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Abstract. In neutron-rich nucleosynthesis scenarios the mass gaps A=5,8 are
assumed to be bridged by the three-body electromagnetic recombination reaction
4He(αn, γ)9Be. However an alternative path, the nuclear four-body neutron-
recoil recombination reaction 4He(αnn, n)9Be, is also conceivable in neutron-rich
environments. We estimate the rate of the alternative reaction and show that for
temperatures of about 109K it is comparable with the electromagnetic rate if the
neutron density is of about 1030 neutrons per cm3. At higher neutron densities the
nuclear process dominates.
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1. Introduction

In neutron-rich scenarios of astrophysical nucleosynthesis heavy elements are formed by

rapid neutron capture in hot neutron-rich environments with 1020−30 neutrons per cm3

and temperatures of about 109K [1, 2]. The recombination of two α-particles and a

neutron into 9Be nucleus plays a key role in these scenarios as it bridges the gaps of

unstable isotopes with mass numbers A=5 and A=8 [3]. The recombination is assumed

to occur through the three-body electromagnetic reaction,

4He(αn, γ)9Be , (1)

where the excess energy is taken away by the emitted photon [3, 4, 5, 6].

However in neutron-rich environments the recombination can also occur through

the nuclear four-body neutron-recoil recombination reaction

4He(αnn, n)9Be , (2)

where the excess energy is passed to a neutron in the environment.

In this letter we estimate the production rate of 9Be from the neutron-recoil

recombination reaction (2) for different temperatures of the environment and compare

it with the rate of the electromagnetic reaction (1).
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2. Neutron-recoil recombination

We shall describe the nuclear recombination reaction (2) using the participant-spectator

model [7] where the recombining three-body ααn system (participants) is treated

rigorously while the recoil neutron (spectator) is accounted for in the plane-wave

approximation.

In this model the transition amplitude Mfi for the recombination of the ααn system

from an initial (continuum) three-body state |i〉 to the final (bound) three-body state

〈f | is given as

Mfi =

∫
d3r〈f |e

−ip′·r
√

V
W

e+ip·r
√

V
|i〉 , (3)

where r is the relative coordinate between the recoil-neutron and the ααn center of

mass, p and p′ are the initial and final momenta of the recoil neutron (relative to the

ααn system), and W is the interaction between the recoil neutron and the ααn system.

We shall use the box boundary condition where the three-body states |i〉 are

normalized to unity within the volume V . The continuum states are then discretized,

which simplifies the numerical calculations. The final results should be independent of

the choice of the volume as long as it is larger than the typical volume of the ααn bound

state.

Temperatures of about 109 K correspond to neutron kinetic energy around 0.1 MeV,

which is small on the scale of neutron-neutron and neutron-α scattering. In this low-

energy regime the scattering processes are determined primarily by the corresponding

scattering lengths. However, the singlet neutron-neutron scattering length, ann ∼ 20 fm

is about ten times larger than the neutron-α scattering length. Therefore we shall neglect

the neutron-α interaction in the matrix element (3) and include only the neutron-neutron

interaction.

In the low-energy regime the neutron-neutron interaction can be approximated by

the Fermi’s pseudo-potential, particularly suitable for the plane-wave approximation,

W =
4π~2ann

m
δ(rnn) , (4)

where rnn is the distance between the two neutrons and m is the neutron mass.

Introducing rn = r − rnn as the coordinate between the recombining neutron and

the center of mass of the recombining ααn system, and integrating (3) with the δ-

function (4) we obtain

Mfi =
4π~2ann

V m
〈f |e−iq·rn|i〉 , (5)

where q = p′ − p is the transferred momentum. The two neutrons here are assumed to

be in the singlet state.

Since the temperature of the environment is much smaller than the binding energy

of 9Be we neglect the initial thermal energy of the system compared to the recoil energy.

Neglecting also the mass of the neutron compared to the mass of 9Be, we assume that
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for all initial states the recoil energy is equal to the binding energy of 9Be, called ε, and

thus

q = p′ =

√
2mε

~2
. (6)

Assuming there are Nn recoil neutrons available in the volume V , the differential

probability (the number of transitions per unit time) for the transition |i〉 → |f〉 for one

ααn system is given by the Fermi’s Golden rule,

dwfi =
Nn

4

2π

~
|Mfi|2

dνq

dEq
, (7)

where the factor 1/4 is the probability to find two neutrons in a singlet state in a thermal

gas of neutrons, and where dνq is the number of states per unit energy for the recoil

neutron, given by

dνq =
V d3q

(2π)3
=

qmV

(2π)3~2
dΩqdEq , (8)

where dΩq is an infinitesimal solid angle around the direction of q and Eq is the energy

of the recoil neutron.

Substitution the matrix element (5) and the number of states (8) into (7) gives

dwfi = nna2
nnv

∣∣〈f |e−iq·rn|i〉
∣∣2 dΩq , (9)

where nn = Nn/V is the neutron density and v = ~q/m is the final velocity of the recoil

neutron.

After integration over the recoil angles, summing over the final magnetic quantum

numbers µf , and averaging over the initial ones µi, we get the reaction rate

wfi = nna2
nnvFfi , (10)

where

Ffi =
1

(2ji + 1)

∑

µf µi

∫
dΩq

∣∣〈jfµf |e−iq·rn|jiµi〉
∣∣2 (11)

and ji, jf are the angular momenta of the initial and the final states.

The quantity Ffi depends on the normalization volume V for the three-body states.

However, the probability per unit energy

dw

dE
= nna2

nnv
dF

dE
, (12)

where the nuclear strength function dF
dE

is given as

dF

dE
=

1

∆E

∑

Ei∈E±∆E/2

Ffi , (13)

is independent on the normalization volume.

In practice the energy bin ∆E should be chosen small enough for not to smear

out the structure of the spectrum, but still large enough to include several discretized

continuum states in each energy bin.
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3. Electromagnetic recombination

The dipole electromagnetic recombination reaction rate is given as [8]

w
(E1)
fi = 8π

2

9

ω3

~c3
B

(E1)
fi (14)

where ~ω is the photon energy, and B
(E1)
fi is the reduced dipole transition probability

integrated over the photon angles and summed over magnetic quantum numbers of the

final state,

B
(E1)
fi = 4(2e)2

∑

µµf

|〈jfµf |rαY1µ(rα)|jiµi〉|2 , (15)

where rα is the coordinate of an α-particle from the center of mass of the recombining

ααn system, 2e is the charge of the α-particle, and the factor of 4 appears because the

system contains two identical α-particles.

We can rewrite the reaction rate (14) in a more elucidating form as

w
(E1)
fi =

(4π)3

9
ω

e2

~c

(
R

λ

)2 B
(E1)
fi

e2R2
(16)

where R (≈ 2.52 fm) is the root mean square charge radius of 9Be, and λ is the

wavelength of the photon.

Similarly to (12) we introduce the electromagnetic rate per unit energy,

dw(E1)

dE
=

(4π)3

9
ω

e2

~c

(
R

λ

)2
dF (E1)

dE
(17)

where the reduced electromagnetic strength function,

dF (E1)

dE
=

1

∆E

∑

Ei∈E±∆E/2

B
(E1)
fi

e2R2
, (18)

is independent of the size of the normalization volume.

Note that only the initial states that satisfy the dipole transition selection rules in

(15) are included in the electromagnetic sum (18) while the nuclear sum (11) includes, in

principle, states with all angular momenta. This might be important for higher energies

of the initial states.

4. Temperature

In an environment with temperature T the probability to find a system in a state with

energy Ei is given by the Boltzmann distribution,

Pi = gi
e

−Ei
kBT

Z
, Z ≡

∑

i

gie
−Ei
kBT , (19)

where gi is the degeneracy factor of the state i, and kB is the Boltzmann constant.

The total recombination rate 〈ααn〉γ is then the Boltzmann averaged sum of the

contributions from all possible initial states or, equivalently, the Boltzmann integral over
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the energy of the initial state over the nuclear (12) or electromagnetic (17) differential

rates,

〈ααn〉 =
∑

i

gi
e

−Ei
kBT

Z
wfi =

∫ ∞

0

dE
e

−E
kBT

Z

dw

dE
. (20)

The degeneracy factor gi is included in dw/dE through the summation over all the states

inside each energy bin in (13) and (18).

In order to calculate the partition function Z via the summation (19) a large number

of continuum states with different parities and total momenta needs to be calculated.

To simplify the calculations we shall use the partition function for a free ααn system

where the interactions between particles are neglected.

The partition function of a system can be expressed as an integral,

Z =

∫ ∞

0

dE g(E)e
−E

kBT , (21)

where g(E) is the density of states of the system. For a free ααn system the density of

states is given as

g(E) =
4(µxµy)

3
2 V6π

3E2

(2π~)6
, (22)

where µx and µy are the reduced masses associated to the Jacobi coordinates x and y,

and V6 is the six-dimensional volume, which in terms of the hyperradius ρ =
√

x2 + y2

takes the form:

V6 =
π3ρ6

max

6
, (23)

with ρmax being the size of the box used to discretize the three-body continuum

spectrum.

5. Numerical results

The three-body wave functions for the ααn system have been obtained by means of

the hyper-spherical adiabatic expansion method [9]. The details of the interaction can

be found in [10] and [11]. We have used a box boundary condition at ρmax ∼ 100 fm

which converts the continuum spectrum into a discretized quasi-continuum. The size of

the energy bin (∆E) in the summations (13) and (18) is chosen about 0.2 MeV, such

that each of them contains eight quasi-continuum states. After binning an interpolation

procedure is used to obtain a smooth function.

In Fig. 1 we show the nuclear (13) and electromagnetic (18) strength functions as a

function of the energy of the initial state. The low-lying peak in the strength functions

has been obtained using a Breit-Wigner interpolation function centered at the resonance

energy of 0.14 MeV with the width of 0.11 MeV. These parameters are from the analysis

in [12], where this resonance was interpreted as a genuine three-body structure owing

its finite lifetime to substantial restructuring from small to large distances. This is an

important point, since this determines the behavior of the strength functions at very low
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Figure 1. Electromagnetic strength function (18) (left) and nuclear strength function
(13) (right) for the ααn → 9Be recombination process as a function of the energy of
the initial state.

energy where our discretization procedure gives too few points. The low-temperature

dependence is in turn determined by this parametrized low-energy behavior‡.
The nuclear rate has been computed using the same continuum states as for the

electromagnetic dipole rate, that is continuum states with total momentum and parity

1/2+, 3/2+, and 5/2+. The strength functions reflect the resonant structure of the ααn

system in the corresponding channels.

Both strengths contain only quantities of the natural scale of the three-body system

and reflect the resonant structure of the ααn continuum. The main difference between

them arises from the operators in the matrix elements (11) and (15). Although similar

in the dipole approximation they depend on rn and rα in (11) and (15), respectively.

The fact that the nuclear strength is bigger than the electromagnetic one is a sign of

the larger average distance from the three-body center of mass of the neutron compared

to that of the alpha particle.

In Fig. 2 we show the Boltzmann averaged recombination rates (per one ααn

system) as function of temperature. In the left part of the figure the closed and open

squares correspond to the rates obtained in [6] and [14], respectively. In [6] the rate is

derived in the sequential approximation through the metastable 0+ state in 8Be. The

1/2+, 5/2− and 5/2+ states in 9Be are included. The same formulation as in [15] is

used, and actually very similar results are obtained. The energy of 0.161 MeV above

‡ in ref.[13] the low-energy behavior of the 9Be ( 1
2

+ → 3
2

−) contribution was inadvertently incorrectly
treated and the resulting low-temperature rate was therefore incorrect. In this paper we use the proper
interpolation procedure at low energies and the resulting rates are shown in figure 2. The conclusions
in [13] are unaltered although the detailed rate dependence at low temperatures is now substantially
improved.
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Figure 2. Boltzmann averaged electromagnetic (left) and nuclear (right) rates for
the ααn →9Be recombination. The closed and open squares on the left part are the
results from [6] and [14]. The dash-dash-dot curve on the left part is the rate for the
αnn →6 He + γ recombination reaction, given here for comparison. The nuclear rate
is calculated for the neutron density ňn = 1030cm−3. Since the nuclear rate (10) is
proportional to the neutron density, the rate for a given neutron density nn can be
obtained by rescaling the curves with the factor nn/ňn.

the three-body threshold and the width of 0.225 MeV is used for the low-lying 1/2+

state in 9Be. In the previous work [14] the photodissociation cross section for 9Be is

adjusted with a simple exponentially falling function, which basically only reproduces

the low lying 1/2+ peak. As seen in the figure, the full calculation (solid line) agrees

reasonably well with the results in [6], while the contribution of the 1/2+ states (dashed

line) agrees with [14], where essentially only that state is considered. This agreement

can be understood from the fact that the main contribution to the rate comes from

the ααn states with spin and parity 1/2+ (dashed line), which is to a large extent

dominated by the 1/2+ resonance in 9Be. The full three-body calculation predicts that

this resonance decays almost fully sequentially through the 0+ state in 8Be. Therefore,

the population of the resonance (which is the inverse process) should mainly proceed

sequentially through the 0+ state in 8Be, precisely as assumed in [6].

Another process leading to 9Be is the α-capture on 6He, i.e., the

α(nn, γ)6He(α, n)9Be process. We then for comparison show in the left part of fig-

ure 2 the electromagnetic recombination rate obtained by means of a full three-body

calculation for the αnn →6 He + γ reaction (dash-dash-dot curve). At small temper-

atures the 9Be rate clearly dominates. This is due to the low-lying 1/2+ resonance in
9Be. Only for temperatures around 0.3 MeV (∼ 3.5 GK) the 6He rate is taking over.

The nuclear rate was calculated for a neutron density of ňn = 1030 cm−3. At this

density the nuclear and electromagnetic rates are comparable at temperatures of few
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GK. The nuclear rate (10) is proportional to the neutron density, therefore the nuclear

rate for a given neutron density nn can be obtained from the curves on Fig. 2 (right) by

rescaling with the factor nn/ňn.

6. Conclusion

We have investigated an alternative path for bridging the gap of unstable nuclear

isotopes with A=5,8 in neutron-rich nucleosynthesis scenarios. The alternative path is

the nuclear four-body recombination reaction 4He(αnn, n)9Be. We have estimated the

rate of the nuclear recombination using the participant-spectator model and compared

it with the rate of the electromagnetic recombination reaction 4He(αn, γ)9Be. We have

shown that for scenarios with a neutron density of the order of 1030 cm−3 both rates are

comparable at a temperature of 109 K. At higher neutron densities the nuclear process

dominates.
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