents itself an α cluster structure. Based on this

interpretation of the 0+
2 state as a bandhead of a K = 0+ rotational band, microscopic

cluster models [8, 9, 18] predict the existence of a 2+ member at an energy of about

2 ∼ 3 MeV above the 3α threshold. This result is supported by the FMD [10] and by

a non-microscopic 3α model [20]. This state is expected to be broad (Γ ∼ 1 MeV) and

may overlap with other resonances.

Historically, the experimental search for a 2+ broad resonance is recent. Due to

its specific structure, the observation of such resonance is extremely difficult. Some

evidence for a 2+ broad level was reported by Itoh et al. [21] near Eα ≈ 9 − 10 MeV,

though not widely accepted. More recently, the situation was clarified, and a possible

2+ resonance at Eα = 9.6±0.1 MeV with Γ = 0.6 MeV was observed by Freer et al. [22].

These properties are in fair agreement with predictions of microscopic cluster models

[9, 18].

The theoretical description of the α + α system is well mastered in microscopic as

well as in non-microscopic models. Microscopic theories [23] are based on a nucleon-

nucleon interaction and take an exact account of the Pauli principle. In non-microscopic

approaches [24], the structure of the α particle is neglected, and the Pauli principle is

approximated by an appropriate choice of the α+α potential. However, the extension of

these models, which reproduce the properties of the α + α phase shifts in a wide energy

range, is not yet satisfactory for the 3α system. Microscopic approaches fail to describe

accurately the α + α and α + α + α systems with the same nucleon-nucleon interaction

[25]. With a NN potential that reproduces the α + α phase shifts, the 12C ground-state

is overbound. This was interpreted in Ref. [25] as a need for a three-body force. The

situation is even more complex in non-microscopic theories, based on an α+α potential.

Although highly accurate potentials exist in the literature, their application to 12C is

still unclear, even for the ground state (see Refs. [26, 27]).

The aim of the present work is to investigate the 3α continuum in a non-microscopic

approach. In the literature, this problem is usually tackled by using approximate

methods to describe resonances. This can be done, for example, with the Complex

Scaling Method (CSM, see Ref. [28]) or with the Analytic Continuation in the Coupling

Constant (ACCC, see Ref. [29]) method. Here, we go beyond these approximations and

also determine the triple α phase shifts. Recently, we have extended the hyperspherical
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formalism [30] to three-body continuum states by implementing the R-matrix theory

with a Lagrange basis [31]. Although the hyperspherical theory is known to converge

slowly in the continuum [32, 33, 31], it provides genuine 3-body phase shifts. The model

was applied in Ref. [31] to the 3-body α+n+n phase shifts, and suggests the existence

of broad 0+ and 1− resonances in the low-energy spectrum of 6He. The determination

of phase shifts provides a coherent approach to continuum properties. It complements

approximate methods by providing the wave functions not only at resonance energies,

but also off resonances. Of course, resonances predicted by approximate methods should

be reflected in the phase shifts. A combined approach therefore offers a rather complete

picture of the continuum.

In Section 2, we briefly review the current literature on the subject. Section 3 is

devoted to the models used here. We give the main properties of the hyperspherical

method associated with the R-matrix theory. We also give an outline of the CSM, used

as a complement to the 3α phase shifts. Results are shown in Section 4, where we

use two different α + α potentials, and compare resonance properties derived from the

CSM with values extracted from the 3-body phase shifts. Conclusions and outlook are

presented in Section 5.

2. Brief overview of the literature

2.1. Theoretical works

The literature concerning 12C is very abundant, and it is of course impossible to review

all papers on the subject. Here we essentially focus on works aimed at investigating

states above the 3α threshold. In a theoretical point of view, the Hamiltonian is given

by

H =

3∑

i=1

Ti +

3∑

i>j=1

Vαα(|ri − rj|) + Vααα(r1, r2, r3), (1)

where Ti is the kinetic energy of α particle i with coordinate ri, and Vαα an α + α

potential. A phenomenological 3α potential Vααα is in general included in this

Hamiltonian [34, 20]. Although 3-body continuum calculations become feasible with

microscopic cluster models [35] where the internal structure of the particles is taken into

account, their application is currently limited to lighter systems such as α+n+n. Here,

we focus on non-microscopic approaches where the α internal structure is neglected.

Essentially three types of α + α potentials are available:

• Local deep potentials. In this variant, the potentials present additional (unphysical)

bound states, which simulate the Pauli forbidden states [36]. Pauli forbidden states

stem from antisymmetrization effects. They show up naturally in microscopic

cluster theories where the antisymmetrization between all nucleons is exactly taken

into account, and where the internal wave functions of the clusters are defined in

the shell model with a common oscillator parameter b. In that case, Pauli forbidden
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states are expressed as harmonic-oscillator functions. For the α + α system, the

Buck potential [24] is known to accurately reproduce the phase shifts up to 20 MeV.

The use of deep potentials in two-body problems is very simple, as forbidden states

are eliminated automatically. For multi-body systems, however, the situation is

more complicated as these two-body forbidden states introduce spurious states.

Consequently, the total wave function must be orthogonalized to the two-body

forbidden states ϕk(r). This is achieved by adding, in the Hamiltonian (1), the

projector [37]

P = Λ
n∑

k=1

| ϕk(r)〉〈ϕk(r) |, (2)

for each α + α pair. In Eq. (2), r is the α − α coordinate, and Λ is a constant

chosen large enough (typically Λ ∼ 104 − 105 MeV) to move the forbidden states in

the high-energy region. This projector makes the α + α interaction non local. The

number of forbidden states n depends on the system and on the angular momentum

` (2n + ` = 8 for α + α).

For the 3α system, the use of the pseudo-potential method provides controversial

results [38, 26, 39]. As the forbidden states ϕk(r) stem from microscopic arguments,

it seems natural to take harmonic-oscillator functions with an appropriate oscillator

parameter (for example, deduced from the radius of the α particle). This procedure

provides an overbinding of the 12C ground state [26, 25]. On the other hand, an

alternative is to use the deep states generated by the potentials as forbidden states,

which leads to an underbinding of the 12C ground state [38, 40]. This paradox was

clarified by Matsumura et al. [27] who showed that removing the forbidden states

of the potential is inconsistent with microscopic arguments.

• Local shallow potentials. These potentials do not contain forbidden states. A

typical example is the Ali-Bodmer potential [41], which presents a repulsive core at

low angular momenta. The Ali-Bodmer potential provides a good fit of the α + α

phase shifts. In fact, it was shown that deep and shallow potentials are related to

each other by a supersymmetry transform [42], and are therefore phase equivalent.

In shallow potentials, microscopic effects are simulated by a repulsive core at short

distances. This variant is of course easier to use for multi-α systems as spurious

states do not show up and there is no need for the projector (2). It has been

adopted by Alvarez-Rodriguez et al. [34] to investigate low-lying 12C resonances.

According to the work of Matsumura et al. [27], it is however not clear whether

this potential is well adapted to multi-particle systems or not.

• Non-local potentials. The α+α potentials derived from microscopic cluster models

are non local [43]. Recently some progress has been made to implement non-local

potentials in three-body calculations [44, 45], but they are currently limited to

bound states. Their use in variational calculations is possible, but owing to the

many problems encountered in the calculation of 3-body phase shifts, they are

quite difficult to adapt to scattering theories.
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Table 1. Theoretical properties (energy ER, width Γ, in MeV) of 0+ and 2+ resonances
in various models.

Jπ Ref. [46]a Ref. [18]b Ref. [20]c Ref. [34]d

0+ 4.7, 1.0 1.66, 1.48 3.95, 1.0
4.58, 1.1

2+ 2.6 ± 0.3, 1.0± 0.3 2.1, 0.8 2.28, 1.1 1.38, 0.132
4.9, 0.9 5.14, 1.9 4.48, 1.086

6.49, 2.250
a Microscopic model with the ACCC method.
b Microscopic model with the CSM method and α+8Be phase shifts.
c Non-microscopic model with a deep α + α potential and a repulsive 3α force.
d Non-microscopic model with the Ali-Bodmer α + α potential and an attractive 3α

force.

In Table 1, we present recent theoretical results on 3α resonances. We limit the

discussion to 0+ and 2+ states. In Ref. [34], the authors use the Ali-Bodmer potential [41]

with an attractive 3α interaction to fit the experimental ground-state energy on the first

0+ state of the model. The continuum is treated with the CSM method. Although the

rotation angle is rather small, several additional resonances, not known experimentally,

are found. In particular, a narrow 2+ state is obtained at Ecm = 1.38 MeV. The use of

a larger rotation angle may still provide more resonances. As shown by Matsumura et

al. [27], the treatment of forbidden states in the 3α system is a delicate problem. The

authors recommend to use deep α + α potentials with forbidden states consistent with

the underlying microscopic model. From recent works on the 3α system, the 3-body

potential seems to be repulsive [20, 44], which is not consistent with the choice adopted

in Ref. [34]. The repulsive nature of the 3α interaction is supported by microscopic

theories where, starting from a nucleon-nucleon force fitting the α + α phase shifts, the

3α ground state is overbound [9, 18, 25].

Kurokawa and Katō [20] use a similar 3α model complemented by the CSM method.

In contrast with Ref. [34], the α+α potential is deep [47], and a repulsive 3α interaction

must be used to compensate the ground state overbinding. Concerning 0+ resonances,

Kurokawa and Katō find a state near 4 MeV, in agreement with Ref. [34]. However, an

additional broad resonance is found near 1.7 MeV (Γ = 1.48 MeV). This state could

not be seen in Ref. [34] owing to the small rotation angle used in the CSM. For the 2+

resonances, the results are very different. This may be related to the different α + α

potentials used in these references.

Funaki et al. [46] and Arai [18] investigate the 3α continuum in a microscopic three-

cluster model with different basis functions. A microscopic approach avoids the choice

of an α + α potential since the model is based on a nucleon-nucleon force. However,

NN interactions fitting the α + α phase shifts provide 12C low lying states too strongly

bound. The properties of the 0+
2 Hoyle state are well reproduced, in agreement with

the interpretation of this resonance as a cluster state. Funaki et al. [46] use the ACCC
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method to derive resonance properties. This method is known to require a high accuracy

of the basis [48] and becomes unstable for broad resonances. The authors only find a

2+
2 resonance near 2.6 MeV.

Arai [18] uses the CSM and finds a broad 0+ state near 5 MeV. The properties of

this resonance agree reasonably well within the different models. The two additional 2+

resonances nearly correspond to the semi-microscopic results of Ref. [20]. Notice that

Arai treats resonant states in two ways: with the CSM and with an R-matrix calculation

of the α+8Be phase shifts. Although the latter do not exactly correspond to three-body

phase shifts (8Be is considered as a bound system), they provide a more direct insight

on the continuum properties. In particular, the 2+
2 state is shown to have an important

reduced α width and, consequently, should correspond to the 2+ member of a rotational

band based on the 0+
2 Hoyle state.

2.2. Experimental works

For a long time, only a broad 0+
3 state near Ecm ≈ 3 MeV (Γ ≈ 3 MeV) was reported

in data compilations [1]. The presence of broad 0+ states above the 3α threshold was

confirmed by β-decay experiments [49, 50] from 12B and 12N, but precise values for the

energies and widths could not be derived. It was, however, suggested that broad states

may overlap with each other and make the data analysis rather complicated.

More recently, some advances have been performed in the search for a 2+
2 state.

The interest for this state is twofold. According to most theoretical predictions, the

Hoyle state should be considered as the bandhead of a 0+ rotational band. Then, the

existence of a 2+ resonance would be a strong support to cluster theories. On the

other hand, this resonance should affect the triple-α reaction rate at high temperatures

(T ≥ 109K). A first evidence for a 2+ broad state was reported by Itoh et al. [21, 51]

near Ex ≈ 9−10 MeV. More recently, Freer et al. [22] performed a 12C(p,p’) experiment

to various 12C states, and conclude on a possible 2+ state at 9.6±0.1 MeV, with a width

of Γ = 0.6±0.1 MeV. These properties agree nicely with microscopic predictions [9, 18].

Diget et al. [49] populate 12C continuum states by β decay of 12B and 12N and investigate

breakup channels. They conclude on the possible existence of a 2+ state in the range

Ex = 10.5 − 11 MeV.

3. Outline of the theory

3.1. The hyperspherical formalism

For 3-body systems, the Schrödinger equation associated with Eq. (1) can be solved with

the hyperspherical approach [30]. The hyperradius ρ and hyperangle α are deduced from

the scaled Jacobi coordinates

x =
√

2(r1 − r2),

y =

√
32

12

[
r3 −

r1 + r2

2

]
, (3)
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as

ρ =
√

x2 + y2,

α = arctan(y/x). (4)

Of course, two other choices can be made for x and y, with permutations of the α

particles. The basis functions associated with these different choices are related to each

other by a unitary transform involving the Raynal-Revai coefficients [52].

In this coordinate system, the 3-body kinetic energy involves the operator K2

which generalizes the concept of angular momentum in 2-body systems. It commutes

with `2
x and `2

y and their common eigenfunctions YJM
γK (Ω5) are known analytically (see

Ref. [53] for details). The eigenvalue of K2 is K(K + 4) where the integer K is the

hypermomentum quantum number. In these definitions, Ω5 = (Ωx, Ωy, α) and γ stands

for γ = (`x, `y) where (`x, `y) are the angular momenta associated with (x, y). The total

angular momentum J results from the coupling of `x and `y.

The wave function in partial wave Jπ is then expanded over hyperspherical

harmonics as

ΨJMπ(ρ, Ω5) = ρ−5/2
∑

γK

χJπ
γK(ρ) YJM

γK (Ω5), (5)

where the hyperradial functions χJπ
γK(ρ) have to be determined. The Schrödinger

equation is replaced by a system of coupled differential equations
[
− ~2

2mN

(
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

)
− E

]
χJπ

γK(ρ) +
∑

K′γ′

V Jπ
Kγ,K′γ′(ρ) χJπ

γ′K′(ρ) = 0, (6)

where the matrix elements of the 2-body potentials are defined as

V Jπ
Kγ,K′γ′(ρ) = 〈YJM

γK (Ω5)|
3∑

i>j=1

Vαα(rj − ri)|YJM
γ′K′(Ω5)〉. (7)

In Eq. (7), the integrals over Ωx and Ωy are performed analytically, whereas a numerical

quadrature is used for the integral over the hyperangle α. With the Raynal-Revai

coefficients [52] the evaluation of the potential matrix elements (7) is rather easy. In

Eq. (5), a truncation must be done in the summation over K; the maximum K value is

denoted as Kmax. The number of γK components increases rapidly when Kmax increases.

In Ref. [54], we have solved the system (6) with the Lagrange-mesh method [55].

Each hyperradial wave function is expanded as

χJπ
γK(ρ) =

N∑

i=1

cJπ
γKi ϕi(ρ), (8)

where ϕi(ρ) are N Lagrange functions and cJπ
γKi variational coefficients. The use of these

basis functions greatly simplifies the calculations, since matrix elements computed at

the Gauss approximation do not need any numerical integral. In spite of its simplicity

the method is very accurate (see Ref. [55] for futher detail).
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The 3α wave function must be symmetrized under α exchanges. In other words,

the wave function (5) must satisfy

SΨJMπ =
1

3
(1 + S13 + S23)Ψ

JMπ = ΨJMπ, (9)

where Sij is the exchange operator between particles i and j. Symmetry between

particles 1 and 2 is automatic, since only even partial waves `x are included in expansion

(5). Eq. (9) can be easily solved with the help of the Raynal-Revai coefficients. For a

given K value, operator S is diagonalized, which provides eigenvalues 1 and 0. Only

the former eigenstates are kept in the basis.

3.2. The R-matrix theory for 3-body continuum states

The treatment of three-body continuum states (E > 0), with exact three-body

asymptotic conditions, is recent [56, 31]. In the R-matrix method [57, 58], the

configuration space is divided into two regions: the internal region (with radius a)

where the nuclear force must be taken into account, and the external region where

the potentials have reached their asymptotic (Coulomb) behaviour. Consequently the

solutions of the system (6) are written as,

χJπ
γK,int(ρ) =

N∑

i=1

cJπ
γKi ϕi(ρ), for ρ < a. (10)

In the external region, potentials (7) are assumed to be given by their asymptotic

form. As discussed in Refs. [59, 31], the Coulomb part of potential (7) tends to

V Jπ,Coul
Kγ,K′γ′(ρ) → zJπ

Kγ,K′γ′
e2

ρ
, (11)

where matrix zJπ represents 3-body effective charges. They are computed from the

2-body Coulomb potentials. An example is given in Table 2 for J = 0+, and for K ≤ 8.

In most cases the non-diagonal elements are small compared to the diagonal terms.

Neglecting non-diagonal terms provides uncoupled solutions of Eq. (6). Accordingly,

the external solution reads, for an entrance channel γ′,

χJπ
γK,ext(ρ) = CJπ

γK

[
H−

γK(kρ)δγγ′δKK′ − UJπ
γK,γ′K′H+

γK(kρ)
]
, (12)

where k =
√

2mNE/~2 is the three-body wave number (mN is the nucleon mass). In

Eq. (12), CJπ
γK is a normalization coefficient, UJπ is the three-body collision matrix and

the incoming and outgoing functions H±
γK(x) are defined as

H±
γK(x) = GK+ 3

2
(ηγK , x) ± iFK+ 3

2
(ηγK , x), (13)

where the Sommerfeld parameters ηγK are given by

ηγK = zJπ
γK,γK

mNe2

~2k
, (14)

and therefore depend on the channel.

According to the R-matrix formalism, matrix elements between basis functions

ϕi(ρ) must be computed over the internal region. Then the use of the Bloch operator
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Table 2. Effective charges zJπ
Kγ,K′γ′ [see Eq. (11)] for J = 0+ (`x = `y, `′x = `′y).

K, `x

K ′, `′x 0,0 4,0 6,0 8,0 4,2 6,2 8,2 8,4
0,0 28.81 2.47 −2.75 0.88 3.50 2.75 1.05 1.40
4,0 2.47 22.05 −4.92 5.36 6.02 −0.65 −0.08 0.63
6,0 −2.75 −4.92 27.01 −5.56 −1.05 −9.00 −1.69 0.46
8,2 0.88 5.36 −5.56 23.07 −1.13 −2.82 1.87 3.40
4,2 3.50 6.02 −1.05 −1.13 26.31 4.99 3.24 3.83
6.2 2.75 −0.65 −9.00 −2.82 4.99 27.01 1.58 4.85
8,2 1.05 −0.08 −1.69 1.87 3.24 1.58 19.72 7.06
8,4 1.40 0.63 0.46 3.40 3.83 4.85 7.06 23.37

[58] makes the kinetic energy Hermitian, and ensures the continuity of the derivative of

the wave function at ρ = a. The matching between the internal and external solutions

provides the collision matrix UJπ. A strong test of the calculation is that the collision

matrix should not depend on the channel radius a and on the number N of basis

functions, provided that they are large enough to meet the R-matrix requirements.

As shown in Ref. [31], an important issue in 3-body scattering states is the long

range of the three-body potential (7). At large distances, the nuclear part of this

potential behaves as

V Jπ,Nuc
Kγ,K′γ′(ρ) −→

ρ→∞

vJπ
0,Kγ,K′γ′

ρ3
, (15)

even with short-range two-body interactions. This property arises from the definition of

the hyperspherical coordinates. Even for large ρ values, two particles can still be close

to each other and strongly interact. Constants vJπ
0,Kγ,K′γ′ can be quite large (examples

are given in Ref. [31]). For this reason, the R-matrix radius takes unusually large

values (typically a ∼ 800 − 1000 fm for the 3α system) to ensure that potential (15) is

negligible compared with the centrifugal and Coulomb terms (for comparison, typical

values in two-body scattering is a ≈ 10 fm [58]).

To avoid huge basis sizes, propagation techniques are necessary. We follow the

method of Ref. [31], where the R-matrix is computed at some channel radius a0 with

the basis (10). Typical values of a0 are a0 ≈ 30−40 fm with N ≈ 40−50 basis functions.

At this radius the nuclear interaction is far from being negligible, and the asymptotic

form (12) is not valid. Consequently the R-matrix determined at a0 is propagated

up to ρ = a with the Numerov algorithm. This technique is based on an analytical

approximation of the nuclear potential in the region a0 ≤ ρ ≤ a

V Jπ,Nuc
γK,γ′K′(ρ) ≈

∞∑

k=0

vk

ρ2k+3
, (16)

where coefficients vk are computed from integrals of the two-body potentials. They

depend on the different quantum numbers. Expansion (16) is a generalization of the

asymptotic behaviour (15). In practice the summation over index k is truncated at
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some kmax value, which can be quite large in the 3α system to achieve a good accuracry

(kmax ≈ 30 − 40).

This formalism is limited to local potentials, and is not valid for non-local

interactions, where expansion (16) must be adapted. Consequently current calculations

are restricted to local α + α interactions. This means that deep potentials cannot be

used since the associated projector (2) is non-local. Only shallow potentials, such as

the Ali-Bodmer potential, can be currently considered to derive three-body phase shifts.

Further developments are still necessary to deal with non-local interactions in the R-

matrix formalism.

The collision matrix may involve many channels, in particular for large Kmax

values, and is in general analyzed through its eigenvalues. In addition, the Coulomb

contribution should be removed from the eigenphases. As explained in Ref. [31] this is

achieved by evaluating the pure Coulomb collision matrix UJπ
C (the nuclear potential is

set to zero). Then the nuclear collision matrix UJπ
N is defined as

UJπ =
(
U Jπ

C

)1/2

UJπ
N

(
UJπ

C

)1/2

. (17)

Matrix UJπ
N is easily shown to be symmetric and unitary. Its eigenvalues can therefore

be written as

uJπ
N,i = exp(2iδJπ

i ), (18)

where the eigenphases δJπ
i are real. The number of eigenphases is of course equal to the

number of channels γK.

3.3. The Complex Scaling method

The R-matrix theory provides 3-body wave functions at any scattering energy. The

calculation of the phase shifts is obviously the optimal way to investigate the continuum,

and in particular broad resonances. In practice, however, dealing with the continuum

is an heavy task, especially for three-body systems. As mentioned before, only

shallow local potentials can be currently employed. For these reasons a number of

approximate methods have been developed. The common idea is to derive resonance

properties (energy and width) from bound-state calculations, which only requires slight

modifications of well mastered techniques. In the CSM [60, 61, 28, 62], the space radial

coordinate r and the momentum p are transformed as

U(θ)r = r exp(iθ),

U(θ)p = p exp(−iθ), (19)

where θ is the scaling angle. Under this transformation the Schrödinger equation reads

H(θ)Ψ(θ) = E(θ)Ψ(θ), (20)

with

H(θ) = U(θ)HU(θ)−1. (21)
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The diagonalization of H(θ) with square-integrable functions can be done in various

bases, such as Gaussian [38] or Lagrange basis [54]. The ABC theorem [60, 61]

demonstrates that this diagonalization provides continuum states along straight lines in

the complex plane, rotated by an angle 2θ from the positive real axis. On the contrary,

resonant states are not modified under variations of θ. The resonance energy ER and

width Γ are determined from

E(θ) = ER − iΓ/2, (22)

and are independent (at the numerical accuracy of the calculation) of θ. The main

interest for the CSM is its simplicity. Standard three-body codes can be easily adapted

by introducing transformation (17), and by diagonalizing a complex matrix. Of course

broad resonances require large rotation angles (tan 2θ ≥ Γ/2ER). A limitation of the

CSM is that the potential must be analytic. In addition, only the total width of a

resonance can be determined. In coupled-channel calculations the partial widths in the

different channels cannot be computed individually. Further detail, and in particular

applications to three-body systems in nuclear physics, can be found in Ref. [62].

4. Results

4.1. Conditions of the calculations

The calculations are performed with two α + α potentials widely used in the literature:

the shallow Ali-Bodmer (AB) potential [41] (`-dependent potential d), and the deep

potential of Buck et al. (BFW) [24]. Both interactions reproduce fairly well the α + α

phase shifts up to E ≈ 20 MeV, i.e. below the proton threshold in 8Be. As the BFW

potential introduces spurious 3α states in the 12C spectrum, the projector (2) is used

to remove α + α Pauli forbidden states. According to Ref. [27], the two-body forbidden

states are defined as harmonic-oscillator orbitals. The oscillator parameter b is chosen

as in Ref. [44], i.e. b = 1.395 fm. The constant Λ is taken as 104 MeV, but all results

are insensitive to that choice provided it is large enough (Λ & 103 MeV).

As discussed in Section 2, both potentials have been used by several authors to

investigate 12C bound states. It is well known that a 3α potential must be introduced

to reproduce the ground-state energy. According to Ref. [34], we choose the three-body

interaction as

Vααα(ρ) = v3 exp(−(ρ/ρ3)
2), (23)

with the range ρ3 = 6 fm. This phenomenological potential only depends on the

hyperradius, and can be easily introduced in the hyperspherical equations (6). The

amplitude v3 is adjusted, for each potential and angular momentum, on the experimental

energies. The values are given in Table 3, which confirms that the 3α potential must

be attractive for the AB potential, and repulsive for the BFW potential. For the AB

potential, v3 strongly depends on angular momentum, whereas this dependence is weak

for the BFW potential.
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Table 3. Amplitude v3 (in MeV) of the 3α potential (23) for the AB and BFW α + α

interactions.

Jπ AB BFW

0+ −22.0 23.3
2+ −11.9 25.2

Calculations with the CSM method are performed with Lagrange-Laguerre basis

functions [54] (typically N = 50), and a scaling parameter h = 0.3 fm. The R-

matrix calculations (see Ref. [31] for detail) are performed with 50 Lagrange-Legendre

functions with a channel radius a0 = 40 fm. The R-matrix is then propagated up

to a = 1000 fm, where the wave functions have reached their asymptotic behaviour

(12). The sensitivity with respect to these parameters is quite low (less than 1◦ in the

phase shifts). As continuum states are known to converge slowly in the hyperspherical

formalism [32, 56, 31], large Kmax values must be used in the expansion (5). However,

our aim is not to derive fully converged values, but to investigate qualitatively the 12C

spectrum above the 3α threshold. For J = 0+, we use Kmax = 44, which represents

144 values of quantum numbers γK. For J = 2+, the number of channels is of course

larger, and the Kmax value has to be reduced. We use Kmax = 24, which represents 120

channels.

4.2. Continuum states with the AB potential

We start the analysis without three-body potential (v3 = 0). In Fig. 1, we show the 0+

eigenphases (18) and the corresponding complex energies (22). Here and in the following,

bound states (Re(E) < 0) are not shown in the figures, but are given in Table 4. We

analyze the convergence with respect to Kmax (Kmax = 36, 40 and 44 are presented).

The first three eigenphases (i = 1, 2, 3 in Eq. (18)) present a narrow resonance between

1 and 2 MeV. These resonances are less and less narrow when energy increases. Their

energy and width deduced from the phase shifts are very close to those obtained with

the CSM calculations, but the phase shifts also provide information off resonances. The

bound-state and resonance energies for Kmax = 44 are displayed in Table 4 which shows

that the lowest 0+ state is found at −1.60 MeV. The underbinding of 12C with the AB

potential is well known [5, 40], and can be solved by using an attractive three-body

interaction.

The J = 0+ eigenphases and complex energies with the 3α potentials of Table 3 are

displayed in Fig. 2, for Kmax = 44. To check the stability of physical resonances with

respect to the scaling angle, we use two values: θ = 0.25 and θ = 0.30. Several states

are stable and can also be observed in the eigenphases. The second 0+ state is located

at −0.12 MeV (see Table 4) but, as for v3 = 0, several additional resonances between

0.5 and 2 MeV are observed in the eigenphases, and confirmed by the CSM method. A

further narrow state near 3 MeV (Γ ≈ 0.4 MeV) is obtained.



Three-alpha continuum states 13

0

60

120

180

240

0 1 2 3 4 5 6

E (MeV)
δ

(d
eg

.)

J=0+, v3=0 i=1

i=2

i=3

-3

-2

-1

0

0 1 2 3 4 5
Re(E)  (MeV)

Im
(E

)
(M

eV
)

Kmax=44
Kmax=40
Kmax=36

Figure 1. Three-α phase shifts (upper panel) and complex energies (lower panel,
θ = 0.25) for the Ali-Bodmer potential (J = 0+) without 3-body potential (v3 = 0).
In the phase shifts, dotted, dashed and solid lines correspond to Kmax = 36, 40 and
44, respectively.
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Figure 2. Three-α phase shifts (upper panel) and complex energies (lower panel) for
the Ali-Bodmer potential (J = 0+), with a 3-body potential v3 = −22.0 MeV. Complex
energies are displayed for two angles: θ = 0.25 (crosses), and θ = 0.30 (circles).
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Table 4. Energies ER and widths Γ (in MeV) with the AB potential.

J = 0+ J = 2+

v3 = 0 v3 = −22.0 MeV v3 = 0 v3 = −11.9 MeV

−1.60 −7.16 0.46, 0.003 −3.00
0.92, 0.06 −0.12 1.6, 0.2 1.6, 0.2
1.15, 0.09 0.93, 0.07 2.3, 0.6 1.8, 0.2
1.4, 0.3 1.2, 0.1 2.4, 1.2
1.7, 0.6 1.5, 0.5 3.9, 0.03

1.9, 0.8
3.1, 0.4

The results for J = 2+ are presented in Fig. 3. Without the 3α potential the lowest

2+ state is unbound (see Table 4), and would show up as a sharp resonance in the phase

shifts. The CSM analysis shows that several resonances are insensitive to the θ value,

and can be observed in the phase shifts. With v3 = −11.9 MeV, a narrow state is found

near 4 MeV.
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Figure 3. Continuum states for J = 2+ with the Ali-Bodmer potential. Upper panel:
three-α phase shifts (solid lines: v3 = 0, dotted lines: v3 = −11.9 MeV). Lower panel:
complex energies for v3 = 0 and v3 = −11.9 MeV with two scaling angles (θ = 0.25
and 0.30).

The present analysis may help in understanding the recent results of Ogata et al.

on the 3α process within the CDCC framework [15]. Although the models are different,

both provide three-body wave functions which should tend to the exact solution of the

Schrödinger equation. Ogata et al. find a triple-α reaction rate about 1020 times larger
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than previously accepted at a temperature T = 107 K. This huge factor, inconsistent

with stellar models [63], might be explained by additional 0+ resonances. The α + α

potential used by Ogata et al. is very similar to the Ali-Bodmer potential, and is also

expected to give rise to additional resonances in the CDCC approach. This would

explain the unexpectedly large factor obtained in the CDCC 3α reaction rate.

4.3. Continuum states with the BFW potential

As explained in Section 3.2, the analysis of continuum states with a deep potential is

limited to the CSM. The reason is that the projector over forbidden states (2) introduces

non-locality in the three-body equations, even at large ρ values.

The complex energies for J = 0+ and 2+ are presented in Fig. 4 for two scaling angles

(see also Table 5). Without a three-body force, the low-lying states are overbound.

This result is well known [5, 26]. In these conditions, narrow resonances show up near

E = 1.45 MeV (J = 0+) and E = 1.84 MeV (J = 2+). Introducing a 3α potential moves

the 0+
2 Hoyle state slightly above the experimental energy (E = 0.38 MeV) and gives

rise to 0+ broad resonances near 2.3 and 4.8 MeV. These states are quite stable when

changing the scaling angle (see Fig. 4). A similar behaviour is obtained for J = 2+.

With v3 = 25.1 MeV, we obtain a broad resonance (Γ = 0.8 MeV) at ER = 3.6 MeV.
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Figure 4. Complex energies with the BFW potential for J = 2+ with and without a
3α potential.

Our results with the BFW potential are qualitatively in agreement with those of

Kurokawa and Katō [20] (see Table 1), who use a deep potential derived from a folding
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model. Our 0+
3 and 2+

2 broad resonances are at slightly higher energies. The present

calculations suggest that the description of the 3α continuum is very sensitive to the

type of potential. The deep BFW potential provides results consistent with experiment,

in contrast with shallow potentials, such as the AB interaction, which predict several

narrow states, not supported by experiment.

Table 5. Energies ER and widths Γ (in MeV) with the BFW potential.

J = 0+ J = 2+

v3 = 0 v3 = 23.3 MeV v3 = 0 v3 = 25.1 MeV

−20.62 −7.18 −17.17 −3.01
−1.26 1.31, 0.02 1.84, 0.0017 3.6, 0.8

1.45, 0.07 2.3, 1.1 3.5, 0.2
2.7, 1.3 4.8, 1.5
4.5, 1.5

5. Conclusion

The theoretical study of the 3α continuum represents a typical example of open problem.

Our goal is of course not to provide a definite solution to the 3α problem, but to

draw attention on the strong sensitivity of continuum states on the α + α potential.

Although the physics of 12C above the α threshold is an important issue in nuclear

physics and in nuclear astrophysics, it remains unclear. A rigorous treatment of the

continuum requires the calculation of the phase shifts which provides, not only resonance

properties, but also information on the 3α process off resonances. Until now, three-

body continuum calculations were essentially limited to the α+n+n system, where the

phase shifts suggest broad resonances at low energies. In the 3α system, the phase shifts

computed with the AB potential present several narrow resonances, which do not have

experimental counterparts. The existence of such narrow states could be an explanation

for the huge triple α reaction rate of Ogata et al. [15], who use an α + α potential very

similar to the AB potential.

Of course R-matrix calculations can only be performed by neglecting non-diagonal

terms of the Coulomb interaction at large distances (see the discussion in Section 3.2).

However, the consistency between the phase shift analysis and the CSM results, as well

as the stability of the phase shifts against variations of different parameters (R-matrix

radii a0 and a, number of basis functions) indicate that this approximation should not

affect the conclusions.

An important output of our work is the sensitivity of the 3α continuum properties

with respect to the choice of the α + α potential. This result is not surprising as the

bound-state spectrum is also dependent on the potential (see for example Ref. [5]).

Calculations with the deep BFW potential are currently limited to the CSM method,

but provide resonance energies which significantly differ from the AB interaction. In
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addition to the 0+
1 , 0+

2 and 2+
1 states, only broad resonances beyond 3 MeV are found.

The 2+
2 resonance might correspond to the new state observed in recent experiments

[22, 49].

Improvements of the present study could be done by using non-local potentials.

Recent works propose non-local α+α interactions derived either from the RGM kernels

[44] or from a phenomenological approach [45]. In particular the potential of Ref. [45]

reproduces simultaneously the experimental energies of the 0+
1 and 0+

2 states in a 3α

description of 12C. However performing continuum calculations with non-local potentials

strongly increases the complexity of the model, in particular for the R-matrix theory.

An alternative approach is to use microscopic cluster models, which do not rely on α+α

potentials, but on a nucleon-nucleon interaction. Calculations of the α+8Be have been

performed [9, 18], but the determination of the 3α phase shifts in this framework is still

a challenge for the future.
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