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Abstract. We investigate the relativistic equation of state of hadronic matter and
quark-gluon plasma at finite temperature and baryon density in the framework of the
nonextensive statistical mechanics, characterized by power-law quantum distributions.
We study the phase transition from hadronic matter to quark-gluon plasma by
requiring the Gibbs conditions on the global conservation of baryon number and electric
charge fraction. We show that nonextensive statistical effects play a crucial role in the
equation of state and in the formation of mixed phase also for small deviations from
the standard Boltzmann-Gibbs statistics.

1. Introduction

The physics of high energy heavy ion collisions is a goldmine of problems in statistical

mechanics and thermodynamics due to a large average number of particles involved and

possible phase transition phenomena in the hot and dense fireball created during the

collisions [1]. In relativistic heavy ion collisions the baryon density can reach values of

a few times the saturation nuclear density and/or high temperatures. Furthermore, the

future CBM (Compressed Baryonic Matter) experiment of FAIR (Facility of Antiproton

and Ion Research) at GSI Darmstadt, will make possible to create compressed baryonic

matter with a high net baryon density [2, 3, 4]. In this direction interesting results

have been obtained at low SPS energy and are foreseen at a low-energy scan at RHIC

[5, 6, 7, 8, 9].

Lattice calculations predict a critical phase transition from hadronic matter to

quark-gluon plasma (QGP) at temperature Tc of about 170 MeV, corresponding to a

critical energy density εc ≈ 1 GeV/fm3 [10]. On the other hand, in dense nuclear matter,

baryons are forced to stay so close one to another that they would overlap. At large

densities, constituent quarks are shared by neighboring baryons and should eventually

become mobile over a distance larger than the typical size of one baryon. This means

that quarks become deconfined and that at large densities and/or high temperatures

they are the real degrees of freedom of strongly interacting matter instead of baryons.

The process of deconfinement and the equation of state (EOS) of quark-gluon matter
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can in principle be described by quantum chromodynamics. However, in energy density

range reached in relativistic heavy-ion collisions, non-perturbative effects in the complex

theory of QCD are not negligible [10]. The generated QGP in the early stages of the

collisions does not at all resemble a quasi-ideal gas of quarks and gluons because strongly

dynamical correlations are present, including long-range interactions [1, 11, 12, 13, 14].

In the absence of a converging method to approach QCD at finite density one often turns

to (effective) model investigations [15, 16, 17, 18, 19]. Various results from QCD inspired

models indicate that, increasing the baryon chemical potential in the phase diagram,

a region of non-singular but rapid cross-over of thermodynamic observable around a

quasi-critical temperature, leads to a critical endpoint (CEP), beyond which the system

shows a first order phase transition from confined to deconfined matter. The existence

or exclusion of a CEP has not yet been confirmed by QCD lattice simulations. Actually,

there are some extrapolation techniques to finite chemical potentials [20], although the

precise location of the CEP is still a matter of debate [21]. For example, in Ref. [22], the

authors estimate the values TCEP = 162 MeV and µCEP = 360 MeV. Such a CEP can

be in principle detected in future high-energy compressed nuclear matter experiments.

Recently, there is an increasing evidence that the nonextensive statistical mechanics,

proposed by Tsallis, can be considered as an appropriate basis to deal with physi-

cal phenomena where strong dynamical correlations, long-range interactions and

microscopic memory effects take place [23, 24, 25, 26]. A considerable variety of

physical applications involve a quantitative agreement between experimental data

and theoretical models based on Tsallis thermostatistics. In particular, in the last

years there is a growing interest to high energy physics applications of nonextensive

statistics [27] and several authors have outlined the possibility that experimental

observations in relativistic heavy ion collisions can reflect nonextensive statistical

behaviors [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

The existence of nonextensive statistical effects should strongly affects the finite

temperature and density nuclear EOS [41, 42, 43]. In fact, by varying temperature and

density, the EOS reflects in terms of the macroscopic thermodynamical variables the

microscopic interactions of the different phases of nuclear matter. The extraction of

information about the EOS at different densities and temperatures by means of heavy

ion collisions is a very difficult task and can be realized only indirectly by comparing

the experimental data with different theoretical models, such as, for example, fluid-

dynamical models [44]. Related to this aspect, it is relevant to observe that a relativistic

kinetic nonextensive theory [45] and a nonextensive version of a hydrodynamic model for

multiparticle production processes have been proposed [46]. Very recently, nonextensive

statistical effects on the hadronic EOS have been investigated by means of a Walecka

type relativistic mean field model [47]. Furthermore, a nonextensive version of Nambu-

Jona-Lasinio model [48] and the effects on color superconducting phase for two quark

flavors due to a change to Tsallis statistics have been studied [49].

The main goal of this paper is to study how nonextensive statistical effects influence,

from a phenomenological point of view, the nuclear EOS and, as a consequence, the
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relative phase transition at finite temperature and density reachable in high-energy

heavy-ion collisions. Focusing our investigation to lower temperatures and higher

baryon chemical potentials than the corresponding CEP values, a mixed phase of

hadrons, quarks and gluons can be formed following the Gibbs conditions for the

phase equilibrium. If, in general, we consider a substance composed of two conserved

”charges”, like the baryon number and the isospin charge in heavy ion collisions at

finite baryon density, the ratio between the two charges is fixed only as long as the

system remains in one of the two pure phases. In the mixed phase, the concentration

in each of the regions of one phase or the other may be different. Their values are

restricted only by the conservation on the total charge numbers. The essential point

is that conservation laws in chemical thermodynamics are global, not local. The main

result of this formalism is that, different from the so-called Maxwell construction, the

pressure in the mixed phase is not constant and therefore the nuclear incompressibility,

for example, does not vanish [50].

Furthermore, the scenario we are going to explore corresponds to the situation

realized in heavy ion collisions experiments at not too high energy where finite

temperature and high compressed baryon density is reached. In this condition, a not

large fraction of strangeness can be produced and, therefore, we will limit ourselves to

study the deconfinement transition from hadronic matter into up and down quark matter

[51, 52, 53]. We aspect that, in the range of temperature and density considered, the

presence of strange particles does not significantly affect the main conclusions regarding

the relevance of nonextensive statistical effects on the nuclear EOS.

The paper is organized as follows. In Section 2, we introduce the basic formalism of

the nonextensive statistics. In Section 3, we study the nonextensive hadronic EOS for

symmetric and asymmetric nuclear matter and we explore the behavior of meson fields

in presence of small deviations from the standard statistics. In Section 4, we investigate

nonextensive proprieties of the quark-gluon EOS. In Section 5, we study the hadron to

quark-gluon phase transition and the consequent formation of a mixed phase, mainly

focusing our study in the variation of the first critical transition density for various set

of parameters. Finally, we summarize our conclusions in Section 6.

2. Basic assumptions in nonextensive statistics

Nonextensive statistical mechanics introduced by Tsallis is a generalization of the

common Boltzmann-Gibbs statistical mechanics [23, 24, 25]. It is based upon the

introduction of the following entropy

Sq[f ] =
1

q − 1

(
1 −

∫
[f(x)]q dΩ

)
,

(∫
f(x) dΩ = 1

)
, (1)

where f(x) stands for a normalized probability distribution, x and dΩ denoting,

respectively, a generic point and the volume element in the corresponding phase space.

Here and in the following we set the Boltzmann and the Planck constant equal to unity.



4

The real parameter q determines the degree of non-additivity exhibited by the entropy

form (1).

The generalized entropy has the usual properties of positivity, equiprobability, con-

cavity and irreversibility, preserves the whole mathematical structure of thermodynam-

ics (Legendre transformations). In the limit q → 1, the entropic form (1) becomes

additive and reduces to the standard Boltzmann-Gibbs entropy

S1 = −
∫
f(x) ln f(x) dΩ . (2)

Peculiarity of the Tsallis generalized thermostatistics is that if we have two

statistically independent subsystems A e B, described, respectively, by the individual

probability density f (A) and f (B) and we call f (A+B)(xA,xB) = f (A)(xA) f (B)(xB) the

joint probability density of a composite system A +B, the nonadditive (nonextensive)

character of Sq is summarized in the relation [25]

Sq[f
(A+B)] = Sq[f

(A)] + Sq[f
(B)]) + (1 − q)Sq[f

(A)]Sq[f
(B)] . (3)

In the limit q → 1, the third term in right hand side of Eq.(3) vanishes and the above

equation reduces to the well-known additivity (extensivity) relation of the Boltzmann-

Gibbs logarithmic entropy. Here, the word nonextensive should be associated with the

fact that the total energy of long-range-interacting mechanical systems is nonextensive,

in contrast with the case of short-range-interacting systems, whose total energy is

extensive in the thermodynamical sense [25].

Second crucial assumption on nonextensive statistics is the introduction of the q-

mean value (or escort mean value) of a physical observable A(x)

〈A〉q =

∫
A(x) [f(x)]qdΩ∫

[f(x)]qdΩ
. (4)

The probability distribution can be obtained maximizing the measure Sq under

appropriate constraints related to the previous definition of the q-mean value. In this

context, it is important to observe that the Tsallis classical distribution can be seen

as a superposition of Boltzmann distributions with different temperatures which have a

mean value corresponding to the temperature appearing in the Tsallis distribution. The

nonextensive q parameter is related to the fluctuation in the temperature and describes

the spread around the average value of the Boltzmann temperature [32].

Following the above prescriptions, it is possible to obtain the associate quantum

mean occupation number of particles species i in a grand canonical ensemble. For a

dilute gas of particles and for small deviations from the standard statistics (q ≈ 1,) it

can be written as [54, 55]

ni =
1

[1 + (q − 1) β(Ei − µi)]1/(q−1) ± 1
, (5)

where β = 1/T and the sign (+1) is for fermions and (−1) for bosons. Naturally,

for q → 1 the above quantum distribution reduces to the standard Fermi-Dirac and

Bose-Einstein distribution. Let us observe that nonextensive statistical effects vanishes

approaching to zero temperature. This is the reason for which nonextensive effects
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could be significantly relevant in high energy heavy ion collision and probably, in the

protoneutron star. In addition, in high density quark-gluon matter the color magnetic

field remains unscreened (in leading order) and long-range color magnetic interaction

should be present at any finite temperature, thus QGP appears to be an ideal candidate

for finding some nonextensive behavior.

Finally, let us observe that when the entropic q parameter is smaller than one, the

above distribution have a natural high energy cut-off which implies that the energy tail

is depleted; when q is greater than one, the cut-off is absent and the energy tail of the

particle distribution (for fermions and bosons) is enhanced. Hence the nonextensive

statistics entails a sensible difference of the power-law particle distribution shape in the

high energy region with respect to the standard statistics. In this context, it is relevant

to observe that in Ref. [48], the authors postulate a modified quantum distribution

function for fermions and bosons at the scope of satisfy the particle-hole symmetry,

both for q > 1 and q < 1. In the present work we will focus our study for small

deviations from the standard statistics and for values of q > 1, because these values

were obtained in several phenomenological studies in high energy heavy ion collisions

(see, for example, Ref.s [29, 37, 38, 39, 40]). We have explicitly verified that, for the

values q > 1 considered in this investigation, the prescription introduced in Ref. [48]

does not affect the results that we are going to obtain and, therefore, we adopt the

original formulation of nonextensive statistics. Furthermore, it is proper to remember

that in a relativistic mean field theory, considered in this investigation, baryons are

assumed as Dirac quasiparticles moving in classical meson fields, the field operator are

replaced by their expectation values and the contributions coming from the Dirac sea

are neglected.

3. Nonextensive hadronic equation of state

In this Section we study the nonextensive hadronic EOS in the framework of a relativistic

mean field theory in which nucleons interact through the nuclear force mediated by the

exchange of virtual isoscalar-scalar (σ), isoscalar-vector (ω) and isovector-vector (ρ)

meson fields [56, 57, 58]. As quoted in the Introduction, a similar approach has been

studied in Ref. [47] for pure neutron matter and for symmetric nuclear matter (thus,

without considering the effects of the ρ meson field) focusing principally the attention

to a different range of density and temperature considered in this paper. Here, we are

going to study the hadronic EOS at the scope of emphasize several features previously

not investigated that result to be crucial for our following purposes.

The Lagrangian density describing hadronic matter can be written as

L = LQHD + Lqfm , (6)

where [58]

LQHD = ψ̄[iγµ∂
µ − (M − gσσ) − gωγµω

µ − gργ
µ~τ · ~ρµ]ψ +

1

2
(∂µσ∂

µσ −m2
σσ

2)
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− U(σ) +
1

2
m2

ωωµω
µ +

1

2
m2

ρ~ρµ · ~ρ µ − 1

4
FµνF

µν − 1

4
~Gµν

~Gµν , (7)

and M = 939 MeV is the vacuum baryon mass. The field strength tensors for the vector

mesons are given by the usual expressions Fµν ≡ ∂µων − ∂νωµ, ~Gµν ≡ ∂µ~ρν − ∂ν~ρµ, and

U(σ) is a nonlinear potential of σ meson

U(σ) =
1

3
aσ3 +

1

4
bσ4 , (8)

usually introduced to achieve a reasonable compression modulus for equilibrium nuclear

matter.

Following Ref.s [59, 60], Lqfm in Eq.(6) is related to a (quasi) free gas of pions with

an effective chemical potential (see below for details).

The field equations in a mean field approximation are

(iγµ∂
µ − (M − gσσ) − gωγ

0ω − gργ
0τ3ρ)ψ = 0 , (9)

m2
σσ + aσ2 + bσ3 = gσ < ψ̄ψ >= gσρS , (10)

m2
ωω = gω < ψ̄γ0ψ >= gωρB , (11)

m2
ρρ = gρ < ψ̄γ0τ3ψ >= gρρI , (12)

where σ = 〈σ〉, ω = 〈ω0〉 and ρ = 〈ρ0
3〉 are the nonvanishing expectation values of meson

fields, ρI is the total isospin density, ρB and ρS are the baryon density and the baryon

scalar density, respectively. They are given by

ρB = 2
∑

i=n,p

∫
d3k

(2π)3
[ni(k) − ni(k)] , (13)

ρS = 2
∑

i=n,p

∫
d3k

(2π)3

M∗
i

E∗
i

[nq
i (k) + n q

i (k)] , (14)

where ni(k) and ni(k) are the q-deformed fermion particle and antiparticle distributions

given in Eq.(5); more explicitly, in this context, we have

ni(k) =
1

[1 + (q − 1) β(E∗
i (k) − µ∗

i )]
1/(q−1) + 1

, (15)

ni(k) =
1

[1 + (q − 1) β(E∗
i (k) + µ∗

i )]
1/(q−1) + 1

. (16)

The nucleon effective energy is defined as Ei
∗(k) =

√
k2 +Mi

∗2, where Mi
∗ =

Mi − gσσ. The effective chemical potentials µ∗
i are given in terms of the meson fields as

follows

µ∗
i = µi − gωω − τ3igρρ , (17)

where µi are the thermodynamical chemical potentials µi = ∂ε/∂ρi. At zero temperature

they reduce to the Fermi energies EFi ≡
√
k2

Fi +M∗
i

2 and the nonextensive statistical

effects disappear. The meson fields are obtained as a solution of the field equations in

mean field approximation and the related meson-nucleon couplings (gσ, gω and gρ) are

the free parameters of the model. In the following, they will be fixed to the parameters

set marked as GM2 of Ref.[58].
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The thermodynamical quantities can be obtained from the thermodynamic po-

tential in the standard way. More explicitly, the baryon pressure PB and the energy

density εB can be written as

PB =
2

3

∑

i=n,p

∫
d3k

(2π)3

k2

E∗
i (k)

[nq
i (k) + nq

i (k)] −
1

2
m2

σσ
2 − U(σ) +

1

2
m2

ωω
2 +

1

2
m2

ρρ
2 ,(18)

εB = 2
∑

i=n,p

∫
d3k

(2π)3
E∗

i (k)[n
q
i (k) + nq

i (k)] +
1

2
m2

σσ
2 + U(σ) +

1

2
m2

ωω
2 +

1

2
m2

ρρ
2 . (19)

It is important to observe that Eq.s(14), (18) and (19) apply to nq
i ≡ (ni)

q rather

than ni itself, this is a direct consequence of the basic prescription related to the q-

mean expectation value in nonextensive statistics [25, 45] (this recipe was not adopted

in Ref.[47]). In addition, since all equations must be solved in a self-consistent way,

the presence of nonextensive statistical effects influences the many-body interaction

mediated by the meson fields.

Especially in regime of low density and high temperature the contribution of the

lightest mesons to the thermodynamical potential (and, consequently, to the other

thermodynamical quantities) becomes relevant. As quoted before, following Ref. [59],

we have included the contribution of pions considering them as a (quasi) ideal gas

of nonextensive bosons with effective chemical potentials expressed in terms of the

corresponding effective baryon chemical potentials. More explicitly, for π+ mesons we

have µπ+ = µC ≡ µp −µn, where µC is the electric charge chemical potential. Thus, the

corresponding effective pion chemical potential can be written as

µ∗
π+ ≡ µ∗

p − µ∗
n = µp − µn − 2 gρ ρ , (20)

where the last equivalence follows from Eq.(17). Therefore, the ρ meson field couples to

the total isospin density, which receives a contribution from nucleons and pions.

Let us start our numerical investigation by considering the behavior of σ, ω and

ρ meson fields at a fixed value Z/A = 0.4, for different values of temperature and

nonextensive parameter q. Because meson fields have their source in the baryon and

scalar density, which are very sensible to the behavior of the mean occupation number,

all meson fields appear to be significantly changed in presence of nonextensive effects.

In Fig. 1, we show the σ meson field as a function of the baryon chemical potential

µB. It is interesting to observe that at lower µB, in presence of nonextensive effects, the

value of the meson field is significantly increased for all values of temperature respect

to the standard case, the other way round happens at higher µB. This important

feature is due to the fact that, as already remarked in Section 2, for q > 1 and fixed

baryon density (or µB), the (normalized) mean occupation function is enhanced at high

values of its argument and depressed at low values. Being the argument of the mean

occupation function xi = β(E∗
i − µ∗

i ), in the integration over momentum (energy),

at lower µB (corresponding to lower values of the effective particle chemical potential

µ∗
i ) the enhanced Tsallis high energy tail weighs much more that at higher µB where

depressed low energy effects prevail and the mean occupation number results to be bigger

for the standard Fermi-Dirac statistics. Concerning the antiparticle contribution, the
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Figure 1. The σ meson field as a function of baryon chemical potential for different
values of temperature (in units of MeV) and q.

argument of ni is xi = β(E∗
i + µ∗

i ) and the Tsallis enhancement at high energy tail is

favored also at higher µB. At the same time, higher temperatures (where antiparticle

contribution are more relevant) reduce the value of the argument of ni and ni, favoring

the extensive distribution. These effects are much more evident for the scalar density

ρS (self-consistently related to the σ meson field) where appears (ni)
q and particle

and antiparticle contributions are summed. The same effect involves also the nucleon

effective mass M∗ = M − gσσ, which becomes, respect to the standard case, smaller for

lower values of µB and bigger for higher values, with very relevant consequences for the

hadronic EOS ‡.
In Fig. 2, we report the ω meson field as a function of the baryon chemical potential

for different values of temperature and q. In this case the situation is different from the

σ meson, because the ω field have its source in the baryon density ρB where appears

ni and particle and antiparticle contributions are subtracted. At lower temperatures

(T = 60 MeV), antiparticle contributions are negligible and we have a behavior similar

(although less evident) to the σ field. At higher temperatures (T = 120 MeV), the

contributions of antiparticle increase and nonextensive effects vanish at higher µB.

Finally, in Fig. 3, we report the behavior of the ρ meson field which depends from

the isospin density (let us remember that we have fixed Z/A = 0.4). Similar arguments

as done for the ω meson applies also in this case. The valuable increasing of its absolute

value, also for weakly asymmetric nuclear matter, makes ρ meson very relevant in the

hadronic EOS, especially at not too large µB.

In Fig. 4, the total pressure P and energy density ε are plotted as a function of µB

for different values of temperature and q. The different behavior from P and ε reflects

essentially the nonlinear combinations of the meson fields and the different functions

under integration in Eq.s (18) and (19). Concerning the pressure, we have that becomes

‡ In Ref. [47], the nucleon effective mass as a function of temperature always diminishes respect to
standard statistics, this behavior is a consequence of the fact that it is plotted only at ρB = 0.
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Figure 2. The ω meson field as a function of the baryon chemical potential for different
values of temperature and q.
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Figure 3. The ρ meson field as a function of baryon chemical potential for different
values of temperature and q.

stiffer by increasing the q parameter. On the other hand, the behavior of the energy

density presents features very similar to the σ field one. At low µB, nonextensive effects

make the energy density greater with respect to the standard case. At medium-high µB,

the standard (q = 1) component of the energy density becomes dominant, this effect is

essentially due to the reduction of the σ field for q > 1. The intersection point depends,

naturally, on the physical parameters of the system.

4. Nonextensive QGP equation of state

Concerning the nonextensive quark-gluon EOS, due to its simplicity, we adopt the MIT

bag model [61]. In this model, quark matter is described as a gas of free quarks and

all non-perturbative effects are simulated by the bag constant B which represents the

pressure of the vacuum.

Following this line, the pressure, energy density and baryon density for a relativistic

Fermi gas of quarks in the framework of nonextensive statistics can be written,
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Figure 4. Pressure (left panel) and energy density (right panel) versus baryon
chemical potential for different values of temperature and q.

respectively, as

Pq =
γf

3

∑

f=u,d

∫ ∞

0

d3k

(2π)3

k2

ef
[nq

f (k) + nq
f(k)] − B , (21)

εq = γf

∑

f=u,d

∫ ∞

0

d3k

(2π)3
ef [nq

f (k) + nq
f(k)] +B , (22)

ρq =
γf

3

∑

f=u,d

∫ ∞

0

d3k

(2π)3
[nf(k) − nf (k)] , (23)

where the quark degeneracy for each flavor is γf = 6, ef = (k2 +m2
f )

1/2, nf(k) and nf(k)

are the q-deformed particle and antiparticle quark distributions

nf(k) =
1

[1 + (q − 1)(ef(k) − µf)/T ]1/(q−1) + 1
, (24)

nf(k) =
1

[1 + (q − 1)(ef(k) + µf)/T ]1/(q−1) + 1
. (25)

Similar expressions for the pressure and the energy density can be written for gluons

treating them as a massless q-deformed Bose gas with zero chemical potential. Explicitly,

we can calculate the nonextensive pressure Pg and energy density εg for gluons as

Pg =
γg

3

∫ ∞

0

d3k

(2π)3

k

[1 + (q − 1) k/T ]q/(q−1) − 1
, (26)

εg = 3Pg , (27)

with the gluon degeneracy factor γg = 16. In the limit q → 1, one recovers the usual

analytical expression: Pg = 8π2/45T 4.

Let us note that, since one has to employ the fermion (boson) nonextensive

distributions, the results are not analytical, even in the massless quark approximation.

Hence a numerical evaluations of the integrals in Eq.s (21)–(23) and (26) must be

performed.

In Fig. 5, we report the total pressure as a function of the baryon chemical potential

for massless quarks and gluons, for different values of q and at fixed value of Z/A = 0.4.
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Figure 5. Pressure of the quark-gluon phase as a function of baryon chemical potential
for different values of temperature and q.

The bag constant is set equal to B1/4=190 MeV. In presence of nonextensive effects,

as in the case of hadronic phase, the pressure is significantly increased even for small

deviations from standard statistics.

5. The hadron to quark-gluon phase transition

In this Section we are going to investigate the phase transition from hadronic matter

to QGP at finite temperature and baryon chemical potential in the framework of

nonextensive statistics.

At this scope, we use the Gibbs formalism applied to systems where more than one

conserved charge is present [62]. In fact, because we are going to describe the nuclear

EOS, we have to require the global conservation of two ”charges”: baryon number

and electric charge. Each conserved charge has a conjugated chemical potential and the

systems is described by two independent chemical potentials: µB and µC . The structure

of the mixed phase is obtained by imposing the following Gibbs conditions for chemical

potentials and pressure

µ
(H)
B = µ

(Q)
B , µ

(H)
C = µ

(Q)
C , (28)

PH(T, µB, µC) = PQ(T, µB, µC) . (29)

Therefore, at a given baryon density ρB and at a given net electric charge density

ρC = Z/AρB, the chemical potentials µB are µC are univocally determined by the

following equations

ρB = (1 − χ) ρH
B (T, µB, µC) + χ ρQ

B(T, µB, µC) , (30)

ρC = (1 − χ) ρH
C (T, µB, µC) + χ ρQ

C(T, µB, µC) , (31)

where ρ
H(Q)
B and ρ

H(Q)
C are, respectively, the net baryon and electric charge densities in

the hadronic (H) and in the quark (Q) phase and χ is the fraction volume of quark-gluon

matter in the mixed phase. In this way we can find out the phase coexistence region,
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Figure 6. Pressure versus baryon chemical potential in the mixed phase for different
values of temperature and q.
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Figure 7. Pressure as a function of baryon density (left panel) and energy density
(right panel) in the mixed phase for different values of q. The temperature is fixed at
T = 90 MeV.

for example, in the (T, µB) plane. We are particularly interested in the lower baryon

density (baryon chemical potential) border, i.e. the first critical transition density ρI
cr

(µI
cr), in order to check the possibility of reaching such conditions in a transient state

during a heavy-ion collision at relativistic energies.

In Fig. 6, we report the pressure as a function of baryon chemical potential; as

before, we have set Z/A = 0.4 and B1/4 = 190 MeV. We can see that at T = 60

MeV, in the range of the considered µB, the system is in a pure hadronic phase even

for the nonextensive index q = 1.1. At T = 90 and 120 MeV, we have both the first

and the second transition critical density for the considered values of q. In presence of

nonextensive effects, the values of the critical densities result to be sensibly reduced with

respect to the standard case. This matter of fact is more evident in Fig. 7, where we

report the pressure at T = 90 MeV as a function of baryon density (in units of nuclear

saturation density ρ0 = 0.153 fm−3) (left panel) and energy density (right panel). It is

interesting to observe that pressure as a function of baryon density (or energy density) is
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T = 60 MeV ρI
cr/ρ0 ρII

cr /ρ0 µI
cr [MeV] µII

cr [MeV]

q = 1.00 5.75 9.10 1503 1569

q = 1.05 5.56 8.88 1472 1537

q = 1.10 5.33 8.65 1437 1502

T = 90 MeV ρI
cr/ρ0 ρII

cr /ρ0 µI
cr [MeV] µII

cr [MeV]

q = 1.00 3.41 5.09 1123 1170

q = 1.05 2.77 4.46 1034 1068

q = 1.10 1.91 3.69 916 927

T = 120 MeV ρI
cr/ρ0 ρII

cr /ρ0 µI
cr [MeV] µII

cr [MeV]

q = 1.00 0.45 1.93 588 616

q = 1.05 0.20 1.33 383 396

q = 1.10 0.08 0.71 184 201

Table 1. Critical baryon densities and baryon chemical potentials at the beginning
(index I) and at the end (index II) of the mixed phase for different values of
temperature and nonextensive parameter q.

stiffer in the pure hadronic phase for q > 1 but appears a strong softening in the mixed

phase. This feature results in significant changes in the incompressibility and may be

particularly important in identifying the presence of nonextensive effects in high energy

heavy ion collisions experiments. Related to this aspect, let us observe that possible

indirect indications of a significative softening of the EOS at the energies reached at

AGS have been discussed several times in the literature [44, 63, 64, 65, 50].

In Table 1, we report the critical baryon densities and baryon chemical potentials

at the beginning (index I) and at the end of the mixed phase (index II) for different

values of temperature and q.

In Fig. 8, it is reported the phase diagram in the plane T − ρB for different

values of q. The curves labelled with the index I and II represent, respectively,

the beginning and the end of the mixed phase. For q > 1, both the first and the

second critical densities are sensibly reduced, even if the shape of the mixed phase

is approximately the same. Related to this aspect, let us mention that the simplest

version of the MIT bag model, considered in this investigation, appears to be not

fully appropriate to describe a large range of temperature and density. To overcome

this shortcoming, a phenomenological approach can therefore be based on a density or

temperature dependent bag constant [50, 66, 67, 68]. Moreover, as discussed in the

Introduction, in regime of high temperature and small baryon chemical potential the

first order phase transition may end in a (second order) critical endpoint with a smooth

crossover. These features cannot be incorporated in the considered mean field approach.

In our investigation, because we are focusing to nonextensive statistical effects on the

nuclear EOS, instead of introducing additional parameterizations, we work with a fixed

bag constant and limit our analysis to a restricted range of temperature and density,

region of particular interest for high energy compressed nuclear matter experiments.
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Figure 8. Phase diagram T − ρB for different values of q. The curves with index I

and II indicate, respectively, the beginning and the end of the mixed phase.

Let us now explore in more details the variation of the first transition baryon density

ρI
cr as a function of different physical parameters. In Fig. 9, we report the dependence

of ρI
cr as a function of Z/A for different values of q (y axis in logarithmic scale). It is

interesting to note a significant reduction of ρI
cr in presence of nonextensive statistics; as

in the previous cases, this effect increases with the temperature. The dependence of the

first transition baryon density as a function of Z/A is essentially a consequence of the

ρ meson field behavior in the hadronic phase because it is directly connected with the

isospin density of the system (as appears from Eq.(12)). In this context, let us observe

that, at fixed value of q, ρI
cr is significantly reduced by decreasing Z/A only at lower

temperatures (T = 60 MeV) while, as expected, at higher temperatures (T = 120 MeV)

the transition baryon density becomes very low and its isospin dependence becomes

negligible, also in the framework of nonextensive statistics. This matter of fact is in

according to the results of Fig. 3 where at low baryon chemical potentials (or baryon

densities) the ρ meson field becomes almost constant and its absolute value significantly

decreases.

In Fig. 10 (left panel), we show the first critical baryon density as a function of the

bag constant for different values of nonextensive parameter q. Obviously, by increasing

the bag constant we have a corresponding increasing of ρI
cr. However, this effect depends

on the temperature and nonextensive parameter q. Finally, in the right panel of Fig. 10,

we show the variation of ρI
cr as a function of the nonextensive index q for different values

of temperature and B1/4 = 190 MeV. At T = 60 MeV, we can see only a little reduction

in the first critical density also for large deviations from the standard statistics; on the

other hand, the reduction becomes more pronounced at larger temperatures.
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Figure 9. Variation of the first transition baryon density as a function of the net
electric charge fraction Z/A for different temperatures and values of q (q = 1, solid
lines; q = 1.05, short dashed lines; q = 1.10, long dashed lines).
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Figure 10. Variation of the first transition baryon density as a function of the bag
constant (left panel) and nonextensive index q (right panel) for different temperatures.

6. Conclusions

To summarize, we have studied the main features of the nuclear EOS in the hadronic

and quark-gluon phase and the possible formation of a consequent mixed phase in

presence of nonextensive statistical effects. We have focused our investigation in regime

of finite temperature and baryon chemical potential, reachable in high-energy heavy-ion

collisions, for which the deconfinement phase transition can be still considered of the first

order. From a phenomenological point of view, the nonextensive index q is considered

here as a free parameter, even if, actually should not be treated as such because, in

principle, it should depend on the physical conditions generated in the reaction, on

the fluctuation of the temperature and be related to microscopic quantities (such as,

for example, the mean interparticle interaction length, the screening length and the

collision frequency into the parton plasma). We have restricted our investigation for
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small deviations from the standard statistics and for values q > 1 because, as quoted

in the Introduction, these values were obtained in several phenomenological studies in

high energy heavy ion collisions. In this context, it is relevant to observe that by fitting

experimental observable at q > 1, the temperature (or slope) parameter T is usually

minor of the one obtained in the standard Boltzmann-Gibbs statistics (q = 1) [29, 37].

This feature is also present in the considered nuclear equation of state because, at fixed

energy per particle E/N , we obtain for q > 1 lower values of temperature respect to

the standard case. Moreover, let us remember that, in the diffusional approximation,

a value q > 1 implies the presence of a superdiffusion among the constituent particles

(the mean square displacement obeys to a power law behavior 〈x2〉 ∝ tα, with α > 1)

[69].

In the first part of the work, we have investigated the hadronic equation of state

and the role played by the meson fields in the framework of a relativistic mean field

model which contains the basic prescriptions of nonextensive statistical mechanics. We

have shown that, also in presence of small deviations from standard Boltzmann-Gibbs

statistics, the meson fields and, consequently, the EOS appear to be sensibly modified.

In the second part, we have analyzed the QGP proprieties using the MIT Bag model

and also in this case the EOS becomes stiffer in presence of nonextensive effects. Finally,

we have studied the proprieties of the phase transition from hadronic matter to QGP

and the formation of a relative mixed phase by requiring the Gibbs conditions on the

global conservation of baryon number and electric charge fraction. We have seen that

nonextensive effects play a crucial role in the deconfinement phase transition. Moreover,

although pressure as a function of baryon density is stiffer in the hadronic phase, we have

shown that a strong softening in the mixed phase takes place in presence of nonextensive

statistics. Such a behavior implies an abruptly variation in the incompressibility and

could be considered as a signal of nonextensive statistical effects in high energy heavy

ion collisions.
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