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Change of shell structure and magnetic moments of

odd-N deformed nuclei towards neutron drip line
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Abstract. Examples of the change of neutron shell-structure in both weakly-bound
and resonant neutron one-particle levels in nuclei towards the neutron drip line are
exhibited. It is shown that the shell-structure change due to the weak binding may
lead to the deformation of those nuclei with the neutron numbers N ≈ 8, 20, 28 and
40, which are known to be magic numbers in stable nuclei. Nuclei in the ”island of
inversion” are most easily and in a simple manner understood in terms of deformation.
As an example of spectroscopic properties other than single-particle energies, magnetic
moments of some weakly-bound possibly deformed odd-N nuclei with neutron numbers
close to those traditional magic numbers are given, which are calculated using the wave
function of the last odd particle in deformed Woods-Saxon potentials.
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1. INTRODUCTION

Some neutron-rich nuclei towards the neutron drip line, which have the neutron numbers

N ≈ 8 and 20, are now widely recognized to be deformed and often called nuclei in the

”island of inversion” [1, 2, 3]. In this paper the change of shell structure in weakly-bound

and one-particle resonant neutron levels coming from a unique behaviour of small-`

neutron levels compared with large-` levels is exhibited. The behaviour comes from

the strong `-dependence of the heights of centrifugal barrier, which are proportional to

`(`+1)/R2
b where Rb is slightly larger than the nuclear radius. The centrifugal barrier is

absent for s neutrons which can thus freely extend to the outside of nuclei as the binding

energy approaches zero. Consequently, the energy of weakly-bound s neutron levels is

relatively insensitive to the strength of the potential. In contrast, large-` neutrons

are confined to the inside of the potential and, thus, sensitive to the strength of the

potential. The barrier becomes increasingly higher both for larger ` neutrons and for

smaller nuclei. As an example, in figure 1 we sketch the relative energies of three one-

neutron levels in the sd shell depending on binding energies. The figure illustrates how

the levels with smaller `-values shift downwards relative to those with larger `-values, as

the potential strength becomes weaker. The cases of the strongly bound (such as by 30

MeV) levels and those bound by about 10 MeV (approximately equal to the Fermi level

of stable sd shell nuclei) can be found from figure 2-30 of [4], while the level order of

very weakly bound or one-particle resonant neutrons can be found for example in figure

1 of [5, 6]. The level scheme being bound by about 10 MeV is similar to that of the

conventional modified-oscillator potential plus a spin-orbit potential. This similarity is

accidental. Namely, this never means that ”the one-particle level scheme of weakly-

bound neutrons becomes similar to that of the harmonic oscillator potential (plus a

spin-orbit potential)”, which is unfortunately often stated in some publications. Indeed,

the harmonic oscillator potential has no surface and, consequently, using the potential

it is impossible to express some phenomena which are unique in weakly-bound particles.

The similar change of the relative level order and the shell structure, which is

sketched in figure 1 for the sd shell, occurs for other shells. For example, in the pf shell

the p3/2 and p1/2 levels are lowered relative to the 1f7/2 and 1f5/2 levels as the potential

becomes weaker or the binding energies become smaller, since the centrifugal barrier for

`=1 neutrons is six times lower than that for `=3 neutrons. This change of the shell

structure can lead to the deformed ground state of some nuclei with the traditional

magic number for neutrons. See examples in section 3.

Whether a given nucleus with weakly-bound neutrons will deform or not depends,

of course, also on the proton number, since some proton number may definitely favor

spherical shape. For example, the proton number Z=8, oxygen isotope, has been known

to prefer spherical shape. Nevertheless, it was recently reported [7] that the unbound

nucleus 12
8 O4 outside the proton drip line is deformed in the way similar to its mirror

nucleus 12
4 Be8.

It is important to notice that the notion of one-particle states in deformed nuclei
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can be much more widely, in a good approximation, applicable than that in spherical

nuclei. This is because in the deformed mean field the major part of the long-range

two-body interaction in the spherical mean field is already taken into account in the

mean field. Thus, the spectroscopy of deformed nuclei is often much simpler than that

of spherical (vibrating) nuclei. For example, we note that the analysis of observed

spectroscopic properties of low-lying states in light mirror nuclei, 25
12Mg13 and 25

13Al12, in

terms of one-particle motion in deformed (Nilsson) potential is very successful [8]. As

seen in those examples, the numerical results of the intrinsic configurations, which are

obtained in the present work for the ground state of nuclei with the neutron number of

Nmagic ± 1, can be equally applicable to the low-lying excited states (or isomeric states)

of the neighboring nuclei.

As the one-particle energy εΩ < 0 approaches zero in a deformed potential, the

probability of ` = 0 component in the wave function approaches unity in all Ωπ=1/2+

bound neutron orbits. However, the energy, at which the s-dominance shows up,

depends on both deformation and individual orbits. On the other hand, in the case of

Ωπ=1/2− and Ωπ=3/2− the p-components increases as εΩ(< 0) → 0, but the probability

of ` = 1 components at εΩ ⇒ 0 is less than unity and depends on individual levels and

deformations.

Except in very light nuclei a significant change of shell structure in weakly-bound

protons is not expected because of the presence of the Coulomb barrier. For this reason

the shell structure and magnetic moments of proton-drip-line nuclei are not included in

this work. On the other hand, the magnetic moment of deformed odd-Z nuclei towards

the neutron drip line is a very useful and interesting quantity, since it may clearly show

possible deformation of those nuclei. However, the proton separation energy of those

neutron-rich nuclei is so large that the shell structure as well as magnetic moments can

be reasonably evaluated using some old traditional models, for example, the modified-

oscillator model. Therefore, the numerical calculations are not included here.

When possible rotational spectra or strongly-enhanced quadrupole moments, which

are the direct sign of deformation, are difficult to be measured in neutron drip line nuclei,

an indication of deformation is to observe the unusually low-lying 2+ state in even-even

nuclei. On the other hand, one-particle motion in the mean field that shows the shape

of nuclei can be easily recognized by studying the low-energy spectra of odd-A nuclei [8].

In particular, the spin-parity of low-lying states or magnetic moments of the ground or

isomeric states of odd-A drip-line nuclei may be sometimes more easily measured and can

be used as a clear indication of possible deformation. Therefore, in the present paper we

survey the Nilsson diagrams that can be applicable to weakly-bound nuclei with N ≈ 8,

20, 28 and 40, and give the estimated values of magnetic moments of possibly deformed

odd-N nuclei with the neutron number close to those traditional magic numbers.

In section 2 the essential points of the model used in the present work are briefly

summarized. Numerical examples for nuclei in the N ≈ 8 region is given in section

3.1, the N ≈ 20 region in section 3.2, the N ≈ 28 region in section 3.3, and the region

N ≈ 40 region in section 3.4. Conclusions and discussions are given in section 4.
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2. MODEL

Recognizing the great usefulness of the Nilsson diagram, in which one-particle energies

are plotted as a function of deformation parameter for a given potential, in the present

article we apply the model and idea presented in [9]. The quadrupole deformation

parameter β is defined in [10]. The coupled equations derived from the Schrödinger

equation are solved in coordinate space with the correct asymptotic behaviour of

wave functions for r → ∞, both for bound [10] and resonant [11, 12] levels. In

particular, one-particle resonant levels in a deformed potential are estimated using

the eigenphase formalism [13]. Namely, one-particle resonance is obtained if one of

calculated eigenphases increases through π/2 as one-particle energy increases. One-

particle resonance is not obtained if none of the calculated eigenphases do not increase

through π/2 as energy increases. The definition is a natural extension of the definition of

one-particle resonance for spherical potentials in terms of phase shift, which can be found

in standard textbooks. One-particle resonance with Ωπ=1/2+ is not at all obtained if

for εΩ(< 0) → 0 the `=0 component of the wave function inside the potential exceeds

a certain probability [12]. On the other hand, for Ωπ 6= 1/2+ one-particle resonant

levels can be always found at least for small positive energies. Compared with the

Nilsson diagram based on modified oscillator potentials, the striking difference of the

level scheme exhibited in the present work comes from the behaviour of levels with low

` values (in particular, `=0 and 1) for β=0 and those with small Ω values (in particular,

Ωπ = 1/2+, 1/2−, and 3/2−) for β 6= 0, in both the weakly-bound and positive-energy

regions.

We use the parameters of Woods-Saxon potentials taken from the standard ones [4]

for stable nuclei except the depth, VWS. The potential depth for neutrons is adjusted

so that the energy of the one-neutron level last occupied in a given odd-N nucleus is

close to the measured neutron separation energy. The diffuseness, the strength of the

spin-orbit potential and the radius parameter are, for simplicity, taken from those on

p.239 of [4]. Considering the possible contribution by weakly-bound neutron(s) to the

self-consistent potential, a slightly larger diffuseness might be appropriate for presently

studied nuclei. However, it is noted that the major part of the nuclear potential is

provided by well-bound nucleons of the core. Moreover, a larger diffuseness leads to the

degeneracy of the 2s1/2 and 1d5/2 (2p3/2 and 1f7/2) levels already at a larger binding

energy than the one exhibited in the present article. It is also remarked that for a given

deformation the N-th deformed one-particle orbit filling-in all lower-lying Nilsson levels

is almost uniquely determined for a given one-particle energy and within a reasonable

variation of Woods-Saxon potential parameters.

The magnetic dipole moments of odd-N deformed nuclei are calculated using

equations (4-86), (4-87), and (4-88) of [8], while the matrix elements of `ν and sν are

evaluated using one-particle wave-functions in the deformed Woods-Saxon potential.

See equations (5-86) and (5-87) of [8]. The tabulated magnetic moments are calculated

for the band-head states for given intrinsic configurations. The spin of the band-head



Shell-structure change in weakly-bound neutrons 5

state is I = Ω for Ω 6= 1/2. For Ω=1/2 configurations the decoupling parameter a is

calculated, and the spin of the band-head state is different from I=1/2 for both a < −1

and a > 4. See [8].

The major part of the reduction of the effective gs factor, geff
s , from gfree

s in the

present model is supposed to come from the spin polarization of deformed even-even

core. For large deformation where the asymptotic quantum numbers [N nz Λ Ω] become

good quantum numbers, the spin polarizations of ∆K=0 type vanish, since the quantum

numbers Λ and Σ (= Ω − Λ) become constants of the motion. Consequently, the

longitudinal geff
s factor may approach gfree

s , while the transverse matrix element (gK

− gR)b in equation (4-86) of [8] is still affected by the presence of ∆K=1 polarizations

of deformed even-even core. The latter contributes only to the magnetic moments of

K=1/2 bands. The quenching of the spin fluctuations in the large deformation limit

seems to be only partially achieved for the equilibrium deformations of stable deformed

nuclei [14]. (A further reduction in the spin polarization of nuclei presently studied may

come from the fact that loosely-bound neutrons couple weakly with strongly-bound

core nucleons.) In the present numerical calculations we use geff
s =gfree

s in the lightest

mass (N ≈ 8) region where deformed nuclei have larger deformation, while in heavier

mass regions geff
s =(0.7)gfree

s is used. We do not try any detailed evaluation of the spin

polarization effect in individual deformed nuclei, since our present aim is to show the

spin-parity as well as magnetic moments for deformed shape of nuclei studied, which

are very different from those for spherical shape.

In the present coupled channel calculation the j = 1/2, 3/2, 5/2, 7/2, 9/2, 11/2

and 13/2 channels are included for positive-parity levels, while the j = 1/2, 3/2, 5/2,

7/2, 9/2 and 11/2 channels for negative-parity levels.

3. NUMERICAL EXAMPLES

3.1. Odd-N neutron-rich nuclei in N ≈ 8 region

As it is known that the shape of the Be isotope can be very different for the A and

A+1 nuclei, the notion of the mean field is not so well established in nuclei of this

very light mass region. Nevertheless, in figure 2 the Nilsson diagram is shown, of which

the parameters are adjusted to the nucleus 17
6 C11, since in this mass region the spin-

parity and/or magnetic moments are measured for some odd-N nuclei with weakly-bound

neutron(s). In figure 2 the [200 1/2] level can be obtained as a one-particle resonant

level as far as d components are dominant. In contrast, for β > 0.46 the resonant level

is not obtained because the s component becomes dominant in the one-particle wave-

function. Similarly, due to the s-component dominance the extension of the [220 1/2]

level to the positive-energy region on the oblate side as a resonant level is not possible

for β < −0.12.

In figure 2, it is seen that in the spherical limit (β=0) the very weakly bound 1d5/2

and 2s1/2 levels are almost degenerate. Namely, as the binding becomes very weak,
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the energy eigenvalue of the s orbit shifts downward relative to that of the d level, as

schematically exhibited in figure 1. The calculated and measured magnetic moments of

the ground state of 17
6 C11 and 11

4 Be7 are compared in table 1. It is remarked that for

a much weaker strength of the potential such as the one applicable for 11Be, in which

the [220 1/2] and [101 1/2] orbits at β ≈ 0.6 are bound by several hundreds keV, the

calculated bound one-particle level scheme and magnetic moments around β=0.6 are

found to remain nearly the same. When in a given region of deformation the curve of the

Nilsson level is almost a straight line as a function of deformation, the one-particle wave-

function depends very little on deformation and, consequently, the calculated magnetic

moment remains almost independent of deformation. We notice that measured magnetic

moment of 15C9 (I=1/2+) that can be a spherical nucleus, |µ| = 1.720 ± 0.009 µN [15],

is nearly equal to that of 11Be7 (Iπ=1/2+) that is most easily interpreted as a deformed

nucleus, assuming that the sign of the former is minus. This is theoretically expected

because the [220 1/2] wave-function of the 7th neutron in 11Be consists exclusively of

1d5/2 and 2s1/2 components, of which non-diagonal matrix element of magnetic dipole

operator is zero, and, furthermore, the neutron one-particle magnetic moments of 1d5/2

and 2s1/2 are the same.

The spin-parity (3/2+) of the ground state of 17C11 is in a very natural way

interpreted as the band-head state of the N=11th neutron occupying the [211 3/2]

level. The near degeneracy of the 1d5/2 and 2s1/2 levels at β=0 can well be the reason

why the nucleus 17C is deformed (Jahn-Teller effect). The measured magnetic moment

is in good agreement with the calculated value based on the deformation, as seen in

table 1.

3.2. Odd-N neutron-rich nuclei in N ≈ 20 region

In figure 3 the Nilsson diagram is shown, of which the parameters are approximately

adjusted to the nucleus 31
10Ne21. For a slightly stronger potential which may be applicable

for 31
12Mg19 (the neutron separation energy Sn = 2.38 MeV) and 33

12Mg21 (Sn = 2.22 MeV),

the calculated bound one-particle level scheme and magnetic moments remain nearly the

same as those presented here. See figure 3 of [9]. Neither the 2p3/2 nor 2p1/2 levels are

obtained as one-particle resonant levels for the present potential. Nevertheless, in figure

3 the approximate positions of those levels, which are extrapolated from the resonance

energies obtained for slightly stronger spherical Woods-Saxon potentials, are indicated

in figure 3 with the question mark. It is noted that when both the 2p3/2 and 1f7/2 levels

appear as very low-lying resonant levels, the 2p3/2 level may lie lower than the 1f7/2

level.

The second lowest Ωπ=1/2− level for β > 0 denoted by the dotted curve in figure

3 cannot continue for β < 0.33 as a one-particle resonant level, because one-particle

resonant levels with the major component of `=1 cannot survive for higher εΩ values.

The complicated behaviour of the resonant level expressed by the dotted curve for β < 0

indicates clearly the influence of the 2p3/2 and 2p1/2 levels that do not explicitly appear in
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figure 3. It is noted that for a pure 1f7/2 shell the dotted curve increases almost linearly

as |β| increases for β < 0, just as a smooth extension of the curve for β > 0. Around

β = −0.4 the major component of the Ωπ=1/2− level is `=1. As β(< 0) increases

εΩ increases, and the one-particle resonant level with the `=1 major component can

hardly survive for εΩ > 1.2 MeV, where both the width and εΩ rapidly increase. The

major component of the one-particle resonant level expressed by the dotted curve for

−0.2 < β < 0.07 is `=3, and consequently the resonant level is well defined with the

reasonably small width.

The near degeneracy of 1f7/2, 2p3/2 and 2p1/2 levels at β=0 can be the origin of

possible deformation that appears in the system with a few weakly bound neutrons

occupying the 1f7/2-2p3/2-2p1/2 shell (Jahn-Teller effect). Namely, using the degeneracy

the energy of a particular combination of the pf components can be made lower when

deformation sets in.

In this region of ”island of inversion” there are two odd-N nuclei of which magnetic

moments of the ground state are measured. The measured magnetic moment [18] of the

ground state (Iπ=1/2+) of 31
12Mg19 is −0.88355(15) µN , while it is reported in [20] that

the magnetic moment of 33
12Mg21 is −0.7456(5) µN and the spin is 3/2. Though the parity

of the ground state of 33Mg is currently still under debate (for example, see the recent

β-decay study in [19]), from table 2 the measured negative magnetic moment seems to

have no other choice than negative parity for the ground state. It is remarked that the

Nilsson orbit that can be occupied by the 21st neutron for 0 < β <
∼ 0.6 is either [330 1/2]

or [202 3/2] or [321 3/2] within the reasonable variation of potential parameters. All

of the three Nilsson orbits lead to I=3/2 for the band-head spin. Considering that we

have fixed parameters geff
s and gR in the numerical calculation of magnetic moments,

of which some standard values are used, the agreement of the calculated and measured

values in table 2 is very good. In table 2 calculated magnetic moments are tabulated for

a given β value, however, it should be noted that calculated values remain approximately

constant, as far as the Nilsson level is almost a straight line as a function of β.

3.3. Odd-N neutron-rich nuclei in N ≈ 28 region

Odd-N nuclei with weakly bound neutrons in this region are currently under study and,

to our knowledge, no measurements of magnetic moments are reported. Examining

E(2+
1 ) of even-even nuclei with N=28, possible candidates for the deformed ground state

are 42
14Si28 and 44

16S28, of which E(2+
1 ) is 770 (19) [21] and 1297(18) keV [22], respectively.

There have been both some shell-model calculation and more elaborated many-body

calculation, which suggested an oblate deformation for the nucleus 42Si. Thus, in this

region we show magnetic moments of odd-N nuclei evaluated for both prolate and oblate

shape. Though 40Mg lies inside the neutron drip line, Mg isotope is not discussed here,

since none of the neighboring odd-N nuclei, 41Mg and 39Mg, is bound.

In figure 4 we show the Nilsson diagram, of which the parameters are approximately

adjusted to 41
14Si27. The reported Sn value [23] of this nucleus is 1.34 MeV with a rather
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large ambiguity. It is seen that at β=0 the 2p3/2 level lies only 1.2 MeV higher than

the 1f7/2 level when the former is bound only by 0.28 MeV. Then, there may be a good

chance for N=27 nuclei being deformed, since the neutron number N=28 may not work

as a magic number.

Calculated magnetic moments are shown in table 3. It is interesting to see that the

magnetic moment of 41Si can be very different if it has an oblate shape. This is because

the (positive or) almost vanishing value of the calculated magnetic moment comes from

a subtle balance between the p3/2 and p1/2 components in the one-particle wave-function

of the [301 1/2] orbit. That means, the calculated magnetic moments of oblate nuclei

with N=27 depend on the size of the oblate deformation, as can be guessed from the

curved (and not straight-line) Nilsson level in figure 4 as a function of β.

In the g-factor measurement of 43
16S27, which is an isotone of 41Si, it is reported [24]

that the 320 keV isomeric state has 7/2− and g=−0.317(4). This observation of the

excited state indicates that the ground state of 43S is deformed.

In figure 5 the Nilsson diagram for neutrons is shown, of which the parameters are

approximately adjusted to 45
16S29. The comparison between figure 4 and figure 5 clearly

shows that the N=28 shell-gap at β=0, namely the distance between the 2p3/2 and 1f7/2

levels, becomes increasingly smaller as the binding energy of the 2p3/2 level approaches

zero. This appreciable change of the N=28 shell-gap indicates that for a given neutron-

number N≈28 the Si isotope has a better chance to be deformed than the S isotope. The

nucleus 43
14Si29 is known to lie inside the neutron drip line, however, to our knowledge no

spectroscopic information is yet available. In figure 5 the asymptotic quantum numbers,

[N nz Λ Ω], are written on the Nilsson levels which may be occupied by the N=29th

neutron, while calculated magnetic moments, in which the last odd neutron is placed in

respective Nilsson orbits, are given in table 4.

3.4. Odd-N neutron-rich nuclei in N ≈ 40 region

Neutron-drip-line nuclei in the region of N=40 are still far away from reaching

experimentally. Moreover, N=40 is not one of magic numbers in the j-j coupling

shell model. Nevertheless, we include this subsection, because; (a) while there are

no deformed N=40 nuclei along the stability line, recent experimental studies show

relatively low energies (≈ 500 keV) of the first excited 2+ state of even-even nuclei of

both 26Fe and 24Cr isotopes in the region of N ≈ 40. Indeed, it is stated [25] that the

nucleus 64
24Cr40 may be a center of deformation in this region; (b) Some magnetic-moment

measurements of isomeric states, the presence of which is not rare in this region, have

already been reported.

Odd-N nuclei of Fe and Cr isotopes with N≈40 around 64
24Cr40 have measured Sn

values of a few MeV. In figure 6 the Nilsson diagram is shown, which may be useful for

the Fe and Cr isotopes with N≈40. It is noted that the 2p1/2 and 1f5/2 levels in figure 6

are nearly degenerate in contrast to the level scheme shown in figures 4 and 5. This is

because in the weaker potentials of the latter figures the 2p1/2 level becomes increasingly
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lower relative to the 1f5/2 level. Calculated magnetic moments are given in table 5, in

which those given for β=0.25 remain nearly the same for β=0.35. It may be speculated

that the observed 387 keV isomeric state in 67
26Fe41 [26] may be the Iπ=1/2− or 5/2−

state coming from the [301 1/2] or [303 5/2] intrinsic configuration if the isomeric state

is deformed.

4. CONCLUSIONS AND DISCUSSIONS

Examples of the change of neutron shell-structure for weakly bound neutrons are

illustrated for neutron-rich nuclei with N≈8, 20, 28 and 40. Both weakly-bound and

resonant one-particle levels are properly calculated by directly solving the Schrödinger

equation in mesh of space coordinate with the appropriate boundary condition.

Magnetic moments of possibly deformed odd-N nuclei in the region are calculated using

one-particle wave-functions in deformed Woods-Saxon potentials.

Among the examples taken in the present paper, the near degeneracy of the weakly-

bound 1d5/2 and 2s1/2 levels (figure 2), that of the one-particle resonant 1f7/2, 2p3/2 and

2p1/2 levels (figure 3), and that of the 1f5/2 and 2p1/2 levels bound by several MeV (figure

6) are the most clear-cut examples of the unique shell-structure, which is very different

from what is known for traditional stable nuclei. It is hoped that more experiments will

pin down the unique shell structure. In the present paper we have argued that the shell

structure may lead to, among others; (a) the appearance of the N=16 magic number

[27]; (b) possible deformed shapes of 11−14Be [28], 17C, and 19C; (c) deformed nuclei

in the island of inversion around N ≈ 20; (d) The disappearance of the magic number

N=28 and possible deformation of some neutron-drip-line nuclei with N≈28.

Calculated magnetic moments of the deformed ground states of 11Be, 17C, 31Mg,

and 33Mg are in good agreement with already measured ones, while the values of gs

and gR have not been adjusted to individual nuclei. Except the case of 11Be where

the unique magnetic moments of the d5/2-s1/2 mixed neutron wave-functions play a role,

both measured and calculated values of magnetic moment are significantly different from

what is expected from spherical shape and, thus, can be used as a good identification of

deformation. The measurement of magnetic moments of other neutron-drip-line nuclei

is strongly wanted.

Magnetic moments estimated in the present work are applicable not only to the

ground state of the odd-N nuclei studied but also to excited or isomeric states in the

neighboring nuclei. The presence of isomeric states is often expected in the region of

N≈28 and N≈40 neutron-rich nuclei due to the coexistence of spherical and deformed

shape or the unique shell-structure. Magnetic moments presently estimated for a given

deformation remain nearly the same when one-particle energies in the Nilsson diagram

vary almost linearly as a function of deformation, because the structure of single-particle

wave-functions in those cases remains nearly independent of deformation.

It should be remarked that the change of the shell structure described in the present

paper is different from (and independent of) the one coming from the neutron-proton
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tensor force [29], which is currently very fashionable for being an origin of shell-structure

change. The latter depends on the proton number of respective nuclei when the neutron

shell-structure is discussed. Moreover, the effect of the tensor force is usually estimated

using harmonic oscillator wave-functions in the shell model and, thus, the effect of

weakly binding is not included.
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Table 1. Calculated magnetic dipole moments of the ground states of very light odd-N
nuclei with one weakly-bound neutron, in comparison with observed ones. Measured
neutron separation energies are expressed by Sn. Values of gR=0.35 (for β 6=0) and
geff

s =gfree
s are used. Corresponding one-particle levels in figure 2 are those labeled as

[211 3/2], [220 1/2] and 2s1/2 for 17C, 11Be and 15C, respectively.

Nucleus Sn Iπ µobs Reference µcalc (at β, [N nz Λ Ω])

(keV) (µN) (µN)
17C11 727 3/2+ ±0.758(4) [16] −0.75 (β=0.4, [211 3/2])
11Be7 504 1/2+ −1.6816(8) [17] −1.7 (β=0.6, [220 1/2])
15C9 1218 1/2+ ±1.720(9) [15] −1.9 (β=0, 2s1/2)

Table 2. Calculated magnetic dipole moments of N=21 and 19 nuclei, in which
the last odd neutron is placed in corresponding Nilsson orbits for prolate shape, in
comparison with available experimental data. See the Nilsson diagram in figure 3.
Values of gR=0.38 and geff

s = (0.7)gfree
s are used. Note that for spherical shape one

obtains µcalc(f7/2) = −1.3 µN and µcalc(d3/2) = +0.80 µN , respectively, using geff
s =

(0.7)gfree
s .

Nucleus Sn (Iπ)obs µobs Reference (Iπ)cal µcalc (at β, [N nz Λ Ω])

(keV) (µN) (µN)
33Mg21 2222 3/2 −0.7456(5) [20] 3/2− −0.88 (β=0.25, [330 1/2])

3/2+ +0.91 (β=0.35, [202 3/2])

3/2− −0.39 (β=0.45, [321 3/2])
31Mg19 2378 1/2+ −0.88355(15) [18] 1/2+ −1.00 (β=0.45, [200 1/2])

3/2− −0.91 (β=0.35, [330 1/2])

Table 3. Calculated magnetic dipole moments of N=27 nuclei, in which the last odd
neutron is placed in corresponding Nilsson orbits. See the Nilsson diagram in figure
4. Values of gR=0.38 and geff

s = (0.7)gfree
s are used. Note that for spherical shape

one obtains µcalc(p1/2) = +0.4 µN , µcalc(p3/2) = −1.3 µN and µcalc(f7/2) = −1.3 µN ,
respectively, using geff

s = (0.7)gfree
s .

Nucleus Sn (Iπ)cal µcalc (at β, [N nz Λ Ω])

(MeV) (µN)
41Si27 1.34 3/2− +0.07 (β=−0.4, [301 1/2])

3/2− −0.66 (β=0.25, [321 1/2])

5/2− −0.58 (β=0.45, [312 5/2])
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Table 4. Calculated magnetic dipole moments of N=29 nuclei, in which the last odd
neutron is placed in corresponding Nilsson orbits. See the Nilsson diagram in figure
5. Values of gR=0.38 and geff

s = (0.7)gfree
s are used. Note that for spherical shape

one obtains µcalc(p1/2) = +0.4 µN , µcalc(p3/2) = −1.3 µN and µcalc(f7/2) = −1.3 µN ,
respectively, using geff

s = (0.7)gfree
s .

Nucleus Sn (Iπ)cal µcalc (at β, [N nz Λ Ω])

(MeV) (µN)
45S29 2.21 7/2− −0.74 (β = 0.25, [303 7/2])

1/2− +0.59 (β=0.45, [310 1/2])

1/2− +0.59 (β=−0.40, [310 1/2])

3/2− +0.16 (β=−0.40, [312 3/2])

Table 5. Calculated magnetic dipole moments of N ≈ 40 nuclei, in which the last odd
neutron is placed in corresponding Nilsson orbits. See the Nilsson diagram in figure
6. Values of gR=0.38 and geff

s = (0.7)gfree
s are used. Note that for spherical shape

one obtains µcalc(p1/2) = +0.4 µN , µcalc(f5/2) = +1.0 µN and µcalc(g9/2) = −1.3 µN ,
respectively, using geff

s = (0.7)gfree
s .

Nilsson orbits β (Iπ)cal µcalc

([N nz Λ Ω]) (µN)

([303 5/2]) 0.25 5/2− +1.1

([301 1/2]) 0.25 1/2− +0.43

([431 3/2]) 0.25 3/2+ −0.19

([422 5/2]) 0.35 5/2+ −0.46

([301 3/2]) 0.35 3/2− −0.40
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Figure 1. Qualitative sketch of relative energies of three one-neutron levels in the
sd shell depending on the binding energy or the potential strength. The level order
sketched in the middle figure is the one known from stable sd shell nuclei.
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Figure 2. Neutron one-particle levels as a function of axially-symmetric quadrupole
deformation. Parameters of the Woods-Saxon potential are designed approximately for
the nucleus 17

6 C11, of which Sn = 730 keV. The diffuseness, the radius and the depth
of the Woods-Saxon potential are 0.67 fm, 3.27 fm, and −40.0 MeV, respectively.
One-particle levels are denoted by the asymptotic quantum numbers, [NnzΛΩ], on the
prolate side (β > 0), while on the oblate side (β < 0) the quantum number Ω is shown
only in the case that it is difficult to see as a continuation of the curve on the prolate
side. The Ωπ = 1/2− levels are denoted by dotted curves, while positive-parity levels
are plotted by solid curves. The neutron numbers 8, 10 and 16, which are obtained by
filling in all lower-lying levels, are indicated with circles. See the text for details.
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2p1/2 ?

2p3/2 ?

Figure 3. Neutron one-particle levels as a function of axially-symmetric quadrupole
deformation. Parameters of the Woods-Saxon potential are designed approximately for
the nucleus 31

10Ne21, of which the measured Sn value is (0.3±1.6) MeV. The diffuseness,
the radius and the depth of the Woods-Saxon potential are 0.67 fm, 3.99 fm, and −39.0
MeV, respectively. Some one-particle levels are denoted by the asymptotic quantum
numbers, [NnzΛΩ]. Positive-parity levels are plotted by solid curves. The neutron
number 20, which is obtained by filling in all lower-lying levels, is indicated with a
circle. The 2p3/2 and 2p1/2 neutron levels at β=0 are not obtained as one-particle
resonant levels, and the next low-lying one-particle resonant level at β=0 is the 1f5/2

level found at 9.50 MeV. The approximate positions of the 2p3/2 and 2p1/2 levels at β=0
are indicated with ”?”, which are extrapolated from the resonant energies obtained by
using a slightly stronger Woods-Saxon potential. See the text for details.
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Figure 4. Neutron one-particle levels as a function of axially-symmetric quadrupole
deformation. Parameters of the Woods-Saxon potential are designed approximately
for the nucleus 41

14Si27, of which Sn = 1.34 MeV. The diffuseness, the radius and the
depth of the Woods-Saxon potential are 0.67 fm, 4.38 fm, and −39.0 MeV, respectively.
Some one-particle levels are denoted by the asymptotic quantum numbers, [NnzΛΩ].
Positive-parity levels are plotted by solid curves. The neutron numbers 20 and 28,
which are obtained by filling in all lower-lying levels, are indicated with circles. The
Ωπ=1/2− level originating from 2p1/2 at β=0 does not survive as one-particle resonance
for εΩ > 1 MeV and β < −0.05. On the other hand, for simplicity of the figure, only
in the neighborhood of β=0 we have plotted resonant levels originating from f5/2. See
the text for details.
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Figure 5. Neutron one-particle levels as a function of axially-symmetric quadrupole
deformation. Parameters of the Woods-Saxon potential are designed approximately for
the nucleus 45

16S29, of which Sn = 2.21 MeV The diffuseness, the radius and the depth
of the Woods-Saxon potential are 0.67 fm, 4.52 fm, and −41.0 MeV, respectively.
Some one-particle levels possibly occupied by the N=29th neutron are denoted by the
asymptotic quantum numbers, [NnzΛΩ]. Positive-parity levels are plotted by solid
curves. The neutron numbers 20 and 28, which are obtained by filling in all lower-
lying levels, are indicated with circles. Neutron resonant levels originating from 1f5/2

at β=0 are plotted as far as they are obtained following the definition of the eigenphase
formalism. On the other hand, not all neutron resonant levels originating from 1g9/2

are plotted, for simplicity of the figure. See the text for details.
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Figure 6. Neutron one-particle levels as a function of axially-symmetric quadrupole
deformation. Parameters of the Woods-Saxon potential are designed approximately
for the nucleus 65

26Fe39, of which Sn = 4.18 MeV. The diffuseness, the radius and the
depth of the Woods-Saxon potential are 0.67 fm, 5.08 fm, and −43.0 MeV, respectively.
Some one-particle levels possibly occupied by the N ≈ 40th neutron for some prolate
deformation are denoted by the asymptotic quantum numbers, [NnzΛΩ]. Positive-
parity levels are plotted by solid curves. The neutron numbers 40 and 50, which are
obtained by filling in all lower-lying levels, are indicated with circles. See the text for
details.
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