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Three-body structure of 18Ne in a microscopic model

Abderrahim Adahchour † and Pierre Descouvemont ‡
Physique Nucléaire Théorique et Physique Mathématique, CP229
Université Libre de Bruxelles (ULB), B1050 Brussels, Belgium

Abstract. The structure of 18Ne, and in particular of the 1− (6.18 MeV) level,
is investigated in a microscopic cluster model involving 16O+p+p configurations. We
use the three-cluster Generator Coordinate Method associated with the hyperspherical
formalism. The spectroscopy of 18Ne and 18O low-lying states is analyzed. Using the
Analytical Continuation in the Coupling Constant (ACCC) method, we determine the
width of the 1− (6.15 MeV) resonance in 18Ne and find Γ = 40 ± 10 keV. This result
is in fair agreement with experiment (50 ± 5 keV).
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1. Introduction

The simultaneous emission of two protons (diproton decay) for nuclei close or beyond

the proton drip line is well established since many years [1]. The interest for this decay

mode has been recently revived with the availability of intense radioactive beams [2, 3].

Diproton radioactivity has been observed in some nuclei, such as 17Ne [4] or 19Mg [5].

This decay mode is, in general, in competition with the sequential decay, where the two

protons are emitted through an intermediate nucleus with charge Z − 1.

Recently, diproton decay of the 1− excited level of 18Ne (6.15 MeV) has been

reported by the 17F+p reaction [6] and by Coulomb excitation of a 18Ne beam on a

Pb target [7]. The total width, including one and two-proton decay, was measured to be

50±5 keV [6]. The two-proton partial width is 21±3 eV assuming a diproton emission,

and 57 ± 6 eV assuming a three-body decay.

The theoretical analysis of this mechanism requires specific models, able to account

for a three-body structure of the nucleus. In addition, the theoretical treatment of three-

body resonances is a delicate problem [8, 9]. Various calculations of diproton emission

have been done in the shell model [10] or in a non-microscopic three-body model [8].

Here we focus on the 1− state of 18Ne, and use a microscopic cluster theory, based on an
16O+p+p description within the hyperspherical formalism [11, 12]. This approach has
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been already applied to bound states of some nuclei, such as 6He, 9Be or 12C [13, 14]. In a

microscopic model, all nucleons are included in the Hamiltonian, and the Pauli principle

is exactly taken into account. The model is based on a nucleon-nucleon interaction, and

therefore presents a fairly strong predictive power. Of course, the Schrödinger equation

cannot be solved exactly for large nucleon numbers, and the cluster approximation is

used [15].

The treatment of resonances requires an additional tool, taken here as the Analytical

Continuation in the Coupling Constant (ACCC, see Ref. [16]). This method provides an

estimate of the energy and width of a resonance. Its main advantage is that it is based

on bound-state calculations only, which do not need to account for scattering boundary

conditions. The ACCC method was successfully applied in the same microscopic three-

cluster model to describe 5H and 5He (T = 3/2) three-body resonances [17]. Of course,

the ACCC method only provides the total width of a resonance. A separation between

1p and 2p decays is not feasible in this framework.

Section 2 is devoted to a brief overview of the theory. We describe the microscopic

cluster model, and give the main properties of the ACCC method. In Section 3, we

present the theoretical 18O and 18Ne spectra, and we focus on the proton width of 1−

(6.15 MeV) resonance in 18Ne. Concluding remarks are discussed in Section 4.

2. Theoretical background

2.1. The microscopic cluster model

We use here a microscopic description [15], where the Hamiltonian of the system is given

by

H =
A∑

i=1

Ti +
A∑

j>i=1

Vij, (1)

Ti being the kinetic energy of nucleon i, and Vij a nucleon-nucleon effective interaction.

For large nucleon numbers (A ≥ 12), and in particular to investigate resonances, the

Schrödinger equation associated with Hamiltonian (1) cannot be solved exactly. We use

here the cluster approximation [15], where the A nucleons are assumed to be grouped

in clusters. In the present case, 18Ne is described by a three-cluster wave function, with

an 16O+p+p structure. In a schematic notation, the total wave function reads

Ψ = AφOφpφpG(r1, r2), (2)

where φO and φp are 16O and proton wave functions, defined in the harmonic-oscillator

model, and G(r1, r2) is a relative function depending on the Jacobi coordinates r1 and

r2 (see Fig. 1). In (2), A is the A-body antisymmetrization operator which enables an

exact account of the Pauli principle, not only inside the 16O core, but also between the

core and the external nucleons. The center-of-mass motion is exactly factorized.

The wave function (2) is defined in the hyperspherical formalism, well adapted to

three-body systems. Jacobi coordinates r1 and r2 are therefore transformed into the
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Figure 1. Three-cluster structure of 18Ne with the Jacobi coordinates r1 and r2.

hyperangle α and hyperradius ρ (see Refs. [11, 12] for details). For a given spin J and

parity π of 18Ne, the wave function is expanded as

ΨJMπ =
∑

K`x`yLS

ΨJMπ
K`x`yLS, (3)

where K is the hypermomentum, `x and `y are the orbital momenta associated with the

Jacobi coordinates, and L and S represent the total angular momentum and intrinsic

spin, respectively. The summation over K must be truncated at a maximum value,

denoted as Kmax. Of course, the 18O wave functions have the same three-cluster

structure. Owing to the charge symmetry of the nuclear force, only the Coulomb

interaction is changed in (1).

The extension of three-body models to a microscopic version has been proposed in

Ref. [13]. In the Generator Coordinate Method (GCM), the partial wave functions

(3) are expanded over a Gaussian basis, which enables to express them as linear

combinations of Slater determinants. Each component of Eq. (3) is therefore written as

ΨJMπ
K`x`yLS =

∫
fJπ

K`x`yLS(R) ΦJMπ
K`x`yLS(R) dR, (4)

where ΦJMπ(R) are projected Slater determinants, and fJπ(R) the generator functions.

Both depend on the generator coordinate R associated with the hyperradius ρ. In

practice this integral is replaced by a sum over a finite set of R values (typically 8 ∼ 12

values). An approximate solution of the Schrödinger equation can be obtained by the

variational principle, using matrix elements of the Hamiltonian (1) between GCM basis

functions.

In Ref. [13] we have shown that matrix elements between projected Slater

determinants involve seven-dimensional integrals, which are performed numerically. The

main part of the calculation is the evaluation of the potential matrix elements. A two-

body matrix element between unprojected basis functions involves quadruple sums over

individual orbitals [18]. In the applications considered so far [13, 14], this microscopic

three-body model was limited to s clusters (nuclei such as 6He, 9Be or 12C were studied).

Under these conditions the development of the model to the three-body continuum was
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proposed recently [19], and applied to α+n+n unbound states. This extension requires

large values of the generator coordinate (typically values up to 25 fm must be considered)

and, consequently, a large basis. The calculation was made possible by the use of semi-

analytical techniques to evaluate the matrix elements. This approach is much faster

than the numerical procedure. In contrast, the present calculation involves 16O as core

nucleus, where p orbitals are included. In that case a semi-analytical treatment raises

important difficulties, and a numerical approach must be used. However, the presence

of p orbitals considerably increases the computer time. In a Cartesian representation,

the number of individual orbitals is No = 6 (1 s and 3 p orbitals for the 16O core, and

1 for each external nucleon) whereas it is No = 3 when only s-clusters are involved.

The quadruple sums mentioned before contain N4
o terms, and the computer times

therefore increase by a factor 16 when going from an α core to an 16O core. We have

tested Monte-Carlo methods [20] to evaluate the seven-dimensional integrals, but this

approach turns out to be not well adapted since many partial waves (K`x`yLS) are

treated simultaneously. It was not possible to achieve a good accuracy for all partial

waves simultaneously, and therefore standard quadratures have been adopted.

2.2. The ACCC method

In contrast with the approach of Ref. [19] which provides three-body phase shifts at any

energy, the ACCC method [16] is limited to resonances. However it provides resonance

properties from bound-state calculations, which do not require very large values of the

generator coordinate (here Rmax = 12 fm, see Sect. 3.1). Its application to microscopic

calculations has been shown in the past to be very efficient [21, 17]. We briefly give here

the main principles and refer the reader to Ref. [16] for more detail.

To apply the ACCC method, the Hamiltonian is written as

H(λ) = H0 + λ H1, (5)

where λ is a linear parameter, and where H1 is supposed to be attractive. In cluster

models, the nucleon-nucleon effective interaction often involves a linear parameter which

has a standard value, but can be slightly modified to reproduce important properties

of the system, such as a resonance energy. This parameter is the natural choice for the

linear parameter λ.

Let us define λ0 as k(λ0) = 0, where k is the wave number (throughout the paper,

energies are determined from the three-body threshold). For negative energies (i.e.

λ > λ0), the wave number is imaginary and is parametrized in a Padé approximant of

degree (M, N) as

k(x) = i
c0 + c1x + · · · + cMxM

1 + d1x + · · ·+ dNxN
, (6)

where x =
√

λ − λ0 is real. The calculation is performed for M + N + 1 values of λ,

each of them providing a bound-state energy. This procedure allows to determine the

Padé coefficients cj and dj.
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For a resonance, the physical value λ is lower than λ0. Then the resonance energy

ER and width Γ are obtained by using (6) for an imaginary value of x. One defines the

complex energy E as

E =
h̄2k2

2mN
= ER − iΓ/2, (7)

mN being the nucleon mass. This method only needs bound-state calculations, but is

limited to the total width of a resonance. The associated wave function is not available

in this approach. In addition it requires a high accuracy of the variational basis. In

particular, the sensitivity with respect to the Padé parameters (M, N) should be checked

by considering various sets of λ values.

3. The 18O and 18Ne nuclei

3.1. Conditions of the calculation

The 16O wave function φO (see Eq. (2)) is defined in the shell model, with harmonic-

oscillator orbitals involving the oscillator parameter b. This parameter determines the

properties of the 16O ground state. It value is chosen as b = 1.6 fm, which corresponds to

a compromise between the minimum energy and the experimental radius. The nucleon-

nucleon interaction is taken as the Volkov force V2 [22], which involves the exchange

parameter M (the standard value is M = 0.6). Here it is adjusted on the ground-state

energy of 18O for positive parity (M = 0.620), and on the 1− (6.15 MeV) level of 18Ne

for negative parity (M = 0.589). Reproducing the energy of a resonance is crucial to

derive realistic values for its width. The Coulomb interaction is treated exactly.

We also include a zero-range spin-orbit force [23]. The amplitude is adopted as

S0 = 40 MeV.fm5, a standard value in this mass region. The generator coordinates R

have been selected from 1.5 fm to 12 fm with a step of 1.5 fm. The summation over

the hypermoment K [see Eq. (3)] has been truncated at Kmax = 20. As we will show

below, this value provides an accurate convergence.

3.2. Energy spectra

The 18O and 18Ne energy spectra are displayed in Fig. 2, and compared with experiment

[24]. In both nuclei, the excitation energy of the 2+
1 state is underestimated by about

1 MeV. This problem is common to most nuclei in this mass region. The level density

beyond 4 MeV excitation energy is quite large, in particular for 18O. This property

represents a challenge for microscopic models, since experimental states may have a

different cluster structure. However most of the GCM states can be unambiguously

assigned to experimental candidates. In particular we do reproduce the 2+
2 state. A 0+

level is predicted near Ex ≈ 7 MeV. Most likely it can be assigned to the experimental

0+
3 state since the 0+

2 state is expected to present an α cluster structure [25].

In negative parity the lowest GCM state is 1−; other negative-parity states are at

higher excitation energies. The 1−1 experimental level is known to have an α+14C/α+14O
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Figure 2. 18O and 18Ne spectra (experimental data are taken from Ref. [24]). The
zero energy is taken as the 16O+n+n and 16O+p+p thresholds, respectively.

cluster structure [25] and cannot be described by the present model which includes 16O

as a core. The first theoretical 1− state therefore corresponds to the 1−2 experimental

level at 6.15 MeV.

In Fig. 3, we analyze the energy convergence of various states as a function of Kmax.

In positive parity, the convergence is reached near Kmax ∼ 12. The energy difference

between Kmax = 20 and Kmax = 18 is lower than 1 keV. As expected for unbound

states, the 1− resonance presents a slower convergence. Going up to large Kmax values

(i.e. larger than 15) is necessary to obtain precise properties.

3.3. Decay of the 1− (6.15 MeV) state in 18Ne

The ACCC method has been applied to determine the width of the 1−2 state in 18Ne.

As mentioned in Sect. 2.2, the ACCC presents some sensitivity with respect to the

conditions of the calculation [i.e. the degree of the Padé approximant, and the λ

values used to parametrize the wave number (6)]. Consequently convergence tests

must be performed, and the resonance properties cannot be determined without some

uncertainty. In particular, the width, which is zero at negative energies, is somewhat

sensitive to the conditions of the calculation.

In Fig. 4, we show the energy and width for various degrees (M = N) of the Padé

approximant (6). In addition, different sets of λ values have been adopted and defined

as

λn = λ0 + n∆λ, (8)
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Figure 3. Convergence of various 18Ne states as a function of the maximum
hypermomentum Kmax.

where ∆λ is a constant step. Variations of the resonance properties against N and ∆λ

provide an estimate of the uncertainty, which is unavoidable with the ACCC method.

Small N values do not give accurate Padé approximants. Conversely, when N is

large (typically beyond N ≈ 10), round-off errors become more and more important.

The energy is very stable and corresponds to the value obtained in the bound-state

approximation, i.e. by a simple diagonalization of the Hamiltonian matrix. The width,

related to the imaginary part of the wave number is somewhat less stable.

Fig. 4 provides ER = 1.67 ± 0.01 MeV and Γ = 40 ± 10 keV. The energy has been

adjusted by the nucleon-nucleon interaction, and is of course very close to experiment.

Conversely the width is an output of the model, and is in fair agreement with experiment

(50 ± 5 keV, see Ref. [6]).

4. Conclusion

This work represents a first attempt to describe the three-body decay of 18Ne in a

microscopic approach. The GCM is known for a long time to be well adapted to the

spectroscopy of light nuclei, and to low-energy reactions. Its application to unbound

states is however a challenge, as it raises several difficulties. A realistic treatment

requires a three-body model. In addition, the unstable nature of the initial state

requires to go beyond the bound-state approximation, and to complement the GCM by

an additional tool, able at dealing with unbound states. We have used here the ACCC

method, which is based on standard variational calculations. Even if the resonance

properties cannot be derived without some uncertainty, the method should be considered

as a very powerful tool.

The GCM width is found as Γ = 40 ± 10 keV, in good agreement with the
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Figure 4. Energy and width of the 1− (6.15 MeV) resonance in 18Ne, as a function
of the degree of the Padé approximant (M = N). The curves correspond to different
sets of λ values [see Eq. (8)].

experimental value Γ = 50 ± 5 keV. This result demonstrates that the theoretical

description of the 1−2 unbound state is realistic. Of course the ACCC method only

provides the total width. Determining the (small) diproton branching ratio would

require to use more sophisticated methods, providing the partial widths as well.

Other proton-rich nuclei with a marked three-body structure, such as 17Ne or 19Mg,

might be considered in the future. The 16O+p+p system is however simpler since the 16O

core is a closed-shell nucleus. The hypersperical formalism applied to the GCM requires

seven-dimension integrals for the matrix elements. The numerical evaluation of these

integrals need very long computer times, and going beyond this limitation represents a

challenge for the future.
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