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A See-Saw S4 model for fermion masses and mixings

Davide Meloni 1

Institut für Theoretische Physik und Astrophysik ,
Universität Würzburg, D-97074 Würzburg, Germany

Abstract

We present a supersymmetric see-saw S4 model giving rise to the most general
neutrino mass matrix compatible with Tri-Bimaximal mixing. We adopt the S4×Z5

flavour symmetry, broken by suitable vacuum expectation values of a small number
of flavon fields. We show that the vacuum alignment is a natural solution of the most
general superpotential allowed by the flavour symmetry, without introducing any
soft breaking terms. In the charged lepton sector, mass hierarchies are controlled
by the spontaneous breaking of the flavour symmetry caused by the vevs of one
doublet and one triplet flavon fields instead of using the Froggatt-Nielsen U(1)
mechanism. The next to leading order corrections to both charged lepton mass
matrix and flavon vevs generate corrections to the mixing angles as large as O(λ2

C).
Applied to the quark sector, the symmetry group S4 × Z5 can give a leading order
VCKM proportional to the identity as well as a matrix with O(1) coefficients in the
Cabibbo 2 × 2 submatrix. Higher order corrections produce non vanishing entries
in the other VCKM entries which are generically of O(λ2

C).

1e-mail address: davide.meloni@physik.uni-wuerzburg.de



1 Introduction

The Tri-Bimaximal structure (TBM) [1] of the neutrino mixing matrix is remarkably in
agreement with the experimental results in the neutrino sector [2]. Within 1-σ error, the
values of the mixing angles can be approximated by their TBM values [3]:

tan2 θ23 = 1 tan2 θ12 =
1

2
sin θ13 = 0 . (1)

The simplified structure of the mixing matrix suggested the possibility to be explained
using some discrete non-abelian groups, added to the Standard Model, and containing
a triplet representations to fit the number of lepton families observed in Nature. The
symmetry A4 [4, 5] (also in the context of Grand Unified theories [6]) emerged as a
natural candidate because it is the smallest discrete group with triplet representation and
it is sufficiently manageable to be broken differently in the charged and neutral lepton
sectors, a necessary condition if we want to get a mixing matrix different from the identity.
In the context of see-saw models, it is interesting to observe that the TBM structure in
A4 is generally associated with a well defined relations among the complex eigenvalues of
the light neutrino mass matrix:

1

m3

=
1

m1

− 2

m2

, (2)

implying that most A4 models are quite predictive because of the reduced number of
independent parameters. It should be stressed, however, that the realisation of the TBM
strongly relies on the choice of symmetry breaking pattern. In fact, in the neutrino sector
the group A4 is usually broken into a subgroup generated by the matrices

Uµ−τ =

 1 0 0
0 0 1
0 1 0


and

G =

 −1 2 2
2 −1 2
2 2 −1

 ,

which, in the basis where charged leptons are diagonal, leave invariant the most general
neutrino mass matrix diagonalized by TBM:

mlight =

 x y y
y x + v y − v
y y − v x + v

 . (3)

It turns out that the representations of A4 only contain G and the invariance under Uµ−τ

arises accidentally, as a consequence of the specific field content of the model. From this
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point of view, the group S4 [7]-[9] arises as a natural candidate as a flavour group for neu-
trino mixing because one can find a suitable representation of it containing simultaneously
the previous elements. It should also be noted that the extension of the A4 symmetry
from lepton to quarks seems to be complicated by the absence of doublet representations,
whose use is suggested by the heaviness of the top quark, which S4 possesses instead.
However, the problem of reproducing small mixing angles and strong mass hierarchy in
the up-sector at the same time can only be partially alleviated by the bidimensional rep-
resentations of S4 because one or more fine tunings between the relevant Yukawas are
invoked to correctly reproduce some of the mup/mdown quark mass ratios. In this paper,
we build a constrained see-saw S4-based model for fermion masses and mixing which,
compared to models already existent in the literature, realises the most general neutrino
mass matrix diagonalized by TBM at leading order (LO). This is obtained allowing the
right-handed neutrinos to couple to singlet, doublet and triplet flavon fields. The light
neutrino masses depend on six complex Yukawa parameters and the typical A4 sum rule
of eq.(2) does not hold, leaving the model less predictive but more manageable. The
mass hierarchy among charged leptons is obtained breaking the S4 symmetry by the vevs
of a doublet and triplet flavon fields, without invoking any Froggatt-Nielsen U(1) sym-
metry. The unwanted couplings are forbidden imposing an additional Z5 symmetry to
the model. The resulting S4 × Z5 symmetry is minimal from the point of view of the
flavour symmetry and field content. We extend the S4×Z5 symmetry to the quark sector
including the left-handed components into triplet representations (and not into doublets,
as usually done); we show that, even using a rigid structure like that proposed in this
paper, some of the relevant features of the quark sector, like a good leading order VCKM

and quark mass ratios, can still be accounted for. The paper is organized as follows: in
Sect.2, we discuss the relevant feature of the S4 symmetry and the structure of the model,
presenting leading order results on neutrino as well as charged lepton mass matrices; in
Sect.3 we compute the next to leading order corrections (NLO) to the vacuum alignment
and the relevant higher order operators, both responsible for deviations from TBM mix-
ing; in Sect.4 we discuss some phenomenological results obtained from our model with all
Yakawas constrained to be O(1) and we also show that the whole model allows for ac-
ceptable leptogenesis parameters. Sect.5 is devoted to the quark sector whereas in Sect.6
we draw our conclusions.

2 The structure of the model

We introduce here the structure of the model which leads to TBM in first approximation.
We recall that S4, the permutation group of 4 objects, can be generated by the two
elements S and T obeying the relations (a ”presentation” of the group):

S4 = T 3 = 1, ST 2S = T . (4)

The action of the generators S and T can be assigned as follows:

(1234) →S (2341)
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(1234) →T (2314)

and the 24 elements of the group, belonging to 5 conjugate classes, are:

C1 : 1

C2 : S2 = (3412), TS2T 2 = (4321), S2TS2T 2 = (2143)

C3 : T, T 2 = (3124), S2T = (1423), S2T 2 = (2431), STST 2 = (4132)

STS = (4213), TS2 = (4132), T 2S2 = (1342)

C4 : ST 2 = (1243), T 2S = (4231), TST = (1432)

TSTS2 = (3214), STS2 = (1324), S2TS = (2134)

C5 : S, TST 2 = (2413), ST = (3142), TS = (3421), S3 = (4123), S3T 2 = (4312)

The inequivalent irreducible representations of S4 are 11, 12, 2 and 3. It is immediate to
see that one-dimensional unitary representations are given by:

11 : S = 1 T = 1
12 : S = −1 T = 1

(5)

while the two-dimensional unitary representation, in a basis where the element T is diag-
onal, is given by:

T =

(
ω 0
0 ω2

)
, S =

(
0 1
1 0

)
. (6)

Finally, the three-dimensional unitary representation is as follows:

31 : T =

 1 0 0
0 ω2 0
0 0 ω

 , S =
1

3

 −1 2ω 2ω2

2ω 2ω2 −1
2ω2 −1 2ω

 , (7)

where ω = e2πi/3 = (−1 +
√

3)/2, whereas in the 32 representation the generator T is the
same but S is the opposite. It is useful to remind the product rules between the group
representations:

11 ⊗ ξ = ξ

12 ⊗ 12 = 11, 12 ⊗ 2 = 2, 12 ⊗ 3i = 3j (8)

2 ⊗ 2 = 11 ⊕ 12 ⊕ 2, 2 ⊗ 3i = 31 ⊕ 32, 3i ⊗ 3i = 11 ⊕ 2 ⊕ 31 ⊕ 32,

31 ⊗ 32 = 12 ⊕ 2 ⊕ 32 ⊕ 32,

where the indeces i, j = 1, 2, with i 6= j and ξ indicates any other representation. The
Clebsch-Gordan coefficients in the basis presented above are reported in Appendix A.

The general neutrino mass matrix of eq.(3) can be obtained in the framework of the
see-saw mechanism,

mlight = −mT
D m−1

M mD , (9)
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where both Majorana (mM) and Dirac (mD) mass matrices are needed. They are derived
from the most general lagrangian invariant under S4 × Z5 and containing fields in any of
the S4 representations, which are singlets, doublets and triplets. The group S4 is broken
by means of suitable vev’s of Standard Model singlet fields (flavons), whose alignments
have to guarantee the correct entries of the Majorana and Dirac mass matrices. Group
theoretical considerations help in understanding the pattern of symmetry breaking needed
to generate the wanted matrix; in the representation of App.A, the elements S2 and
(TSTS2) leave invariant the mlight of eq.(3), that is

S2 mlight S
2 = mlight

(TSTS2) mlight (TSTS2) = mlight .

This means that the vevs of the flavon fields in the neutrino sector have to be invariant
under the subgroup generated by them. This strong condition for the flavon alignment is
realized, for the triplet representation, by the field configuration

〈ϕS〉 = vS (1, 1, 1) . (10)

For the bidimensional representation, the same matrices should leave the vev of a doublet
field invariant; if we choose

〈∆〉 = v∆ (1, 1) (11)

these correspond to the first matrix of the groups C4,5 in the doublet representation.
Therefore, we have found a scalar field configuration which remains invariant under the
action of the same matrices that leave mlight invariant. In addition to the previous fields,
we also include in the model a singlet flavon field ξ, with a non-vanishing vev. To realize
the classical see-saw mechanism, we need to introduce right-handed neutrinos, which we
assume to transform as a triplet representation of S4. To avoid large fine-tuning from
terms of the form Mνcνc, like those discussed in [5], we properly tune the νc charge
under Z5

1; whatever this Z5 charge is, if we want the singlet, doublet and triplet flavons
to contribute to the neutrino mass matrix their charges have to be the same. We also
attribute a Z5 charge to the hu higgs boson in order to avoid the Weinberg operator
O5 = `hu`hu at the leading order [11], where ` is a triplet field of the SU(2) Standard
Model lepton doublets. This also forbids a leading order Dirac mass term of the form
(νc`) hu, which is then generated at the O(1/Λ) through couplings with the same flavon
fields ξ, ∆ and ϕS. The Z5 charges for the matter fields as well as for flavons and driving
fields (discussed later) are reported in Tab.1, where we used the symbol ω = e2πi/5 to
indicate the Z5 unit-charge.

The lagrangian in the neutrino sector is then as follows:

Wν =
1

Λ
νc` hu (yν1 ϕS + yν2 ∆ + yν3 ξ) + νcνc (a ξ + b ϕS + c ∆) , (12)

1Similar considerations, but using two discrete groups, have been discussed in [10].
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Field νc ` ec µc τ c hd hu ϕT η ∆ ϕS ξ ϕT
0 ϕS

0 ∆0 ρ0

S4 3 31 12 11 11 11 11 31 2 2 31 11 31 31 2 11

Z5 ω2 1 ω3 ω2 ω 1 ω2 ω4 ω4 ω ω ω ω2 ω3 ω3 ω2

U(1)R 1 1 1 1 1 0 0 0 0 0 0 0 2 2 2 2

Table 1: Transformation properties of leptons, electroweak Higgs doublets and flavons
under S4 × Z5 and U(1)R .

where a, b, c and yνi
are complex Yukawa couplings. The Dirac mass matrix is obtained

from the first term in eq.(12) and it is given by:

mD =
vu

Λ

 2 yν1vS + yν3 u yν2 v∆ − yν1 vS yν2 v∆ − yν1 vS

yν2 v∆ − yν1 vS 2 yν1 vS + yν2 v∆ yν3 u − yν1 vS

yν2 v∆ − yν1 vS yν3 u − yν1 vS 2 yν1 vS + yν2 v∆

 (13)

where vu is the vacuum expectation value of the higgs field hu. The other terms give the
Majorana mass matrix:

mM =

 a u + 2 b vS −b vS + c v∆ −b vS + c v∆

−b vS + c v∆ 2 b vS + c v∆ a u − b vS

−b vS + c v∆ a u − b vS 2 b vS + c v∆

 (14)

whose eigenvalues are:

M1 = a u + 3 b vS − c v∆

M2 = a u + 2 c v∆ (15)

M3 = −a u + 3 b vS + c v∆ .

Using eq.(9), we can derive the light neutrino mass matrix, diagonalized by tri-bimaximal
mixing, whose eigenvalues are:

m1 = −
(vu

Λ

)2 (3 yν1 vS − yν2 v∆ + yν3 u)2

a u + 3 b vS − c v∆

m2 = −
(vu

Λ

)2 (2 yν2 v∆ + yν3 u)2

a u + 2 c v∆

(16)

m3 =
(vu

Λ

)2 (3 yν1 vS + yν2 v∆ − yν3 u)2

a u − 3 b vS − c v∆

.

We see that the neutrino masses depend on six unrelated complex Yukawa parameters,
which offer more freedom to tune mass differences and then recover the phenomenology
associated to neutrino oscillation. Notice also that no sum rules can be found in this case
among complex eigenvalues.
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2.1 Charged leptons

It could be easier to work in a basis where the charged lepton mass matrix is diagonal.
In order to understand how this naturally arises in an S4-based model, we observe that a
generic diagonal matrix mD

l (with diagonal entries different to each other) is left invariant
under the action of an element A of S4 only if such an element is itself diagonal, with
different phase factors at each diagonal entry, as it can be understood requiring that the
relation

A† mD†
l mD

l A = mD†
l mD

l (17)

is satisfied. The generator T , for example, is such an appropriate matrix. Since the
charged lepton matrix is generated after spontaneous symmetry breaking, one could
choose flavon fields with vevs invariant under the action of T . Instead, we prefer the
choice

〈ϕT 〉 = vT (0, 1, 0) (18)

which, even breaking completely the group S4, not only guarantees the diagonal form of
the mass matrix but also generates the hierarchy among lepton families without introduc-
ing any addition U(1)FN symmetry2. In the same way, we choose the vev for the doublet
flavon η as:

〈η〉 = vη (0, 1) ; (19)

the corresponding lagrangian in the charged lepton sector is as follows:

L =
yτ

Λ
τ c(`ϕT ) hd +

yµ1

Λ2
µc(` ϕT ϕT ) hd +

yµ2

Λ2
µc` (η ϕT ) hd +

ye1

Λ3
ec ` [ϕT (ϕT ϕT )2]32 hd +

ye2

Λ3
ec ` [ϕT (ϕT ϕT )31 ]32 hd + (20)

ye3

Λ3
ec ` [η (ϕT ϕT )31 ]32 hd +

ye4

Λ3
ec ` [ϕT (ηη)2]32 hd +

ye5

Λ2
ec ` (∆ϕS)32 hd .

It is interesting to observe that the last term in the lagrangian would be the dominant
one and would drive the electron mass to a too large value3. However, the leading order
structures of the vacua in eqs.(10)-(11) prevent this term to appear. We will show later
that this is not the case when the next to leading order corrections to the flavon alignment

2This works in the same way as described in [5] noticing that, like in the case of A4, (0, 1, 0)2 = (0, 0, 1)
and (0, 1, 0)3 = (1, 0, 0).

3This is because this term explicitly breaks the residual symmetries needed to generate the correct
hierarchies between the charged lepton masses.
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are taken into account. After symmetry breaking, the mass matrix has the form:

m` =
vd vT

Λ

 1
Λ2

[
v2

T (ye1 + 2 ye2) − 2 vT vη ye3 + v2
η ye4

]
0 0

0 1
Λ

(2 yµ1 vT + yµ2 vη) 0
0 0 yτ

 ,

(21)
where vd = 〈hd〉. To estimate the order of magnitude of vT and vη, we can use the
experimental informations on the ratios of lepton masses. Assuming that the combinations
of the y coefficients are of all of O(1), one obtains:(

mµ

mτ

)
∼ 2 εT + εη ' 0.06(

me

mτ

)
∼ 3 ε2

T − 2 εT εη + ε2
η ' 0.0003

where we introduced the small quantities

εT = vT /Λ εη = vη/Λ .

These relations are satisfied for:

(|εT |, |εη|) ∼ (0.017, 0.029). (22)

so that we can roughly assume that both εT and εη are of the same order of magnitude,
ε ∼ O(λ2

C).

2.2 Superpotential and vacuum alignment

The most general driving superpotential wd invariant under S4 × Z5 with R = 2 is given
by

wd = g1 (ϕS
0 ϕSϕS) + g2 (ϕS

0 ϕS) ξ + g3 ϕS
0 (ϕS∆) +

g4 ∆0(∆∆) + g5 ∆0(ϕSϕS) + g6 ∆0∆ξ + (23)

h1 ϕT
0 (ϕT ϕT ) + h2 ϕT

0 (ηϕT ) + r1 ρ0(ϕT ϕT ) + r2 ρ0(ηη)

= wLO
d (ϕS

0 , ∆0) + wLO
d (ϕT

0 , ρ0)

where all possible contractions among flavon fields are understood. The equations which
fix the components of the vevs of the various flavon fields are obtained solving a system
of equations obtained deriving wd with respect to the component of the driving fields.
The charge assignment reported in Tab.1 allows to separate the equations into two sets
of independent relations among the fields appearing in the neutrino sector and in the
charged one, respectively. For the latter we have:
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∂wd

∂ϕT
01

= 2h1(ϕT
2
1 − ϕT 2 ϕT 3) + h2 (η1 ϕT2 + η2 ϕT3) = 0

∂wd

∂ϕT
02

= 2h1(ϕT
2
2 − ϕT 1 ϕT 3) + h2 (η1 ϕT1 + η2 ϕT2) = 0 (24)

∂wd

∂ϕT
02

= 2h1(ϕT
2
3 − ϕT 1 ϕT 2) + h2 (η1 ϕT3 + η2 ϕT1) = 0

∂wd

∂ρ0

= r1 (ϕT
2
1 + 2 ϕT 2 ϕT 3) + 2 r2 η1 η2 ,

whose solutions are:

〈η〉 = vη (0, 1), 〈ϕT 〉 = vT (0, 1, 0) , vη = −2

(
h1

h2

)
vT . (25)

It is important to observe that the last equation is crucial to avoid another solution of
the form 〈η〉 = (1,−1), 〈ϕT 〉 = (1, 1, 1). We also recover the relation between the vevs vT

and vη of eq.(22). In the neutrino sector, the set of equations read as follows:

∂wd

∂ϕS
01

= 2g1(ϕS
2
1 − ϕS2 ϕS3) + g2 ξ ϕS1 + g3 (∆1 ϕS2 + ∆2 ϕS3) = 0

∂wd

∂ϕS
02

= 2g1(ϕS
2
2 − ϕS1 ϕS3) + g2 ξ ϕS3 + g3 (∆1 ϕS1 + ∆2 ϕS2) = 0

∂wd

∂ϕS
03

= 2g1(ϕS
2
3 − ϕS1 ϕS2) + g2 ξ ϕS2 + g3 (∆1 ϕS3 + ∆2 ϕS1) = 0 (26)

∂wd

∂∆01

= g4 ∆2
1 + g5 (ϕS

2
3 + 2 ϕS1 ϕS2) + g6 ∆2 ξ = 0

∂wd

∂∆02

= g4 ∆2
2 + g5 (ϕS

2
2 + 2 ϕS1 ϕS3) + g6 ∆1 ξ = 0 .

The system is solved by:

〈ξ〉 = u, 〈∆〉 = v∆ (1, 1), 〈ϕS〉 = vS (1, 1, 1) , (27)

with the additional relations

v∆ = −g2 u

2 g3

(28)

v2
S =

(
2g2 g3 g6 − g2

2 g4

12g5 g2
3

)
u2 (29)

and u undetermined. We have explicitly checked that the solutions of the vacuum align-
ment equations are unique; in fact, requiring for the generic field ΦLO to be shifted as
ΦLO + δΦ, we found that the components δΦ are all in the same directions of the corre-
sponding ΦLO; thus, we do not need to introduce any soft term to drive the superportential
into the wanted minimum.
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3 Next to leading order

The discussion of the corrections to the previous results starts with a study of the next to
leading order structure of the vacuum alignments of the flavon fields. It will turn out that
such corrections will be enough to guarantee deviation from TBM at a level compatible
with the recent experimental results.

3.1 Corrections to the vacuum alignment

The next to leading order terms mix the charged lepton and neutrino sectors in a non-
trivial way. We want to find perturbations of (25,27) of the form

〈ϕS〉 = (vS + δvS1 , vS + δvS2 , vS + δvS3)

〈ϕT 〉 = (δvT1 , vT + δvT2 , vT + δvT3)

〈∆〉 = (v∆ + δv∆1 , v∆ + δv∆2) (30)

〈η〉 = (δvη1 , vη + δvη2)

〈ξ〉 = u + δu .

On a general ground, we have eleven unknowns but only nine equations (six from the
two triplets, two from the doublet and one from the singlet); then, we expect two of the
previous shifts to remain unconstrained. To better understand the output of such an
analysis, we study the (ϕS

0 , ∆0) and (ϕT
0 , ρ0) sectors separately.

3.1.1 The (ϕS
0 , ∆0) sector

This sector is responsible for the alignment of the fields ϕS and ∆. At order O(1/Λ),
the three-field terms entering the superpotential are combination of ϕT and η; collecting
these terms, we have:

δwd(ϕ
S
0 ) = Σ3

i=1

si

Λ
ϕS

0 (ϕT ϕT ϕT )i + Σ5
i=4

si

Λ
ϕS

0 (ϕT ηη)i +
s6

Λ
ϕS

0 (ϕT ϕT η)i (31)

δwd(∆0) = Σ2
i=1

δi

Λ
∆0 (ηηη)i + Σ4

i=3

δi

Λ
∆0 (ϕT ϕT η)i +

δ5

Λ
∆0 (ϕT ϕT ϕT )i (32)

where, in both cases, the index i of the trilinear terms represents different S4 contractions.
These NLO corrections have to be evaluated with the leading order vev’s in eq.(25), so
that they do not contain any of the unknowns under investigation. In particular, the
structure of the vacua (25) produces

δwd(∆
0) = 0 ;

and the total LO+NLO part of the superpotential responsible for the alignment of ϕS

and ∆ is given by:

wd(ϕ
S
0 , ∆0) = wLO

d (ϕS
0 , ∆0) + δwd(ϕ

S
0 ) .
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Symmetry arguments allow to understand the structure of the solutions, whose detailed
expressions can be found by explicitly solving the system of equations according to the
procedure of Sect.(2.2). In fact, we see that, after symmetry breaking, the non-vanishing
terms in δwd(ϕ

S
0 ) are proportional to the vector (1, 0, 0), which is left invariant by the S4

element (TSTS2); this has a 2 ↔ 3 symmetry which forces the new vev of ϕS to have
the form (vS + δvS1 , vS + δvS2 , vS + δvS2). At the same time, the shifts δv∆i

should all be
equal because of the vanishing NLO terms δwd(∆

0). An explicit computation confirms
these speculations and we can write the new vacua in the following form:

ϕS = vS


1 + AS

(
ε
ε′

)2
ε

1 + BS

(
ε
ε′

)2
ε

1 + BS

(
ε
ε′

)2
ε

 ∆ = v∆

 1 + A∆

(
ε
ε′

)2
ε

1 + A∆

(
ε
ε′

)2
ε

 (33)

where the coefficients AS, BS and A∆ are linear combinations of leading and next to
leading order coefficients and, for the sake of simplicity, we have introduced the small
parameter ε′ = 〈ϕS〉/Λ ∼ 〈∆〉/Λ ∼ 〈ξ〉/Λ. Notice that the three δvSi

also depend on the
undetermined parameter δu with identical coefficients, so that they can be readsorbed in
the leading order result.

3.1.2 The (ϕT
0 , ρ0) sector

This sector is responsible for the alignment of the fields ϕT and η. At order O(1/Λ), the
new terms in the superpotential are combinations of ϕS, ∆ and ξ; we have:

δwd(ϕ
T
0 ) = Σ3

i=1

ti
Λ

ϕT
0 (ϕSϕSϕS)i + Σ5

i=4

ti
Λ

ϕT
0 (ϕS∆∆)i + (34)

t6
Λ

ϕT
0 (ϕSϕS∆) +

t7
Λ

ϕT
0 (ϕSϕS)ξ +

t8
Λ

ϕT
0 ϕS ξ2 +

t9
Λ

ϕT
0 (ϕS ∆) ξ

and

δwd(ρ0) =
ρ1

Λ
ρ0 (ϕSϕSϕS) +

ρ2

Λ
ρ0 (∆ϕSϕS) +

ρ3

Λ
ρ0 (ϕS ϕS) ξ + (35)

ρ4

Λ
ρ0 (∆ ∆ ∆) +

ρ5

Λ
ρ0 (∆ ∆) ξ +

ρ5

Λ
ρ0 ξ3 .

In this case, the corrections to ϕT
0 do not conserve any of the S4 basis elements and we

expect that the components of 〈ϕT 〉 will point to different directions. Also the 〈η〉’s vev is
not preserved at the next to leading order and, consequently, the shifts δvηi

are different
from zero and different to each other. We choose to treat δvη2 as the second undetermined
parameters, so that the new vacua can be cast in the following form:

ϕT = vT


AT

(
ε′

ε

)2
ε′

1 + BT

(
ε′

ε

)2
ε′

CT

(
ε′

ε

)2
ε′

 η = vη

 Aη

(
ε′

ε

)2
ε′

1 + Bη δvη2

 . (36)
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Notice that a correction proportional to δvη2 also appears in the second component of ϕT

in the form ϕT2 = vT − (h2/2h1) δvη2 + O(ε′) which, using the last relation in eq.(25),
gives ϕT2 = −(h2/2h1) (vT + δvη2) + O(ε′), so that the shift δvη2 can be readsorbed into
a redefinition of vT .

3.2 Charged lepton mass matrix

The next to leading order corrections to the mass matrix of eq.(21) come from the cor-
rections to the vacuum alignments in eqs.(33) and (36) and from higher dimensional
operators, suppressed by a relative O(1/Λ) with respect to each of the terms quoted in
eq.(20). In the following we will study them separately.

3.2.1 Corrections from vacuum alignment

The main features of these corrections are related to the fact that all the vanishing entries
in the matrix of eq.(21) are suppressed by one additional O(1/Λ) factor compared to the
diagonal entries, except for the first line, where the O(1/Λ2) operator in eq.(20) is non
vanishing. As a result, we get the following charged lepton mass matrix at the NLO:

m` = vd

 a1 ε3 a2 ε ε
′2 −a2 ε ε

′2

b1 ε
′3 b2 ε2 b3 ε

′3

c1
ε
′3

ε
c2

ε
′3

ε
c3 ε

 (37)

where the coefficients ai, bi and ci can be easily reconstructed from eqs.(20) and (36). The
matrix m†

` m` can be diagonalized by the unitary transformation

U` =

 1 ( b1
b2

ε
′3

ε2 )∗ ( c1
c3

ε
′3

ε2 )∗

− b1
b2

ε
′3

ε2 1 ( c2
c3

ε
′3

ε2 )∗

− c1
c3

ε
′3

ε2 − c2
c3

ε
′3

ε2 1

 . (38)

so that, at the lowest order in ε′, the coefficients of the electron row in eq.(37) do not
contribute. From the matrix in eq.(38), we can compute the UPMNS mixing matrix from
the lepton sector only:

UPMNS = U †
` UTBM =

√
2
3

+ 1√
6
(a∗ + b∗)

(
ε
′3

ε2

)∗
1√
3
− 1√

3
(a∗ + b∗)

(
ε
′3

ε2

)∗
1√
2
(a∗ − b∗)

(
ε
′3

ε2

)∗

−
√

1
6

+
√

2
3
a

(
ε
′3

ε2

)
+ 1√

6
c∗

(
ε
′3

ε2

)∗ √
1
3

+ 1√
3
a

(
ε
′3

ε2

)
− 1√

3
c∗

(
ε
′3

ε2

)∗
−

√
1
2
− c∗

(
ε
′3

ε2

)∗

−
√

1
6

+ 1√
6
(2b − c)

(
ε
′3

ε2

) √
1
3

+ (b + c)
(

ε
′3

ε2

) √
1
2
−

√
1
2
c

(
ε
′3

ε2

)


(39)

where a = b1/b2, b = c1/c3 and c = c2/c3. Then, any entries of UTBM get corrected by
terms of O(ε′3/ε2) which can be as large as O(λ2

C) to fit the experimental data.
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3.2.2 Corrections from higher dimensional operators

For the electron case, there are many of such operators, coming from the following con-
tractions: (

∆3ϕT

) (
∆3η

) (
ϕ3

SϕT

) (
ϕ3

Sη
) (

∆2ϕT ϕS

)
(
∆2ϕT ξ

) (
∆2ϕSη

) (
∆2ξη

) (
ϕ2

SϕT ∆
) (

ϕ2
SϕT ξ

)
(40)

(
ϕ2

S∆η
) (

ξ2ϕT ∆
) (

ξ2ϕSη
) (

ξ2ϕT ϕS

) (
ξ2∆ϕS

)
.

It is easy to understand that they contribute to the electron row by terms of order O(1/Λ4),
which are unimportant because they do not sizebly modify the diagonalizing matrix U`.
Also, the corrections to the τ row are of O(1/Λ3), that is the coefficients b and c appearing
in the UPMNS are modified at the next to next to leading order (NNLO) and can be safely
neglected. For the muon case, the following higher dimensional operators modify the
coefficient a appearing in eq.(39) at the NLO :

LNLO = Σ2
i=1

yµNLO
i

Λ3
µc` (ϕSϕSϕS) hd + Σ4

i=3

yµNLO
i

Λ3
µc` (ϕS∆∆) hd + (41)

yµNLO
5

Λ3
µc` ϕS ξ2 +

yµNLO
5

Λ3
µc` (ϕS∆) ξ .

In conclusion, both types of corrections (from vacuum alignment and from higher dimen-
sional operators) to the charged lepton mass matrix contribute to generate deviation from
TBM at O(λ2

C).

3.3 Neutrinos

Also for neutrinos, we have to take into account corrections from both vacuum alignment
and higher dimensional operators. In particular, the NLO corrections of the vevs of the
flavon fields affect both Majorana and Dirac masses with the same pattern, as we can see
from eq.(12). Different higher order corrections are generated by higher order operators.
These corrections turn out to be negligible compared with the NLO and of the same order
of magnitude as those induced by the Weinberg operator (see later).

3.3.1 Corrections to the Majorana and Dirac mass matrices

The relevant contributions come from the NLO vacuum alignments. In particular, eq.(14)
is modified only by 〈ϕS〉 at the NLO because the other two vevs, namely those of ∆ and
ξ entering in the lagrangian in eq.(12), are aligned along the LO direction. However,
the shifts in 〈ϕS〉 are not enough to introduce independent corrections to all the (six)
elements of the Majorana and Dirac mass matrices; in fact, the explicit structure of the

12



NLO corrections are as follows:

δmM = b
( ε

ε′

)2

ε vS Ŝ (42)

δmD = vu

( ε

ε′

)
ε2 yν1 Ŝ (43)

where the common matrix Ŝ is:

Ŝ =

 2 AS −BS −BS

−BS 2 BS −AS

−BS −AS 2 BS

 . (44)

With these results, we can build the light neutrino mass matrix; since the NLO matrix
elements have now complicated expressions in terms of the leading order Yakawas of
eq.(12) and of the correction coefficients AS and BS, we prefer to summarize its structure
as follows:

mlight = ε
′2

 x y y
y x + v y − v
y y − v x + v

 + ε3

 x′ y′ y′

y′ z z′

y′ z′ z

 , (45)

where the relation z+z′ 6= x′+y′ implies that mlight is not diagonalized by UTBM . However,
it is easy to show that the almost symmetric structure of the ε3 contribution prevents
to generate corrections to the TBM values of θ13 and θ23 because the diagonalization of
mlight is achieved by a matrix Uν = UTBM + δU , where δU has a vanishing last column. If
we want to obtain a non-vanishing θ13, we need to distinguish the elements (12) from (13)
and/or (22) from (33) in eq.(44). Without taking into account the corrections from the
charged lepton sector, this can be accomplished only at the NNLO. In fact, a Z5 singlet
built with the νcνc bilinear requires a charge ω for the accompaining fields, and this can
be achieved with at least three fields, which induce terms of O(1/Λ2). There are more
than twenty of these terms, generated by the following contractions:(

∆2ϕT

) (
∆2η

) (
ϕ2

SϕT

) (
ϕ2

Sη
) (

ξ2ϕT

) (
ξ2η

)
(ϕT ∆ϕS) (ϕT ∆ξ) (ϕT ϕSξ) (∆ηϕS) (∆ηξ) (ϕSηξ) .

Similarly, the Dirac mass matrix receives corrections at the same NNLO relative to the
leading terms due to the fact that the term (νc`) hu has a total Z5 = ω4.

Beside the previous operators, we also have to consider effective terms of the form
llhuhu; given its charge assignment (Z5 = ω4), the Weinberg operator arises at O(1/Λ2)
with the insertion of one flavon field, as for the Dirac and Majorana terms:

W eff
ν = 1

Λ2 (α1ϕS + α2∆ + α3ξ) (` hu ` hu) . (46)
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After spontaneous symmetry breaking, W eff
ν generates terms which are of order:

mW ∼ v2
u 〈Φ〉
Λ2

∼ ε′
(vu

Λ

)
vu . (47)

Compared to the NLO corrections of the Dirac mass term, eq.(43), we see that:

mW /δmD ∼ vu/Λ

ε
<< 1 ;

then this type of operators is more suppressed with respect to the Dirac mass corrections
(and even more if compared with the Majorana mass terms) and can be safely neglected.

In conclusion, from the neutrino sector only, the following mixing matrix arises:

Uν =


√

2
3
−

√
2
3

(x′+y′−z−z′)∗

9y∗

(
ε3

ε
′2

)∗
1√
3

+ 2 (x′+y′−z−z′)

9
√

3y

(
ε3

ε
′2

)
0

−
√

1
6
−

√
2
3

(x′+y′−z−z′)∗

9y∗

(
ε3

ε
′2

)∗ √
1
3
− (x′+y′−z−z′)

9
√

3y

(
ε3

ε
′2

)
−

√
1
2

−
√

1
6
−

√
2
3

(x′+y′−z−z′)∗

9y∗

(
ε3

ε′2

)∗ √
1
3
− (x′+y′−z−z′)

9
√

3y

(
ε3

ε′2

) √
1
2


(48)

3.3.2 Mixing angles at the NLO

From the previous discussions, it clearly appears that the NLO corrections to θ13 and θ23

come only from U` whereas θ12 is modified by both U` and Uν . They are as follows:

s13 = |Ue3| =

∣∣∣∣∣ 1√
2

(A − B)∗
(

ε
′3

ε2

)∗
∣∣∣∣∣

s12 =
|Ue2|√

1 − |Ue3|2
=

∣∣∣∣∣ 1√
3
− 1√

3
(A + B)∗

(
ε
′3

ε2

)∗

−
√

2α

(
ε3

ε′2

)∣∣∣∣∣ (49)

s23 =
|Uµ3|√

1 − |Ue3|2
=

∣∣∣∣∣ 1√
2

+ C∗
(

ε
′3

ε2

)∗
∣∣∣∣∣

where we used the short-hand notation

α = −
√

2

3

(x′ + y′ − z − z′)

9y
.

In particular, the first relation can be used to put a bound on |ε′|; in fact, given the
maximum allowed value for θ13 and assuming that |A − B| ∼ O(1) we get:

|ε′| .
[√

2 λ4
C θmax

13

]1/3

(50)

which is close to (2 λ2
C) for θmax

13 ∼ 10o.
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4 A bit of phenomenology

The model we have presented has a huge parameter space, made by the six complex
Yukawa couplings yνi

and a, b and c. It is clear, and we have checked this numerically,
that the various phenomenological constraints, coming for example from the smallness
of the parameter r = ∆m2

sol/|∆m2
atm|, are easily satisfied, for both type on neutrino

mass hierarchies. It seems then more interesting to ask whether the model can still
give an acceptable phenomenology in some particular cases, like for example allowing all
the Yukawa couplings to be of O(1) and the flavon vevs 〈ϕS〉, 〈∆〉 and 〈ξ〉 to be of the
same order of magnitude4. In this case, we do not expect any huge hierarchies among
the heavy neutrinos, see eq.(15). Our numerical study aims to predict some interesting
physical quantities only imposing the following 3-σ experimental constraints [13]:

∆m2
sol > 0

|∆m2
atm| = 2.41 ± 0.34 × 10−3 eV 2 (51)

rexp = 0.032 ± 0.006 ,

also taking |mi| . 0.5 eV . The resulting spectrum of the light neutrino masses and
their sum is shown in Fig.(1). In the left panel, we chose to plot the ratio |m3|/|m2|

normal hierarchy

inverted hierarchy
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T
R
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101
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m
2
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normal hierarchy
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T
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CMB + HST + SN-Ia + BAO
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Ú
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Figure 1: Neutrino mass spectrum and sum of neutrino masses, as predicted from the
model with all Yukawa couplings of O(1) and the flavon vevs of the same order of mag-
nitude. Left panel: behaviour of the ratio |m3|/|m2| as a function of the lightest neutrino
mass |mlightest|, for both neutrino hierarchies. Right panel: sum of the light neutrino
masses as a function of |mlightest|. Also shown the bound from [16] (upper solid lines)
and from [16] + [17] (lower solid lines). The vertical line in both panels is the future
sensitivity of 0.2 eV on mlightest from the KATRIN experiment [14].

as a function of the lightest neutrino mass |mlightest|, which is |m1|(|m3|) for the normal
(inverted) hierarchy. We clearly see that the largest hierarchies, obtained at the smallest

4In the numerical simulation, this means that we allow the absolute values of the Yukawas to be in
the interval [1/2, 3/2], while no restriction whatsoever has been imposed on the flavon vevs a part from
being all equal within a factor of 10; also the large scale Λ is left free.
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allowed |mlightest|, are at the level of O(10) for the normal ordering and O(10−2) for the
inverted one. The ratio tends to a degenerate spectrum in both cases for |mlightest| ∼ 10−1

eV which, however, is disfavoured in our model. In the right panel we show the sum of the
light neutrino masses as a function of the lightest neutrino mass mlightest. The vertical line
denotes the future sensitivity of 0.2 eV on of |mlightest| from the KATRIN experiment [14],
and the horizontal lines are the cosmological bounds [15] at 0.60 eV, obtained combining
the data from ref.[16], and at 0.19 eV, corresponding to all the previous data combined to
the small scale primordial spectrum from Lyman-alpha (Lyα) forest clouds [17]. We see
that our model predicts Σ mi too similar for both hierarchies to be distinguished using
the current cosmological information on the sum of the neutrino masses; however, such a
discrimination could be possible if some improvements on these bounds would be achieved
in the near future.

Finally, we present in Fig.(2) the predictions for the values of the effective mass |mee|
as a function of the lightest neutrino mass, for both normal and inverted hierarchy. We
also show the future sensitivity of the KATRIN (vertical solid line) and of CUORE [18]
(horizontal solid line at 15 meV) experiments. The main feature of the analysis is that

normal hierarchy

inverted hierarchy

K
A

T
R
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0.001 0.01 0.1
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È
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Figure 2: |mee| as a function of the lightest neutrino mass, for both normal and inverted
hierarchy. The filled regions correspond to the possible values of |mee| in the limit of exact
tri-bimaximal mixing, with mass differences computed at the central values in eq.(51). The
horizontal and vertical lines are the future expected bounds on |mee| and |mlightest| from
the CUORE and KATRIN experiments, respectively.

a large set of points falls into the region of |mlightest| around 10−2 eV but, given the still
large number of parameters of the model, many values of |mee| can be obtained for both
hierarchies among the experimental allowed ranges. On the other hand, the region above
this value (the regime of degenerate spectra) is strongly disfavoured.
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4.1 Leptogenesis

The formal description of the asymmetry parameters can be done in the general con-
text of arbitrary Dirac mass matrix because the final expressions are quite compact and
transparent. The asymmetry parameters are defined as follows:

εi =
1

8π(Ŷ Ŷ †)ii

∑
j 6=i

Im

{[
(Ŷ Ŷ †)ij

]2
}

f

(
|Mj|2

|Mi|2

)
(52)

where the hat matrices are Yukawa matrices evaluated in the basis in which the Majorana
mass matrix is diagonal and Mi are the Majorana masses. For supersymmetric theories,
the f -function is given by:

f(x) = −
√

x

[
2

x − 1
+ log

(
1 + x

x

)]
. (53)

Defining Ω as the unitary matrix which diagonalizes the Majorana mass matrix, the LO
Yukawa matrix in this basis is given by

vu Ŷ = vu ΩT Yν = ΩT mD

and the product Ŷ Ŷ † reads:
Ŷ Ŷ † = ΩT YνY

†
ν Ω∗ . (54)

At LO, Ω = UTBM and the product Ŷ Ŷ † is a diagonal matrix: the εi parameters are all
vanishing [12]. At the next to leading order, one has to take into account the corrections
to the Yukawa matrix as well as to the Majorana mass matrix, which reflects in a different
structure of both the Ω and Yν matrices in such a way that:

vu Yν =
(
mD + vu

( ε

ε′

)
ε2 yν1 Ŝ

)
= vu (YLO + δY ) (55)

Ω = UTBM Uφ + δΩ

where δΩ has a structure similar to the corrections δU computed in Sect.(3.3.1) and δY
is of O(λ4

C) compared to its leading order result. This means that the correction to the
matrix product Ŷ Ŷ † is given by:

δ(Ŷ Ŷ †) = (δΩ)T YLOY †
LO Ω∗ + ΩT YLOY †

LO (δΩ)∗ + ΩT δ(YνY
†
ν ) Ω∗ .

The first two terms do not contribute to the εi parameters because they are complex
conjugate of each other and do not contain any imaginary part; then the only contribution
arises from the last term. In the basis in which the charged leptons are diagonal and
considering ε as a real variable for simplicity, one easily obtains:

δ(Ŷ Ŷ †) =

 σ1 ε3
√

2 ei(φ1−φ2) σ2 ε3 0√
2 e−i(φ1−φ2) σ3 ε3 0 0

0 0 σ4 ε3

 (56)
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where the σi coefficients are complicated functions of yνi
, AS and BS. Then, at leading

order, the ε parameters are given by:

ε1 =
( ε

ε′

)2

ε4 (AS − BS)2

4π

[yν1(yν2 + 2yν3) + 3|yν1 |2]
2

f
(

|M2|2
|M1|2

)
sin [2(φ1 − φ2)]

9|yν1 |2 + |yν2 |2 + |yν3|2 − 2(yν2yν3) + 3yν1yν2 − 3yν1yν3

ε2 =
( ε

ε′

)2

ε4 (AS − BS)2

4π

[yν1(yν2 + 2yν3) + 3|yν1 |2]
2

f
(

|M1|2
|M2|2

)
sin [2(φ1 − φ2)]

4|yν2 |2 + |yν3 |2 + 4(yν2yν3)
(57)

ε3 = 0.

A relevant feature of the model is that ε3 always vanishes; however, we can see that,
barring possible fine-tunings in the parameters and/or suppressions or enhancements due
to f(|x|2) sin [2∆φ], ε1,2 can be of the right order of magnitude to fulfill the experimental
requirements for a successful leptogenesis because

ε1,2 ∼ λ8
C ∼ 6 × 10−6 . (58)

5 The quark sector

It is well known that the extension of a flavour symmetry from the neutrino sector to
the quark one is highly non trivial due to the “non-trigonometric” structure of the quark
mixing matrix VCKM . The common way to introduce quarks in these kind of models
is to put the two SU(2) doublets of left-handed quarks into a doublet representation of
S4 and assign the heaviest ones (top and bottom quarks) into singlets, in such a way
to easily maintain the hierarchy among mass eigenstates. Better results are obtained if
other extra symmetries, i.e. Froggatt-Nielsen or extra ZN , are introduced in order to
further suppress the unwanted couplings; this is particularly true for the mup/mtop mass
ratio, which otherwise tends to be larger than the experimental counterpart. It is clear
that such scenarios are more flexible than the simple S4 × Z5 illustrated in this paper;
however, it is important to stress that it is still possible to get a satisfactory description
of the quark sector without invoking any other extra symmetries and using the triplet
representation of S4 instead of the doublet ones. In the down-quark sector the simplest
choice is to copy the coupling allowed in the charged lepton sector because the hierarchy
between the d, s and b quark masses is quite similar to that existing for e, µ and τ
leptons. On the other hand, the mass hierarchy in the up-quark sector does not follow
such a simple prescription and we can arrange the S4 × Z5 charge assignment in several
ways. One possibility is summarized in Tab.(2), where Q is a triplet of SU(2) left-handed
doublets. The corresponding leading order lagrangian is the following:
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Field Q dc sc bc uc cc tc

S4 31 12 11 11 12 11 11

Z5 1 ω3 ω2 ω ω4 1 ω4

U(1)R 1 1 1 1 1 1 1

Table 2: Transformation properties of quarks under S4 × Z5 and U(1)R .

L =
yb

Λ
bc(QϕT ) hd +

ys1

Λ2
sc(QϕT ϕT ) hd +

ys2

Λ2
scQ (η ϕT ) hd +

yd1

Λ3
dc Q [ϕT (ϕT ϕT )2]32 hd +

yd2

Λ3
dc Q [ϕT (ϕT ϕT )31 ]32 hd +

yd3

Λ3
dc Q [η (ϕT ϕT )31 ]32 hd +

yd4

Λ3
dc Q [ϕT (ηη)2]32 hd +

yd5

Λ2
dc Q (∆ϕS)32 hd +

yt

Λ
tc(QϕT ) hu + (59)

yc1

Λ2
cc(QϕT ϕT ) hu +

yc2

Λ2
ccQ (η ϕT ) hu +

yu1

Λ3
uc Q [∆(ϕT ϕT )31 ]32 hu +

yu2

Λ3
uc Q [ϕS(ϕT ϕT )2]32 hu +

yu3

Λ3
uc Q [ϕS (ϕT ϕT )31 ]32 hu +

yu4

Λ3
uc Q [ϕS (ηη)2]32 hu +

yu5

Λ3
uc Q [η (ϕT ϕS)31 ]32 hu +

yu6

Λ3
uc Q [η (ϕT ϕS)32 ]32 hu .

This lagrangian gives rise to a diagonal mass matrix for the down-type quarks and an
almost diagonal mass matrix for the up-type quarks (all the up entries are filled with terms
of the same order ε2 ε′). This picture slightly changes when including the next to leading
order effects. As for the case of charged leptons, in the down sector the relevant NLO
corrections come from the corrections to the vacuum alignment of the flavon fields, which
are all of relative O(1/Λ) with respect to their leading order counterparts, whereas the
higher order operators give corrections of the same size only for the s-quark, via couplings
like

(ϕ3
S), (ϕS∆2), (ϕSξ2), (ϕS∆ξ) , (60)

and are much more suppressed for the down and bottom quarks. Similarly, for the up-
type quarks the mass matrix is modified by the NLO structure of vacuum alignment of
the flavon fields and, for the c-quark, also by the same higher order operators modifying
the s-quark entries in eq.(60). All in all, the mass matrices for both type of quarks are
given by:

mdown = vd

 ad
1 ε3 ad

2 ε ε
′2 −ad

2 ε ε
′2

bd
1 ε

′3 bd
2 ε2 bd

3 ε
′3

cd
1

ε
′3

ε
cd
2

ε
′3

ε
cd
3 ε

 mup = vu

 au
1 ε2ε′ au

2 ε2ε′ au
3 ε2ε′

bu
1 ε

′3 bu
2 ε2 bu

3 ε
′3

cu
1

ε
′3

ε
cu
2

ε
′3

ε
cu
3 ε


(61)
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with the following mass eigenvalues:

md = vd

[
ad

1 ε3 +

(
cd
1

cd
3

− bd
1

bd
3

)
ad

2 ε ε
′3

]
ms = vd bd

2 ε2 + O(ε4) (62)

mb = vd cd
3 ε + O(ε4)

and

mu = vu

[
au

1 ε2 ε′ +

(
bu
1 au

2

bu
2

− au
3 cu

1

cu
3

)
ε
′4

]
mc = vu bu

2 ε2 + O(ε
′4) (63)

mt = vu cu
3 ε + O(ε

′4) .

The previous mass matrices can be diagonalized by unitary matrices is such a way that:

(m†
u mu)diag = U †

uL
(m†

u mu) UuL

(m†
d md)diag = U †

dL
(m†

d md) UdL
,

where:

UdL
=


1

(
bd
1

bd
2

ε
′3

ε2

)∗ (
cd
1

cd
3

ε
′3

ε2

)∗

− bd
1

bd
2

ε
′3

ε2 1
(

cd
2

cd
3

ε
′3

ε2

)∗

− cd
1

cd
3

ε
′3

ε2 − cd
2

cd
3

ε
′3

ε2 1

 , UuL
=


1

(
bu
1

bu
2

ε
′3

ε2

)∗ (
cu
1

cu
3

ε
′3

ε2

)∗

− bu
1

bu
2

ε
′3

ε2 1
(

cu
2

cu
3

ε
′3

ε2

)∗

− cu
1

cu
3

ε
′3

ε2 − cu
2

cu
3

ε
′3

ε2 1

(64)

The resulting VCKM is given by:

VCKM = U †
uL

UdL
=


1

[(
bd
1

bd
2
− bu

1

bu
2

)
ε
′3

ε2

]∗ [(
cd
1

cd
3
− cu

1

cu
3

)
ε
′3

ε2

]∗
−

(
bd
1

bd
2
− bu

1

bu
2

)
ε
′3

ε2 1
[(

cd
2

cd
3
− cu

2

cu
3

)
ε
′3

ε2

]∗
−

(
cd
1

cd
3
− cu

1

cu
3

)
ε
′3

ε2 −
(

cd
2

cd
3
− cu

2

cu
3

)
ε
′3

ε2 1

 . (65)

As for other flavour models, the matching of the VCKM and the quark mass ratios to their
experimental values requires some fine-tunings between the Yukawas. As anticipated, all
the experimental mass ratios in the down sector are easily reproduced for the natural
values ad

1, b
d
2, c

d
3 ∼ O(1) because md/ms ∼ ms/mb ∼ ε ∼ λ2

C . A moderate hierarchy is also
present in the up sector and it mainly depends on the parameter ε′, which we estimated
in Sect.(3.3.2) to be not larger than some units of λ2

C . This same parameter appears in
the off-diagonal entries of VCKM with the same power in each entries. This is essentially
the reason why it is difficult to explain at the same time the mass hierarchy in the up-type
quark sector and the off-diagonal values of the quark mixing matrix. For example, one
can treat ε′ and tan β as free parameters of the model. In that case, one can use tha ratio

20



mu/mc to fix the value of ε′ and mu/md for that of tan β; assuming for all Yukawas the
natural O(1) value, we get:

mu

mc

= ε′
mu

md

=

(
ε′

ε

)
tan β (66)

and then

ε′ =

(
mu

mc

)
exp

tan β = λ2
C

(
mu

md

)
exp

/

(
mu

mc

)
exp

∼ 12 . (67)

It is easy to verify that the previous results are enough to accomodate all the independent
mass ratios that can be built from six different quarks. However, ε′ turns out to be very
small and, having assumed all Yukawas of O(1), it is really difficult to enhance the off-
diagonal elements of VCKM to their experimental values. The other possibility is to
preserve ε′ ∼ O(λ2

C), requiring that[(
bd
1

bd
2

− bu
1

bu
2

)]
∼ O(1/λC)

[(
cd
1

cd
3

− cu
1

cu
3

)]
∼ O(λC)

[(
cd
2

cd
3

− cu
2

cu
3

)]
∼ O(1) . (68)

This fine-tuning is a condition on the individual Yukawas, which can be chosen to be:

cd
2 ∼ bu

1 ∼ O(1)

cd
1 ∼ O(λC) (69)

bd
1 ∼ O(1/λC) ,

providing that bu
2 , c

u
3 � 1 to fit the charm and top quark masses. Although this situation

is not completely satisfactory, it illustrates a way to account for many experimental infor-
mations in the quark sector using a simple and unconstrained S4 ×Z5 model, the prize to
be paid being a fine-tuning in four of the Yukawa couplings appearing in the lagrangian.

Notice that it is not more difficult to modify the charge assignment proposed in Tab.(2)
in such a way to obtain at LO a VCKM matrix with entries of O(1) in the Cabibbo 2 × 2
submatrix. This can be accomplished slightly changing only the Z5 charge of the quark c.
In fact, giving the assignment c ∼ (11, ω

3) under (S4, Z5), the c-quark part of lagrangian
is now:

Lc =
yc1

Λ2
cc(QϕT ∆) hu +

yc2

Λ2
ccQ (ϕT ϕS) hu +

yc3

Λ2
ccQϕT ξ hu +

yc4

Λ2
ccQ (ϕS η) hu (70)

and the c-quark entries in the mass matrix are modified according to

(cc, u) : bu
1 ε ε′ (cc, c) : bu

2 ε ε′ (cc, t) : bu
3 ε ε′ . (71)

Correspondingly, the u and c-quark masses are:

mu = vu

(
au

1 −
bu
1 au

2

bu
2

)
ε2 ε′ mc = vu bu

2 ε ε′ (72)
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and the VCKM has the following structure:

VCKM =


− bu

2

K
− bu

1 bd
1

bd
2K

ε
′3

ε2

bu
1

K
− bu

2 bd
1

bd
2K

ε
′3

ε2

cd
3(bu

2 cu
1−bu

1 cu
2 )−cu

3 (bu
2 cd

1−bu
1 cd

2)

cd
3cu

3K
ε
′3

ε2

− bu
1

K
+

bu
2 bd

1

bd
2K

ε
′3

ε2 − bu
2

K
− bu

1 bd
1

bd
2K

ε
′3

ε2

cd
3(bu

1 cu
1+bu

2 cu
2 )−cu

3 (bu
1 cd

1+bu
2 cd

2)

cd
3cu

3K
ε
′3

ε2(
− cd

1

cd
3

+
cu
1

cu
3

)
ε
′3

ε2

(
− cd

2

cd
3

+
cu
2

cu
3

)
ε
′3

ε2 1

 (73)

where, for simplicity, we introduced the short-hand notation K =
√

(bu
1)

2 + (bu
2)

2 and
considered real vevs and Yukawa couplings. In this case, one can reproduce at the same
time the correct values for the (11) and (22) entries of VCKM as well as the mass ratio
mu/mc imposing bu

2 ∼ O(λ2
C); playing with ε′ and the other Yukawas one can also repro-

duce the off-diagonal entries, but one or more fine-tunings in the coefficients in front of
ε
′3/ε2 ratio are obviously needed.

6 Conclusions

We have presented and discussed an S4 model for TB mixing (of the see-saw type) and
quark mixing which, in spite of being based on a most economical flavour symmetry and
field content, it is still phenomenologically viable. In the neutrino sector, we realized the
most general neutrino mass matrix diagonalized at LO by TB mixing. At the NLO, all
mixing angles receive corrections at higher orders at the level of O(λ2

C) and, in particular,
the elusive θ13 is predicted to be within the sensitivity of the experiments which are now
in preparation and will take data in the near future. Also, we have shown that the lepto-
genesis parameters ε1,2 can be of the right order of magnitude to satisfy the requirements
needed to reproduce the observed asymmetry and that an acceptable phenomenology is
still obtainable even with all the Yukawa couplings at O(1).

In the charged lepton sector, the mass hierarchy is determined by the S4 ×Z5 flavour
symmetry itself without invoking a Froggatt-Nielsen U(1) symmetry. The NLO correc-
tions to the mass matrix turn out to be relevant for a θ13 6= 0.

In the quark sector, we have discussed in detail to which extent the model can repro-
duce the data on masses and mixing, emphasizing where it is successful and the reasons
for its failures. Two different LO examples for VCKM have been given, one proportional to
the identity matrix and the other with O(1) elements in the 2×2 sector; both realizations
need almost the same amount of fine-tuning to reproduce the off-diagonal entries at the
NLO.
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A The Group S4

We adopt the following convention for the generators S and T , according to [9]

S4 = T 3 = (ST 2)2 = 11 (74)

In the different representations, they can be written as reported in Tab.(3):

rep 11 12 2 31 32

S 1 -1

(
0 1
1 0

)
1

3

 −1 2ω 2ω2

2ω 2ω2 −1
2ω2 −1 2ω

 1

3

 1 −2ω −2ω2

−2ω −2ω2 1
−2ω2 1 −2ω


T 1 1

(
ω 0
0 ω2

)  1 0 0
0 ω2 0
0 0 ω

  1 0 0
0 ω2 0
0 0 ω


Table 3: Generators S and T in different representations.

The 24 elements of the group belong to five conjugacy classes

C1 : 1

C2 : S2, TS2T 2, S2TS2T 2

C3 : T, T 2, S2T, S2T 2, STST 2

STS, TS2, T 2S2

C4 : ST 2, T 2S, TST

TSTS2, STS2, S2TS

C5 : S, TST 2, ST, TS, S3, S3T 2 .

The explicit expression of the elements in the 2-dimensional representation is:

• C1,2 :

(
1 0
0 1

)

• C3 :

(
ω 0
0 ω2

)
,

(
ω2 0
0 ω

)

• C4,5 :

(
0 1
1 0

)
,

(
0 ω
ω2 0

)
,

(
0 ω2

ω 0

)
,

while for the 3-dimensional representation 31 the elements are

• C1 : I =

 1 0 0
0 1 0
0 0 1


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• C2 : S2=
1

3

 −1 2 2
2 −1 2
2 2 −1

 TS2T 2=
1

3

 −1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1



S2TS2T 2 =
1

3

 −1 2ω2 2ω
2ω −1 2ω2

2ω2 2ω −1



• C3 : T =

 1 0 0
0 ω2 0
0 0 ω

 T 2 =

 1 0 0
0 ω 0
0 0 ω2

 S2T =
1

3

 −1 2ω2 2ω
2 −ω2 2ω
2 2ω2 −ω



S2T 2 =
1

3

 −1 2ω 2ω2

2 −ω 2ω2

2 2ω −ω2

 STST 2 =
1

3

 −1 2 2
2ω2 −ω2 2ω2

2ω 2ω −ω



STS =
1

3

 −1 2ω2 2ω
2ω2 −ω 2
2ω 2 −ω2

 TS2 =
1

3

 −1 2ω 2ω2

2ω −ω2 2
2ω2 2 −ω



T 2S2 =
1

3

 −1 2 2
2ω −ω 2ω
2ω2 2ω2 −ω2



• C4 : ST 2 =
1

3

 −1 2ω2 2ω
2ω 2 −ω2

2ω2 −ω 2

 T 2S =
1

3

 −1 2ω 2ω2

2ω2 2 −ω
2ω −ω2 2



TST =
1

3

 −1 2 2
2 2 −1
2 −1 2

 TSTS2 =

 1 0 0
0 0 1
0 1 0



STS2 =

 1 0 0
0 0 ω
0 ω2 0

 S2TS =

 1 0 0
0 0 ω2

0 ω 0



• C5 : S =
1

3

 −1 2ω 2ω2

2ω 2ω2 −1
2ω2 −1 2ω

 TST 2 =
1

3

 −1 2ω2 2ω
2 2ω2 −ω
2 −ω2 2ω



ST =
1

3

 −1 2 2
2ω 2ω −ω
2ω2 −ω2 2ω2

 TS =
1

3

 −1 2ω 2ω2

2 2ω −ω2

2 −ω 2ω2



S3 =
1

3

 −1 2ω2 2ω
2ω2 2ω −1
2ω −1 2ω2

 S3T 3 =
1

3

 −1 2 2
2ω2 2ω2 −ω2

2ω −ω 2ω


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For the 3-dimensional representation 32, the matrices representing the elements of the
group can be obtained from the list for the representation 31 in the following way: for
C1,2,3 are the same, while for C4,5 are the opposite.
In the previous basis, the Clebsch-Gordan coefficients are as follows (αi indicates the
elements of the first representation of the product and βi the second one):

11 ⊗ η = η ⊗ 11 = η with η any representation

12 ⊗ 12 = 11 ∼ αβ

12 ⊗ 2 = 2 ∼
(

αβ1

−αβ2

)

12 ⊗ 31 = 32 ∼

 αβ1

αβ2

αβ3



12 ⊗ 32 = 31 ∼

 αβ1

αβ2

αβ3

 .

The multiplication rules with the 2-dimensional representation are the following:

2 ⊗ 2 = 11 ⊕ 12 ⊕ 2 with



11 ∼ α1β2 + α2β1

12 ∼ α1β2 − α2β1

2 ∼
(

α2β2

α1β1

)

2 ⊗ 31 = 31 ⊕ 32 with



31 ∼

 α1β2 + α2β3

α1β3 + α2β1

α1β1 + α2β2



32 ∼

 α1β2 − α2β3

α1β3 − α2β1

α1β1 − α2β2



2 ⊗ 32 = 31 ⊕ 32 with



31 ∼

 α1β2 − α2β3

α1β3 − α2β1

α1β1 − α2β2



32 ∼

 α1β2 + α2β3

α1β3 + α2β1

α1β1 + α2β2


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The multiplication rules with the 3-dimensional representations are the following:

31 ⊗ 31 = 32 ⊗ 32 = 11 ⊕ 2 ⊕ 31 ⊕ 32 with



11 ∼ α1β1 + α2β3 + α3β2

2 ∼
(

α2β2 + α1β3 + α3β1

α3β3 + α1β2 + α2β1

)

31 ∼

 2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1



32 ∼

 α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3



31 ⊗ 32 = 12 ⊕ 2 ⊕ 31 ⊕ 32 with



12 ∼ α1β1 + α2β3 + α3β2

2 ∼
(

α2β2 + α1β3 + α3β1

−α3β3 − α1β2 − α2β1

)

31 ∼

 α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3



32 ∼

 2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1


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