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Radiative corrections to lepton-lepton scattering
revisited

N. Kaiser

Physik-Department T39, Technische Universität München, D-85747 Garching, Germany

Abstract

We calculate in closed analytical form the one-loop radiative corrections to electron-
electron scattering e−e− → e−e−. Explicit expressions (in terms of dimensionless Mandel-
stam variables) are given for the pertinent interference terms between the tree diagrams
and the one-loop diagrams. Infrared finiteness of these virtual radiative corrections is
achieved (in the standard way) by including soft photon radiation below an energy cut-off
λ. We evaluate the remaining finite part of the soft photon correction factor in the center-
of-mass frame. These results can be also utilized for Bhabha scattering e−e+ → e−e+ and
for elastic muon scattering µ−µ∓ → µ−µ∓. Furthermore, we calculate in the same way
the one-loop radiative corrections to the scattering of unequal leptons e−µ− → e−µ− and
apply them likewise to the muon pair production process e−e+ → µ+µ−. In contrast to
most other calculations of these radiative corrections we keep the full dependence on the
lepton masses. Effects from hard photon radiation which are also important for a direct
comparison with (a specific) experiment are not treated explicitly.

PACS: 12.20.-m, 12.20.Ds, 14.70.Bh

1 Introduction and summary

For a correct interpretation of the experimental data obtained in elastic or inelastic lepton scat-
tering processes it is essential to include in the analysis of these data the radiative corrections
arising from virtual photon loops and (soft) photon bremsstrahlung. Radiative corrections to
electromagnetic processes have been first calculated in their classical works by Schwinger [1]
for electron scattering in an external static potential, and by Brown and Feynman [2] for the
Compton effect. Tsai [3] has extended the calculation of radiative corrections to elastic electron-
proton scattering. The subject of radiative corrections has by now already a long history and
we refer to the standard review papers of Maximon [4] and Mo and Tsai [5] which have been
used in the interpretation of many electron scattering experiments. In recent years the issue
of radiative corrections has received a renewed interest in connection with new precision ex-
periments, performed e.g. at JLAB or MAMI. The two-photon exchange contribution [6, 7, 8]
to the elastic electron-proton scattering plays in fact a crucial role in order to reconcile the
apparent discrepancies for the ratio of the proton electric and magnetic form factors Gp

E/Gp
M

as determined with the polarization transfer technique on the one hand side and via the (more
traditional) Rosenbluth separation method on the other hand side. A comprehensive study
of the analogous two-boson (γγ, γZ0) exchange corrections for parity-violating electron-proton
scattering has been presented very recently in refs.[9, 10]. The complete treatment of the full
excitation spectrum of the proton in the two-photon exchange remains still a challenge, and
so far only the ground-state [7, 8] and the low-lying ∆+(1232) resonance [11] have been taken
into account in the computation of the respective two-photon exchange diagrams. Likewise,
the QED radiative corrections to virtual Compton scattering off the proton (e−p → e−pγ) have
been calculated and studied in ref.[12]. It has been concluded that a very good understanding of
these radiative corrections is indispensable if one wants to extract nucleon structure information
(such as generalized polarizabilities or generalized parton distributions) from the e−p → e−pγ
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reaction. Also recently, the radiative corrections to (real and virtual) pion Compton scattering
have been calculated in refs.[13, 14]. These results are particularly relevant for analyzing the
COMPASS experiment at CERN which aims at measuring the pion electric and magnetic po-
larizabilities (απ and βπ) with high statistics using the Primakoff effect (i.e. the scattering of
high-energy pions in the Coulomb field of a heavy nucleus).

The one-loop radiative corrections to the purely leptonic scattering process e−e− → e−e−

have been calculated some time ago by Furlan and Peressutti in ref.[15]. However, as noted in
their follow-up paper [16] on numerical results that original paper [15] contains some (unspec-
ified) mistakes and misprints. A corrected version of their analytical formulas for the radiative
corrections to electron-electron scattering has however never been published. The related pa-
per by Tsai [17] deals only with the case of high-energy electron-electron scattering, where the
radiative corrections can be approximated by some dominant logarithmic terms. Likewise, the
one-loop radiative corrections to the scattering of unequal leptons, e−µ− → e−µ−, have been
calculated shortly afterwards by Eriksson in ref.[18]. Also in that case the original paper [18]
contains mistakes and misprints which have been corrected iteratively in subsequent papers
[19, 20] together with a presentation of some numerical results. Unfortunately, the compre-
hensibility of the analytical formulas written therein is not always straightforward since many
auxiliary variables have been introduced although the process e−µ− → e−µ− can be described
by just two independent Mandelstam variables. Moreover, it is rather cumbersome to trace
back which part of the analytical expressions corresponds to a particular loop diagram.

In this situation it is still meaningful and helpful to reconsider the radiative corrections to
lepton-lepton scattering. The purpose of the present paper is to document the results of such
a careful rederivation. Our paper is organized as follows. In section 2, we calculate in closed
analytical form the one-loop radiative corrections to electron-electron scattering e−e− → e−e−.
Explicit expressions (in terms of suitable dimensionless Mandelstam variables) are given for
the pertinent interference terms between the tree diagrams and the one-loop diagrams summed
over the electron spin states. Infrared finiteness of these virtual radiative corrections is achieved
(in the standard way) by including soft photon radiation (off the in- or out-going electrons)
below an energy cut-off λ. We evaluate the remaining finite part of the soft photon correction
factor in the center-of-mass frame, assuming an isotropic photon emission therein. Figures
with numerical results are presented in order to demonstrate the size as well as the energy and
angular dependence of these radiative corrections to electron-electron scattering. By making
use of crossing symmetry the radiative corrections to electron-positron (Bhabha) scattering
e−e+ → e−e+ can be obtained from the same analytical formulas. We consider also the elastic
muon scattering processes µ−µ∓ → µ−µ∓ where the electronic vacuum polarization enters as a
new and special feature. In section 3, we calculate then in the same way the one-loop radiative
corrections to the scattering of unequal leptons e−µ− → e−µ−. In that case the squared mass
ratio r = (me/mµ)2 comes into play as an additional parameter thus making the calculation
a bit more challenging. After presenting numerical results for the radiative corrections to
e−µ− → e−µ− scattering we turn via crossing symmetry to those for the muon pair production
process e−e+ → µ+µ−. For the purpose of comparison, we treat in section 4 the analogous
radiative corrections for (point-like) charged scalar bosons. In the appendix, we collect the
analytical results for the pertinent one-loop integrals with two, three and four propagators. We
use dimensional regularization to treat both ultraviolet and infrared divergences (where the
latter are caused by the vanishing photon mass). The imaginary parts of the loop functions are
also given there. Together with a Kramers-Kronig dispersion relation these imaginary parts
are most useful in order to control the correct analytical continuation of the real parts of the
loop functions above their respective branch points.

In contrast to many other (modern) calculations of these QED radiative corrections we keep
the full dependence on the lepton masses in all results. We do, however, not treat effects from
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(A) (B)

Figure 1: Tree diagrams, (A) and (B), for electron-electron scattering.

hard photon radiation or hadronic vacuum polarization, which can also be important for a
(direct) comparison with experiments.

2 Radiative corrections to electron-electron scattering

We start out with calculating the radiative corrections to electron-electron scattering. The in-
and out-going four-momenta of the reaction e−(p1) + e−(p2) → e−(p3) + e−(p4) give rise to the
Lorentz-invariant (dimensionless) Mandelstam variables (s, t, u) defined as follows:

s m2
e = (p1 + p2)

2 = (p3 + p4)
2 ,

t m2
e = (p1 − p3)

2 = (p2 − p4)
2 ,

u m2
e = (p1 − p4)

2 = (p2 − p3)
2 . (1)

Since m2
e has been factored out they obey the numerical constraint s + t + u = 4, and in the

physical region the inequalities s > 4, t < 0, u < 0 hold. In the case of unpolarized scattering
the squared T-matrix for e−e− → e−e− has to be summed over all the electron spin-states.
This fourfold sum is most efficiently performed via Dirac-traces: 1

8
tr[O1(/p1 + me)O1(/p3 + me)]·

tr[O2(/p2 + me)O2(/p4 + me)] and 1
8
tr[O1(/p1 + me)O1(/p4 + me)O2(/p2 + me)O2(/p3 + me)]. In order

to keep the technical complications of the loop calculation as low as possible the integration
over the loop-momenta in a photon-loop diagram is carried out after the summation over the
electron spin-states. With that approach in mind the unpolarized differential cross section
for electron-electron scattering in the center-of-mass frame, including radiative corrections of
relative order α, can be represented in the following compact form:

dσ

dΩcm
=

α2

2m2
es

{(
A

t
+

B

u

)
⊗

(
A

t
+

B

u

)

+2 Re
[(

I + II + III + IV
)
⊗

(
A

t
+

B

u

)
+ (t ↔ u)

]}
, (2)

with α = 1/137.036 the fine-structure constant. Here A and B denote the direct and crossed
tree diagram (shown in Fig. 1) and I, II, III, IV stand for the four (classes of) contributing
one-loop diagrams (shown in Figs. 2,3). The product symbol ⊗ designates the interference
term between the T-matrices from two diagrams with the sums over the electron spins already
carried out via Dirac-traces. The symmetrization prescription +(t ↔ u) in eq.(2) generates
the additional contributions from the crossed one-loop diagrams (i.e. the diagrams in Figs. 2,3
with crossed out-going electron lines).

The advantage of working with the dimensionless variables (t, u) shows up already when
evaluating the Born terms. The two tree diagrams in Fig. 1 lead to the following simple poly-
nomial expressions:

A ⊗ A = t2 + 2tu + 2(u − 2)2 ,
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Figure 2: One-loop diagrams, (I) and (II), for electron-electron scattering.

A ⊗ B = B ⊗ A = (t + u)2 − 4 ,

B ⊗ B = 2(t − 2)2 + 2tu + u2 . (3)

Note that the (relative) minus-sign belonging to the crossed tree diagram B, which originates
from the exchange of two identical fermions, is already included in the interference term A ⊗
B = B ⊗ A. Specifying to the center-of-mass kinematics, t = (4 − s)(1 − cos θcm)/2 and
u = (4 − s)(1 + cos θcm)/2 with θcm the scattering angle,1 the terms in the first line of eq.(2)
produce the well-known Møller cross section for electron-electron scattering:

dσ(1γ)

dΩcm
=

α2

m2
es

{
4(s − 2)2

(s − 4)2
(4η2 − 3η) + 4η + 1

}
, η =

1

sin2 θcm

. (4)

2.1 Evaluation of one-loop diagrams

In this section, we present analytical expressions (of order α) for the interference terms between
the one-loop diagrams and the tree diagrams for electron-electron scattering. We use dimen-
sional regularization to treat both ultraviolet and infrared divergences (where the latter are
caused by the masslessness of the photon). The method consists in calculating loop integrals in
d spacetime dimensions and expanding the results around d = 4. Divergent pieces of one-loop
integrals generically show up in form of the composite constant:

ξ =
1

d − 4
+

1

2
(γE − ln 4π) + ln

me

µ
, (5)

containing a simple pole at d = 4. In addition, γE = 0.5772 . . . is the Euler-Mascheroni number
and µ an arbitrary mass scale introduced in dimensional regularization in order to keep the
mass dimension of the loop integrals independent of d. Ultraviolet (UV) and infrared (IR)
divergences are distinguished by the feature of whether the condition for convergence of the
d-dimensional integral is d < 4 or d > 4. We discriminate them in the notation by putting
appropriate subscripts, i.e. ξUV and ξIR. In order to simplify all calculations, we employ the
Feynman gauge where the photon propagator is directly proportional to the Minkowski metric
tensor gµν. Let us now enumerate the analytical results as they emerge from the four (classes
of) one-loop diagrams shown in Figs. 2,3.

The (on-shell) vertex corrections in both diagrams of class I are comprised by the one-
photon loop form factors F1,2(t)

γ−loop of the electron. These Dirac and Pauli form factors are
normalized at zero momentum transfer t = 0 to: F1(0)γ−loop = 0 and F2(0)γ−loop = α/2π
(anomalous magnetic moment). Putting all pieces together the pertinent interference terms
with the (direct and crossed) tree diagrams read:

I ⊗ A =
α

πt

{[
t2 + 2tu + 2(u − 2)2

]{ t − 2√
−t

√
4 − t

[
4ξIR

√
−t L(−t) + Φ(−t)

]

1Since there are two identical particles in the final state the physical region is restricted to 0 < θcm ≤ 90◦.
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+2ξIR − 2
}

+
L(−t)√

4 − t

[
(4 − t)(3t2 + 16) + 2u(8 − 3t)(t + u − 4)

]}
, (6)

I ⊗ B =
α

πt

{[
(t + u)2 − 4

]{ t − 2√
−t

√
4 − t

[
4ξIR

√
−t L(−t) + Φ(−t)

]

+2ξIR − 2
}

+
L(−t)√

4 − t

[
3(4 − t)(t + u)2 + 2t2 − 4u2 − 32

]}
. (7)

Here, we have introduced the frequently occurring logarithmic loop function:

L(x) =
1√
x

ln

√
4 + x +

√
x

2
, (8)

and the auxiliary function:

Φ(x) = Li2(v(x)) − Li2(1 − v(x)) +
1

2
ln2 v(x) − 1

2
ln2(1 − v(x)) , (9)

composed of dilogarithms and squared logarithms of the argument:

v(x) =
1

2

(
1 −

√
x

4 + x

)
, (10)

where Li2(v) =
∑∞

n=1 n−2vn = v
∫ ∞
1 dy[y(y − v)]−1 ln y denotes the conventional dilogarithmic

function. Note that in addition to the photon-loop also the appropriate counterterm Z1 − 1 =
Z2−1 = α(2ξIR+ξUV −2)/2π [12] of quantum electrodynamics which eliminates the ultraviolet
divergence ξUV in the Dirac form factor F1(t)

γ−loop has been included in eqs.(6,7).
Diagram II involves a vacuum polarization at the exchanged photon. Together with the

counterterm Z3 − 1 = 2α ξUV /3π [12] the contribution from the electronic vacuum polarization
takes the form:

IIe ⊗ A =
α

3πt2

[
t2 + 2tu + 2(u − 2)2

]{
(2t + 4)

√
4 − t L(−t) − 5t

3
− 4

}
, (11)

IIe ⊗ B =
α

3πt2

[
(t + u)2 − 4

]{
(2t + 4)

√
4 − t L(−t) − 5t

3
− 4

}
. (12)

The additional (small) effect from the muonic vacuum polarization at the exchanged photon
is readily obtained by substituting t → rt, with r = (me/mµ)2 the squared mass ratio, in the
polarization function:

IIµ ⊗ A =
α

3πt2

[
t2 + 2tu + 2(u − 2)2

]{(
2t +

4

r

)√
4 − rt L(−rt) − 5t

3
− 4

r

}
, (13)

IIµ ⊗ B =
α

3πt2

[
(t + u)2 − 4

]{(
2t +

4

r

)√
4 − rt L(−rt) − 5t

3
− 4

r

}
. (14)

Next, we come to the (planar and crossed) two-photon exchange box diagrams shown in
Fig. 3. For these diagrams it is most advantageous to perform the (multiple) spin sums via
Dirac-traces before the (d-dimensional) loop-integration. In this way of proceeding the subse-
quent integrand emerges as a Lorentz-scalar constructed solely from the external four-momenta
p1, p2, p3, p4 and the loop momentum l. It can be profitably decomposed into partial fractions,
thus reducing greatly the number of independent loop integrals to be solved. All of these loop
integrals are ultraviolet convergent but some of them generate additional infrared divergences
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(III) (IV)

Figure 3: One-photon loop diagrams, (III) and (IV), for electron-electron scattering.

(∼ ξIR). Employing the basic loop integrals H(s), K(t) and Ψ(s, t) with three and four prop-
agators, defined and solved in the appendix, one finds for the interference terms of the planar
box diagram III with the tree diagrams the following analytical expressions:

III ⊗ A =
α

π

{[
3t2 + 6tu + 4u2 − 14t − 24u + 24 +

16u

4 − t

]
K(t)

+
(

4u

4 − t
− 1 − u

2

)
ln(−t) +

L(−s)√
4 − s

(s2 + st − 6s + 8)

+
2 − s√
4 − s

L(−s)
[(

3t + 6u − 8 +
4

t
(u − 2)2

)
ln(−t)

+4ξIR

(
t + 2u +

2

t
(u − 2)2

)]
+

(2 − s)(2s + t)

2
√
−s

√
4 − s

Φ(−s)

}
, (15)

III ⊗ B =
α

π

{
2
[
(t + u)2 − t − 2u − 6 +

4u

4 − t

]
K(t)

+
2 L(−s)√

4 − s

[
2u +

(
6 − s

t
(s − 2)2 − 2s − u

)
ln(−t)

+2ξIR
6 − s

t
(s − 2)2

]
+

2u ln(−t)

4 − t
+

2s + u√
−s

√
4 − s

Φ(−s)

}
, (16)

with the t-dependent auxiliary function:

K(t) =
1√

−t
√

4 − t

[
π2

3
− t L2(−t) + Li2

(
2 − t −

√
−t

√
4 − t

2

)]
. (17)

In the same way one obtains for the interference terms of the crossed two-photon exchange box
diagram IV with the tree diagrams the similar results:

IV ⊗ A =
α

π

{[
8u − t2 − 2tu − 4u2 − 2t − 8 +

16u

4 − t

]
K(t)

+
(

4u

4 − t
− 3 +

s

2

)
ln(−t) +

L(−u)√
4 − u

(6u − tu − u2 − 8)

+
u − 2√
4 − u

L(−u)
[(

t + 2u +
4

t
(u − 2)2

)
ln(−t)

+4ξIR

(
t + 2u +

2

t
(u − 2)2

)]
+

(u − 2)(t + 2u)

2
√
−u

√
4 − u

Φ(−u)

}
, (18)

IV ⊗ B =
α

π

{[
4 − t2 − 2tu − 2u2 − 4u +

8u

4 − t

]
K(t)
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+
L(−u)√

4 − u

[
4ξIR (u − 2)

(
t + 2u +

u2 − 4

t

)
+ (2 − t)(4 + u)

−u2 +
(
tu + 2u2 − 6u − 8 +

2

t
(u + 2)(u − 2)2

)
ln(−t)

]

+
(

2u

4 − t
− 1 +

s

2

)
ln(−t) +

2u2 + (4 − u)(2 − t)

2
√
−u

√
4 − u

Φ(−u)

}
. (19)

We note that it is instrumental to keep the factorized square roots in eqs.(6-19) as they stand. If
one would combine them into a single square root than a wrong sign could be obtained for some
terms. We have checked via the Kramers-Kronig dispersion relation and the imaginary parts of
the loop functions (given in the appendix) that the factorized square roots lead in all cases to
the correct analytical continuation of the (only relevant) real parts of the loop functions along
their branch cuts. When written with factorized square roots the correct sign often emerges
as i · i = −1 from two negative radicands. It is important to have a representation with
the correct analytical continuation built in, if one wants to carry over the results of the loop
calculation from electron-electron scattering to electron-positron scattering (via the crossing
transformation s ↔ u).

2.2 Infrared finiteness and numerical results

In the next step we have to consider the infrared divergent terms proportional to ξIR. Inspection
of eqs.(6,7,15,16,18,19) reveals that these scale with the Born terms A⊗A/t and A⊗B/t given
in eq.(3). As a consequence of that feature, the infrared divergent loop corrections multiply the
differential cross section dσ(1γ)/dΩcm at leading order by a (t ↔ u crossing-symmetric) factor:

δ
(IR)
virt =

8α

π
ξIR

{
1

2
+

t − 2√
4 − t

L(−t) +
u − 2√
4 − u

L(−u) + Re
[

2 − s√
4 − s

L(−s)
]}

. (20)

The unphysical infrared divergence ξIR gets canceled at the level of the (measurable) cross
section by the contributions from soft photon bremsstrahlung. In its final effect, the (single) soft
photon radiation off the in- or out-going electrons multiplies the Møller cross section dσ(1γ)/dΩcm

by a factor:

δsoft = α µ4−d
∫

|~l |<λ

dd−1l

(2π)d−2 l0

{
2p1 · p3

p1 · l p3 · l
+

2p2 · p4

p2 · l p4 · l
+

2p1 · p4

p1 · l p4 · l
+

2p2 · p3

p2 · l p3 · l

− 2p1 · p2

p1 · l p2 · l
− 2p3 · p4

p3 · l p4 · l
− m2

e

(p1 · l)2
− m2

e

(p2 · l)2
− m2

e

(p3 · l)2
− m2

e

(p4 · l)2

}
, (21)

which depends on a small photon energy cut-off λ. Working out this momentum space integral
by the method of dimensional regularization (with d > 4) one finds that the infrared diver-

gent correction factor δ
(IR)
virt ∼ ξIR in eq.(20) gets eliminated and the following finite radiative

correction factor remains:

δ
(cm)
real =

2α

π

{
4
[
1

2
+

t − 2√
4 − t

L(−t) +
u − 2√
4 − u

L(−u) +
s − 2√

s
L(s − 4)

]
ln

me

2λ

+2
√

sL(s − 4) +
∫ 1/2

0
dx

{ √
s(t − 2)

[1 − tx(1 − x)]Wt
ln

√
s + Wt√
s − Wt

+

√
s(u − 2)

[1 − ux(1 − x)]Wu

ln

√
s + Wu√
s − Wu

}
+

2s − 4√
s2 − 4s

[
(4 − s) L2(s − 4)

+
√

s − 4 ln(s − 4) L(s − 4) +
π2

6
− Li2

(
s − 2 −

√
s2 − 4s

2

)]}
, (22)
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Figure 4: Radiative corrections to electron-electron scattering arising from loops only. The
numbers (3, 6, 12, 24, 48, 96) on the curves correspond to the total center-of-mass energy

√
sme

in units of me.

with the abbreviations Wt =
√

s − 4 + 4tx(1 − x) and Wu =
√

s − 4 + 4ux(1 − x). We remark
that the exact cancellation of infrared divergences ξIR works out by reason of the identity:
Re [(2− s)L(−s)/

√
4 − s ] = (s− 2)L(s− 4)/

√
s, where the sign change emerges from two neg-

ative radicands. Furthermore, we note that the terms beyond those proportional to ln(me/2λ)
are specific for the evaluation of the soft photon correction factor δsoft in the center-of-mass
frame with λ an infrared cut-off therein. As it is written in eq.(22), δ

(cm)
real refers to an (idealized)

experimental situation where all undetected soft photon radiation fills a small sphere of radius
λ in the center-of-mass frame. In a real experiment the momentum space region of undetected
photons can be of different (e.g. non-isotropic) shape with no sharp boundaries due to detec-
tor efficiencies etc. Such additional experiment specific radiative corrections can be accounted
for and calculated by integrating the fivefold differential cross section for e−e− → e−e−γ over
the appropriate region in phase space. By construction this region excludes the infrared sin-
gular domain |~l | < λ and thus leads to a finite result. At this point one should note that
for comparison with a real experiment the treatment of hard photon bremsstrahlung is also
important.

We are now in the position to present some numerical results for the radiative corrections
to electron-electron scattering e−e− → e−e−. The radiative correction factor is δ

(cm)
real written in

eq.(22) plus the sum of all finite interference terms (second line in eq.(2) with ξIR → 0) divided
by the Born terms (first line in eq.(2)). Fig. 4 shows in percent the radiative corrections arising
from loops alone (discarding the infrared divergent ξIR terms) at seven selected center-of-mass
energies

√
sme = (3, 6, 12, 24, 48, 96)me. One notices that these (mostly negative) photon-

loop corrections become maximal for perpendicular scattering (θcm = 90◦) and that they grow
approximately linearly with the total center-off-mass energy

√
sme. The effect from the muonic

vacuum polarization (see eqs.(13,14)) is negligibly small in the energy range considered. Let us
also mention that we confirm with good accuracy the numerical results of Furlan and Peressutti
presented in ref.[16]. The full lines in Fig. 5 show the radiative corrections to electron-electron
scattering with inclusion of the soft photon bremsstrahlung. For the sake of having a concrete
case we have set the infrared cutoff to the value λ =

√
sme/200, thus modelling an (idealized)
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Figure 5: Radiative corrections to electron-electron scattering including soft photon
bremsstrahlung. The numbers (3, 6, 12, 24, 48, 96) on the curves correspond to the total center-
of-mass energy

√
sme in units of me. The infrared cutoff has been set to λ =

√
sme/200.

experimental situation where the electron energies can be resolved within 1% accuracy. One
observes that the soft photon bremsstrahlung significantly increases the (negative) radiative
corrections to electron-electron scattering. An approximate logarithmic scaling with the total
center-off-mass energy

√
sme can now be recognized. Similar features apply also to the radiative

corrections to (electron and pion) Compton scattering [2, 13]. Clearly, as soon as the order α
radiative corrections exceed about 20% in magnitude one has to worry about the two-loop and
double bremsstrahlung effects of order α2. At higher energies the hadronic vacuum polarization
will even start to play a role. Pursuing such higher order and heavy mass effects goes beyond
the scope of the present work.

2.3 Radiative corrections to Bhabha scattering

Next, we want to discuss the radiative corrections to electron-positron (Bhabha) scattering. The
reaction e−e+ → e−e+ can be obtained from electron-electron e−(p1)+e−(p2) → e−(p3)+e−(p4)
via the replacement p2 ↔ −p4 of in- and out-going four-momenta. In terms of the invariant
Mandelstam variables this involves the crossing transformation s ↔ u. The crossed one-photon
exchange diagram B in Fig. 1 gets this way converted into the annihilation diagram. At leading
order the Bhabha cross section takes the form:

dσ(e−e+)

dΩcm
=

α2

m2
es

{
(s − 2)2

(s − 4)2 ζ2
+

4 − 2s2

s(s − 4) ζ
+ 2 +

4

s
+

1

s2

[
s − 2 + (4 − s) ζ

]2
}

, (23)

where ζ = sin2(θcm/2) with θcm the scattering angle in the center-of-mass frame. Note that
there is missing a factor 1/4 in the second term in eq.(6.47) of the textbook by Itzykson and
Zuber [21].

While the results for the one-loop corrections to electron-positron scattering can be directly
taken over from subsection 2.1 via the substitution s ↔ u this does not hold in the same way
for the contributions from the soft photon bremsstrahlung. In the reaction e−e+ → e−e+ the
soft photon is emitted either from a negatively or positively charged particle and this leads to

9
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Figure 6: Radiative corrections to electron-positron scattering arising from loops only. The
numbers (3, 6, 12, 24, 48, 96) on the curves correspond to the total center-of-mass energy

√
s in

units of me.

a sign change in some (quantum mechanical) interference terms. In comparison to eq.(22) the
s and u dependent interference terms change sign and (after cancelling the infrared divergence
ξIR) the finite part of the soft photon correction factor for electron-positron scattering reads:

δ
(cm)
real =

2α

π

{
4
[
1

2
+

t − 2√
4 − t

L(−t) +
2 − u√
4 − u

L(−u) +
2 − s√

s
L(s − 4)

]
ln

m

2λ

+2
√

s L(s − 4) +
∫ 1/2

0
dx

{ √
s(t − 2)

[1 − tx(1 − x)]Wt

ln

√
s + Wt√
s − Wt

+

√
s(2 − u)

[1 − ux(1 − x)]Wu
ln

√
s + Wu√
s − Wu

}
+

2s − 4√
s2 − 4s

[
(s − 4) L2(s − 4)

−
√

s − 4 ln(s − 4) L(s − 4) − π2

6
+ Li2

(
s − 2 −

√
s2 − 4s

2

)]}
. (24)

Let us clarify instantaneously that no further s ↔ u crossing must be applied to the soft photon
correction factor written in eq.(23). Returning to eq.(20) with permuted variables s ↔ u one
finds that now the exact cancellation of infrared divergences ξIR works out by reason of the
identity: Re [(s − 2)L(−s)/

√
4 − s ] = (2 − s)L(s − 4)/

√
s.

The dashed lines in Fig. 6 show in percent the radiative corrections to electron-positron
scattering arising from (photon and electron-positron) loops only. In comparison to electron-
electron scattering (see Fig. 4) the size of these radiative corrections has significantly increased,
in particular for scattering under backward angles, 90◦ < θcm < 180◦. Let us also mention that
we confirm the numerical results of Furlan and Peressutti presented in ref.[16]. The full lines
in Fig. 7 show the radiative corrections to electron-positron scattering with inclusion of the soft
photon bremsstrahlung. The infrared cut-off has been set to the value λ =

√
sme/200, with

the intension to model an (idealized) experimental situation where the electron and positron
energies can be resolved within 1% accuracy. It is evident from Fig. 7 that the soft photon
bremsstrahlung effects, which have not been considered by Furlan and Peressutti in ref.[16],
add sizeably to the radiative corrections to electron-positron scattering.
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Figure 7: Radiative corrections to electron-positron scattering including soft photon
bremsstrahlung. The numbers (3, 6, 12, 24, 48, 96) on the curves correspond to the total center-
of-mass energy

√
s in units of me. The infrared cutoff has been set to λ =

√
sme/200.

It should again be stressed that for a comparison with real experiments the hard photon con-
tributions also have to be included. Generally, the hard bremsstrahlung is not cut completely,
but treated as part of the QED radiative corrections. We do not pursue these (experiment-
specific) contributions here further. As a consequence of that omission the numerical results
presented in all figures should be considered only as indicative.

Let us comment on some recent related works. In the work by Fleischer et al. [22] the one-
loop photonic corrections to Bhabha scattering have been calculated in d spacetime dimensions.
We have checked our results against theirs and found in the case d = 4 satisfactory agreement
for all calculated terms. Actually, the two-loop radiative corrections to high-energy Bhabha
scattering (approximated by the dominant logarithms in the electron mass me) are also known
by now from the work of Penin [23]. We find that in the low-energy region considered here the
subleading effects in the lepton mass still play a role.

2.4 Radiative corrections to elastic muon scattering

Having available the analytical results for the one-loop radiative corrections to electron-electron
(and electron-positron) scattering one can furthermore apply them to the elastic muon scatter-
ing processes µ−µ∓ → µ−µ∓. Only the role of the electron and the muon needs to be inter-
changed (via the substitution of masses me ↔ mµ) in the analytical expressions presented so far.
The electronic vacuum polarization to the photon-exchange given accordingly by eqs.(13,14) is
now written in terms of the large variable t/r = t(mµ/me)

2 = 42753 t. Despite that huge en-
hancement factor the effect of the electronic vacuum polarization is rather modest because of its
weak (asymptotic) logarithmic t/r dependence. The estimate −(2α/3π) ln r ' 1.65% suggests
a positive contribution of the order of a few percent from the electronic vacuum polarization
in elastic muon scattering. This expectation is confirmed by the curves in Figs. 8,9 which show
the calculated radiative corrections to µ−µ− → µ−µ− and µ−µ+ → µ−µ+ scattering. In order
to be comparable with the electron case the infrared cut-off for soft photon bremsstrahlung has
been set now to the value λ =

√
smµ/200. Indeed one finds by comparison with Figs. 5,7 that
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Figure 8: Radiative corrections to elastic muon scattering µ−µ− → µ−µ−. The numbers
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of mµ. The infrared cutoff has been set to λ =
√

smµ/200.

the curves in Figs. 8,9 are shifted upwards by a few percent. This shift grows approximately as
(2α/3π) ln(s/r) with the total center-of-mass energy

√
smµ.

3 Radiative corrections to electron-muon scattering

In this section, we calculate the one-loop radiative corrections to the scattering of unequal
leptons (e.g. electrons and muons). The in- and out-going four-momenta of the reaction
e−(p1) + µ−(p2) → e−(p3) + µ−(p4) give rise to the (dimensionless) Mandelstam variables:
s = (p1 + p2)

2/m2
µ, t = (p1 − p3)

2/m2
µ, u = (p1 − p4)

2/m2
µ, where we have divided by the

square of the (large) muon mass m2
µ. These convenient dimensionless variables satisfy the

constraint s + t + u = 2 + 2r with r = (me/mµ)2 the squared mass ratio. In analogy to eq.(2)
the unpolarized differential cross section for electron-muon scattering (e−µ− → e−µ−) in the
center-of-mass frame, including radiative corrections of relative order α, takes the following
form:

dσ(e−µ−)

dΩcm
=

α2

2m2
µs

{
A′ ⊗ A′

t2
+

2

t
Re

[
(I′ + II′ + III′ + IV′) ⊗ A′

]}
. (25)

The momentum transfer variable t is given as t = [s2 − 2s(1 + r) + (1 − r)2](cos θcm − 1)/2s in
terms of the center-of-mass scattering angle θcm and the total center-of-mass energy

√
smµ.

In the case of unequal lepton scattering only the direct photon exchange diagram A′ (see
Fig. 1) is possible and the corresponding spin-summed Born term reads:

A′ ⊗ A′ = 2(s − 1 − r)2 + 2st + t2 = 2(u − 1 − r)2 + 2ut + t2 . (26)

Note the invariance of A′ ⊗ A′ under the crossing transformation s ↔ u. It expresses the
obvious fact that at leading order the cross sections for e−µ− → e−µ− and e−µ+ → e−µ+ are
equal. In eq.(25), I′, II′, III′, IV′ stand for the four (classes of) loop diagrams shown in Fig. 2,3
interpreted now as diagrams for electron-muon scattering. By the prime ′ we distinguish them
notationally from those for electron-electron scattering. The product symbol ⊗ designates

12
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again the interference term between the T-matrices from two diagrams with the sums over
electron and muon spins already carried out via Dirac-traces: 1

8
tr[O1(/p1 + me)O1(/p3 + me)]·

tr[O2(/p2 + mµ)O2(/p4 + mµ)].

3.1 Evaluation of one-loop diagrams

In this subsection we present analytical expressions (of order α) for the interference terms
between the one-loop diagrams and the tree diagram A′ for electron-muon scattering.

Considering the diagrams of class I′ shown in Fig. 2 one can have a vertex correction either
at the (left) electron line or at the (right) muon line. In both cases it is given by the respective
one-photon loop form factors F γ−loop

1,2 (t) for electrons or muons. The pertinent interference term
of the electronic vertex correction with the tree diagram A′ takes the form:

I′e ⊗ A′ =
α

2πt

{
A′ ⊗ A′

[
L(−tr−1)√

4r2 − rt

(
(4ξIR + 2 ln r)(t − 2r) + 8r − 3t

)

+
(t − 2r)Φ(−tr−1)√

−t
√

4r − t
+ 2ξIR − 2 + ln r

]
+ 4t

√
r(2 + t)

L(−tr−1)√
4r − t

}
, (27)

while that of muonic vertex correction reads:

I′µ ⊗ A′ =
α

2πt

{
A′ ⊗ A′

[
L(−t)√

4 − t

(
4ξIR(t − 2) + 8 − 3t

)

+
(t − 2)Φ(−t)√

−t
√

4 − t
+ 2ξIR − 2

]
+ 4t(2r + t)

L(−t)√
4 − t

}
. (28)

Note that the infrared divergence ξIR (see eq.(5)) is now redefined with the muon mass mµ

under the logarithm ln(mµ/µ). This leads to the additional ln r terms for I′e ⊗ A′ written in
eq.(27). The functions L(−t) and Φ(−t) have been defined in eqs.(8,9,10).

13



The vacuum polarization diagram II′ shown in Fig. 2 comes also in two versions, either as
electronic vacuum polarization:

II′e ⊗ A′ =
α

3πt2

{
2√
r
(t + 2r)

√
4r − t L(−tr−1) − 5t

3
− 4r

}
A′ ⊗ A′ , (29)

or as muonic vacuum polarization:

II′µ ⊗ A′ =
α

3πt2

{
(2t + 4)

√
4 − t L(−t) − 5t

3
− 4

}
A′ ⊗ A′ . (30)

More tedious to evaluate are the (planar and crossed) two-photon exchange box diagrams
shown in Fig. 3. We take advantage of performing first the spin-sums (via Dirac-traces) and of
decomposing in the next step the resulting Lorentz-scalar loop integrand into partial fractions.
In this form the majority of terms has either only one electron propagator or only one muon
propagator and few terms involve the product of both. The latter loop integrals depend in a
non-trivial way on the squared mass ratio r = (me/mµ)

2. Putting all pieces together one finds
for the interference term of the planar two-photon exchange diagram III′ with the tree diagram
A′ the following analytical expression:

III′ ⊗ A′ =
α

π

{[
8

4 − t
(r − 1 − s) +

t2

2
+ t + st + 2(s − r)2 + 2

]
K(t)

+
[

8r

4r − t
(1 − r − s) +

t2

2r
+

t

r
(s + r) +

2

r
(s − 1)2 + 2r

]
K(tr−1)

+
[

2

4 − t
(r − 1 − s) +

2r

4r − t
(1 − r − s) +

1

2
(s + t + 1 + r)

]
ln(−t)

+
[
r − 1

s
(1 + r + t) +

8r

4r − t
(s + r − 1) + 2 − 4r − s − t

]
ln r

4

+
1 + r − s√

ρ+ − s
√

ρ− − s

[
4ξIR

(
2s + t +

2

t
(s − 1 − r)2

)

+
(
2s + t +

4

t
(s − 1 − r)2

)
ln(−t)

]
ln

√
ρ+ − s +

√
ρ− − s

2r1/4

+
[
s2 + st − 3s(1 + r) + 3r2 + 2r + 3 − (1 − r)2

s
(1 + r + t)

]

× 1√
ρ+ − s

√
ρ− − s

ln

√
ρ+ − s +

√
ρ− − s

2r1/4
+

1

2
(2s + t)

×(1 + r − s)
∫ ∞

ρ+

dx
ln[x − 2 − 2r + (1 − r)2x−1]√

x2 − 2x(1 + r) + (1 − r)2 (x − s)

}
, (31)

with the abbreviations ρ± = 1 + r ± 2
√

r. For the numerical evaluation of the (only relevant)
real part of III′ ⊗ A′ the spectral integral

∫ ∞
ρ+

dx/(x − s) . . . in the last line of eq.(31) has to be
treated as a principal value integral (if s > ρ+). It can be conveniently decomposed into a sum
of two non-singular integrals by the following formula:

−
∫ ∞

ρ+

dx
f(x)

x − s
=

∫ 2s−ρ+

ρ+

dx
f(x) − f(s)

x − s
+

∫ ∞

2s−ρ+

dx
f(x)

x − s
. (32)

Finally, we are left with the contribution of the crossed two-photon exchange box diagram IV′

shown in Fig. 3. Its interference term with the tree diagram A′ can be obtained via crossing
(s → u = 2 + 2r − s − t) as follows:2

IV′ ⊗ A′ = −III′ ⊗ A′ |s→u , (33)

2Because of this property all the s-independent terms in the first four lines of eq.(31) could be dropped
without affecting the sum (III′ + IV′) ⊗ A′.
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with III′⊗A′ given in eq.(31). We have actually verified this relation by an explicit calculation
of IV′⊗A′ as it arises from the crossed two-photon exchange diagram IV′. The physical reason
behind eq.(33) can be easily explained and understood. When turning the right muon line in the
crossed two-photon exchange diagram IV′ upside-down one gets the planar two-photon exchange
diagram III′ for electron-antimuon scattering (e−µ+ → e−µ+). The same manipulation applied
to the tree diagram A′ introduces an additional minus sign due to the (single) opposite electric
charge, and to close the argument, e−µ+ → e−µ+ and e−µ− → e−µ− are connected with each
other by s ↔ u crossing. For the same reason the relation IV ⊗ A = −III ⊗ A |s→u holds also
for the expressions written in eqs.(15,18).

3.2 Infrared finiteness and numerical results

The infrared divergent terms proportional to ξIR in eqs.(27,28,31,33) follow again the pattern
of the Born term A′⊗A′/t. The leading order differential cross section gets therefore multiplied
by the (infrared divergent) factor:

δ
(IR)
virt =

4α

π
ξIR

{
1 +

t − 2√
4 − t

L(−t) +
t − 2r√
4r2 − rt

L(−tr−1)

+Re
[

2(1 + r − s)√
ρ+ − s

√
ρ− − s

ln

√
ρ+ − s +

√
ρ− − s

2r1/4

]

+
2(u − 1 − r)√
ρ+ − u

√
ρ− − u

ln

√
ρ+ − u +

√
ρ− − u

2r1/4

}
. (34)

On the other hand, the (single) soft photon radiation from an electron or a muon yields the
multiplicative factor:

δsoft = α µ4−d
∫

|~l |<λ

dd−1l

(2π)d−2 l0

{
2p1 · p3

p1 · l p3 · l
+

2p2 · p4

p2 · l p4 · l
+

2p1 · p4

p1 · l p4 · l
+

2p2 · p3

p2 · l p3 · l

− 2p1 · p2

p1 · l p2 · l
− 2p3 · p4

p3 · l p4 · l
− m2

e

(p1 · l)2
−

m2
µ

(p2 · l)2
− m2

e

(p3 · l)2
−

m2
µ

(p4 · l)2

}
, (35)

which includes exactly the same infrared divergence (∼ ξIR) but with the opposite sign. The
remaining finite radiative correction factor for electron-muon scattering (e−µ− → e−µ−) reads:

δ
(cm)
real =

α

π

{
4

[
1 +

t − 2√
4 − t

L(−t) +
t − 2r√
4r2 − rt

L
(
− t

r

)

+
2√
P

(s − 1 − r) ln

√
s − ρ+ +

√
s − ρ−

2r1/4

+
2(u − 1 − r)√
ρ+ − u

√
ρ− − u

ln

√
ρ+ − u +

√
ρ− − u

2r1/4

]
ln

mµ

2λ
+

2√
P

×
[
(s − 1 + r) ln

s − 1 + r +
√

P

2
√

sr
+ (s + 1 − r) ln

s + 1 − r +
√

P

2
√

s

]

+
∫ 1/2

0
dx

[
(t − 2)(s + 1 − r)

[1 − tx(1 − x)]
√

Rt

ln
s + 1 − r +

√
Rt

s + 1 − r −
√

Rt

+
(t − 2r)(s − 1 + r)

[r − tx(1 − x)]
√

Rt

ln
s − 1 + r +

√
Rt

s − 1 + r −
√

Rt

]

+
∫ 1

0
dx

[
(s − 1 − r)[s + (1 − r)(1 − 2x)]

(1 − 2x)[sx(1 − x) + (1 − 2x)(1 − x − rx)]
√

P
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Figure 10: Radiative corrections to electron-muon scattering arising from loops only. The
numbers (1.5, 3, 6, 12, 24, 48) on the curves correspond to the total center-of-mass energy
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smµ

in units of mµ.

× ln
s + (1 − 2x)(1 − r +

√
P )

s + (1 − 2x)(1 − r −
√

P )

+
(u − 1 − r)[s + (1 − r)(1 − 2x)]

[1 + (r − 1)x − ux(1 − x)]
√

Ru

ln
s + (1 − r)(1 − 2x) +

√
Ru

s + (1 − r)(1 − 2x) −
√

Ru

]}
, (36)

where we have introduced the polynomials: P = s2−2s(1+ r)+(1− r)2, Rt = P +4stx(1−x),
Ru = P + 4x(1 − x)[su − (1 − r)2]. We note that the terms beyond those proportional to
ln(mµ/2λ) are specific for the evaluation of the soft photon correction factor δsoft in the center-
of-mass frame with λ an infrared cut-off therein. Setting r = 1 (i.e. ρ+ = 4, ρ− = 0) one

recovers from eq.(36) the soft photon correction factor δ
(cm)
real for electron-electron scattering

written in eq.(22).

Fig. 10 shows in percent the radiative corrections to electron-muon scattering arising from
loops only (discarding the infrared divergence ξIR). A striking difference to the electron-electron
case (see Fig. 4) is that these radiative corrections are now positive and larger in magnitude.
Moreover, with increasing total center-of-mass energy

√
smµ the angular dependence of these

radiative corrections changes. The maximum around θcm ' 90◦ turns gradually into a local
minimum. At this point it should be stressed that these finite loop corrections are by them-
selves not physical since they have been obtained by dropping the (scheme-dependent) infrared
divergence ξIR, which is defined here with the muon mass mµ under the logarithm ln(mµ/µ).
When choosing a different mass scale, the loop corrections will change accordingly. The curves
in Fig. 11 show the (full) radiative corrections to electron-muon scattering (e−µ− → e−µ−)
with inclusion of the soft photon bremsstrahlung. For the sake of having a concrete case we
have set the infrared cutoff to the value λ =

√
smµ/200. With inclusion of the soft photon

bremsstrahlung the radiative corrections turn back to (sizeable) negative values and their en-
ergy and angular dependences follow more closely the pattern observed for electron-electron
scattering (see Fig. 5). We do not discuss here in further detail the radiative corrections to
electron-antimuon scattering e−µ+ → e−µ+. These can be obtained through the crossing
transformation (s ↔ u) in the loop amplitudes and a sign change in some interference terms of
the soft photon correction factor δsoft (see eqs.(35,36)). For guidance one can compare eq.(22)
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Figure 11: Radiative corrections to electron-muon scattering including soft photon
bremsstrahlung. The numbers (1.5, 3, 6, 12, 24, 48) on the curves correspond to the total center-
of-mass energy

√
smµ in units of mµ. The infrared cutoff has been set to λ =

√
smµ/200.

with eq.(24) which exhibit this feature in the case of equal leptons.

3.3 Radiative corrections to lepton pair production

As a final application of our calculation we consider the radiative corrections to lepton pair
production. The reaction e−(p1) + e+(p2) → µ+(p3) + µ−(p4) is obtained from electron-muon
scattering via the crossing transformation s ↔ t. We define the center-of-mass scattering angle
θcm through the (uncrossed) variable u = (p1−p4)

2/m2
µ = 1+r+(

√
s − 4

√
s − 4r cos θcm−s)/2

as the angle between the momentum vectors of negatively charged particles. The differential
and total cross section for e−e+ → µ+µ− at leading order have the following well-known form:

dσ(pair)

dΩcm

=
α2

4m2
µs

√
s − 4

s − 4r

{
1 + cos2 θcm +

4

s
(1 + r) sin2 θcm +

16r

s2
cos2 θcm

}
, (37)

σ
(pair)
tot =

4πα2

3m2
µs

√
s − 4

s − 4r

(
1 +

2

s

)(
1 +

2r

s

)
, (38)

with
√

smµ the total center-of-mass energy and r = (me/mµ)
2.

The analytical expressions for the tree and loop contributions to lepton pair production
e−e+ → µ+µ− can be directly taken over from eqs.(25-32) via the crossing transformation
s ↔ t. However, the corresponding soft photon correction factor δsoft, obtained formally from
eq.(35) by the permutation p2 ↔ p3, needs to be reevaluated for the center-of-mass kinematics
under consideration. After cancelling the infrared divergences ξIR against those from the loops
the finite remainder of the soft photon correction factor for lepton pair production e−e+ → µ+µ−

reads:

δ
(cm)
real =

α

π

{
4

[
1 +

2 − s√
s

L(s − 4) +
2r − s√

sr
L

(s

r
− 4

)
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Figure 12: Radiative corrections to lepton-pair production e+e− → µ+µ− arising from photon
loops only. The numbers (3, 6, 12, 24, 48) on the curves correspond to the total center-of-mass
energy

√
smµ in units of mµ.

+
2(1 + r − t)√
ρ+ − t

√
ρ− − t

ln

√
ρ+ − t +

√
ρ− − t

2r1/4

+
2(u − 1 − r)√
ρ+ − u

√
ρ− − u

ln

√
ρ+ − u +

√
ρ− − u

2r1/4

]
ln

mµ

2λ

+2

√
s

r
L

(s

r
− 4

)
+ 2

√
sL(s − 4)

+
∫ 1/2

0
dx

[ √
s(2 − s)(s − 4)−1/2

(1 − 2x)[1 + (s − 4)x(1 − x)]
ln

√
s + (1 − 2x)

√
s − 4√

s − (1 − 2x)
√

s − 4

+

√
s(2r − s)(s − 4r)−1/2

(1 − 2x)[r + (s − 4r)x(1 − x)]
ln

√
s + (1 − 2x)

√
s − 4r

√
s − (1 − 2x)

√
s − 4r

]

+
∫ 1

0
dx

[ √
s(1 + r − t)

[1 + (r − 1)x − tx(1 − x)]
√

Ct

ln

√
s +

√
Ct√

s −
√

Ct

+

√
s(u − 1 − r)

[1 + (r − 1)x − ux(1 − x)]
√

Cu

ln

√
s +

√
Cu√

s −
√

Cu

]}
, (39)

with the polynomials Ct = s−4+4(1−r)x+4tx(1−x) and Cu = s−4+4(1−r)x+4ux(1−x).
The dashed curves in Fig. 12 show the radiative corrections to muon pair production e−e+ →

µ+µ− arising from loops only (discarding the infrared divergent terms ξIR). One notices that
the forward-backward symmetry (θcm → 180◦ − θcm or t ↔ u) of the tree level cross section
(see eq.(37)) is broken by the loop corrections. This feature originates from the negative sign
between the planar and crossed two-photon exchange contributions as exhibited in eq.(33) and
explained afterwards. Also by interchanging the role of particle and antiparticle for µ− and µ+

one gets a relative minus sign between the one-photon and two-photon exchange contributions.
Their (quantum mechanical) interference can therefore distinguish the two alternatives of fixing
the scattering angle θcm between the electron and µ− direction or between the electron and µ+

direction. This way a forward-backward asymmetry is generated by the two-photon exchange
corrections. The full curves in Fig. 13 show the radiative corrections to muon pair production
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Figure 13: Radiative corrections to lepton-pair production e+e− → µ+µ− including soft photon
bremsstrahlung. The numbers (3, 6, 12, 24, 48) on the curves correspond to the total center-of-
mass energy

√
smµ in units of mµ. The infrared cutoff has been set to λ =

√
smµ/200.

e−e+ → µ+µ− with inclusion of the soft photon bremsstrahlung. The infrared cutoff has
been set to the value λ =

√
smµ/200. One observes that the previous (scheme-dependent)

positive radiative corrections from loops turn back into sizeable negative values by the soft
photon bremsstrahlung. The forward-backward asymmetry becomes even more pronounced.
The reason for that additional effect is that some interference terms of the soft photon emission
are different for emission from positively and negatively charged muons. The expressions in the
second and third as well as in the last two lines of eq.(39) demonstrate explicitly the asymmetry
under t ↔ u or equivalently cos θcm → − cos θcm.

Finally, we show in Fig. 14 the radiative corrections to the total cross section for muon pair
production e−e+ → µ+µ− as a function of the total center-of-mass energy

√
smµ. In this case

all t and u dependent contributions from two-photon exchange and soft photon bremsstrahlung
(see eq.(39)) drop out, because they odd under t ↔ u and thus integrate to zero. The analyt-
ical expression for the radiative corrections to the total cross section σtot(s) (see eq.(38)) can
therefore be directly read off from eqs.(27-30) substituting t → s, and from eq.(39) dropping
the t and u dependent terms. The pertinent angular average of the Born term A′⊗A′ for muon
pair production e+e− → µ+µ− is of the form: 2(s + 2)(s + 2r)/3.

This concludes our presentation and (schematic) discussion of the radiative corrections of
order α to lepton-lepton scattering processes. It should be stressed again that for a comparison
with real experiments the contributions from hard bremsstrahlung also have to be considered.
The one-loop radiative corrections to muon-pair (and quark-pair) production in e−e+ collisions
in the region of the Z0-resonance have been calculated some time ago by Berends et al. in
ref.[24]. The additional and new elements there are photonic vertex corrections to the Z0-
exchange and the γZ0 box diagrams.

4 Radiative corrections to scalar boson scattering

For the sake of comparison, we treat in this section the radiative corrections to the scattering
of (identical) charged scalar bosons. The new element in scalar quantum electrodynamics is
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Figure 14: Radiative corrections to the total cross section for lepton pair production e+e− →
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Figure 15: Additional (types of) photon-loop diagrams generated by the two-photon contact
vertex of scalar quantum electrodynamics.

the two-photon contact vertex which generates several additional photon-loop diagrams.
In terms of the conventional (dimensionless) Mandelstam variables (s, t, u) the differential

cross section for the reaction b−(p1) + b−(p2) → b−(p3) + b−(p4) takes the form:

dσ(b−b−)

dΩcm

=
α2

4m2
bs

|A(t, u) + A(u, t)|2 , (40)

where A(t, u) is the scattering amplitude arising from diagrams with uncrossed (external) boson
lines only. The corresponding tree-level Born term (as given by one-photon exchange) reads:

A(t, u)(tree) =
s − u

t
. (41)

Loop diagrams of scalar quantum electrodynamics contribute in the form of vertex corrections:

A(t, u)(vert) =
α

πt
(s − u)

{
2ξIR − 2 +

t − 2√
−t

√
4 − t

[
4(ξIR − 1)

√
−t L(−t) + Φ(−t)

]}
, (42)

and via a (scalar boson) vacuum polarization:

A(t, u)(vap) =
α

6πt2
(s − u)

{
4 − 4t

3
− (4 − t)3/2L(−t)

}
. (43)
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Specific for scalar quantum electrodynamics are the two-photon exchange bubble and triangle
diagrams shown in Fig.15. Their individual contributions to the scattering amplitude A(t, u)
read:

A(t, u)(bub) =
α

π

{
− 4ξUV + 3 − 2 ln(−t)

}
, (44)

A(t, u)(tria) =
α

π

{
2ξUV − 2 + 2 ln(−t) + (8 − t)K(t)

}
. (45)

with the function K(t) defined in eq.(17) and ξUV denotes the ultraviolet divergence in dimen-
sional regularization. Likewise, the planar two-photon exchange box diagram (see Fig. 3) for
scalar bosons leads to the contribution:

A(t, u)(box) =
α

π

{
1

2
(1 − ξUV ) +

(
3s − 8 +

4s

4 − t

)
K(t)

+
4L(−s)

t
√

4 − s

[
ξIR(s − 2)(u − s) − (s − 2)2 ln(−t)

]

−1

2

√
4 − sL(−s) − u ln(−t)

4 − t
+

(2 − s) Φ(−s)√
−s

√
4 − s

}
, (46)

while that of the crossed two-photon exchange box diagram reads:

A(t, u)(crb) =
α

π

{
1

2
(1 − ξUV ) +

(
3u − 8 +

4u

4 − t

)
K(t)

+
4L(−u)

t
√

4 − u

[
ξIR(u − 2)(s − u) − (u − 2)2 ln(−t)

]

−1

2

√
4 − u L(−u) − s ln(−t)

4 − t
+

(2 − u) Φ(−u)√
−u

√
4 − u

}
. (47)

As suggested by turning the charged boson line upside down, these last two contributions are
related by the crossing transformation s ↔ u, i.e. A(t, u)(crb) = A(t, s)(box) with s = 4 − t − u.
When summing the terms in eqs.(44-47) an ultraviolet divergence of −3α ξUV /π remains which
in the end gets canceled by an appropriate counterterm of scalar quantum electrodynamics.

Fig. 16 shows the radiative corrections to equally charged scalar boson scattering arising from
loops only. In comparison to the spin-1/2 case shown in Fig. 4, one observes that the transition
from positive to negative loop corrections with increasing center-of-mass energy

√
smb proceeds

somewhat differently. The full lines in Fig. 17 show the radiative corrections with inclusion of
the effects due to soft photon bremsstrahlung (given in identical form by eq.(22)). Altogether,
one notices by comparison with Fig. 5 that the radiative corrections to the scattering of (equally
charged) scalar bosons are somewhat smaller in magnitude than those for spin-1/2 fermions (at
the same kinematical conditions).

Finally, we show in Figs. 18,19 the radiative corrections to the scattering of oppositely
charged scalar bosons. As in the case of Bhabha scattering (see section 2.3) these are obtained
through the crossing transformation s ↔ u applied to the amplitude A(t, u)+A(u, t) in eq.(40)

and the corresponding soft photon correction factor δ
(cm)
real is given by eq.(24). Making the

comparison with Figs. 6,7 one is lead to the conclusion that for oppositely charged particles
the radiative corrections are larger in magnitude for scalar bosons than for spin-1/2 fermions.
Although not of direct practical relevance (since elementary charged scalar bosons do not exist
in nature) this is an interesting observation.

In passing we note that the results obtained here in scalar QED cannot be applied e.g. to
the pion. The electromagnetic form factor of the pion is dominated by the ρ0(770)-resonance
leading to an enhancement factor of up about 45 in the π+π− → γ∗ → π+π− transition (in the
ρ0 region). In addition, the hard part of the photon spectrum is radiated by quarks, not by the
mesons themselves. Actually, the two-photon exchange contribution to the elastic electron-pion
scattering has been calculated recently in ref. [25] taking into account the structure of the pion
through a monopole-type (charge) form factor as suggested by vector-meson dominance model.
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Figure 16: Radiative corrections to equally charged scalar boson scattering arising from loops
only. The numbers (3, 6, 12, 24, 48, 96) on the curves correspond to the total center-of-mass
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Figure 17: Radiative corrections to equally charged scalar boson scattering including soft pho-
ton bremsstrahlung. The numbers (3, 6, 12, 24, 48, 96) on the curves correspond to the total
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Figure 18: Radiative corrections to oppositely charged scalar boson scattering arising from
loops only. The numbers (3, 6, 12, 24, 48, 96) on the curves correspond to the total center-of-
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Figure 19: Radiative corrections to oppositely charged scalar boson scattering including soft
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Appendix: Loop integrals

In this appendix we collect the results for the (basic) one-loop integrals one encounters in the
calculation of the radiative corrections to lepton-lepton scattering. We are using dimensional
regularization to treat both ultraviolet and infrared divergences. Divergent pieces of one-loop
integrals show up in form of the constant:

ξ =
1

d − 4
+

1

2
(γE − ln 4π) + ln

m

µ
, (48)

containing a simple pole at d = 4 and the logarithm of an arbitrary mass scale µ. Ultraviolet
(UV) and infrared (IR) divergences are distinguished by the feature of whether d < 4 or d > 4
is the condition for convergence of the d-dimensional integral. In the following all propagators
are understood to have an infinitesimal negative imaginary part: −i0+.

The vacuum polarization diagram leads to the following loop integral with two (massive)
propagators: ∫ ddl

(2π)di

(4π)2µ4−d

[m2 − l2][m2 − (q − l)2]
= I(t) + O(d − 4) , (49)

where the dimensionless variable t is defined by t m2 = q2. In addition to the ultraviolet
divergence −2ξUV one obtains the logarithmic function:

I(t) = −2ξUV + 2 − 2
√

4 − t√
−t

ln

√
4 − t +

√
−t

2
, (50)

whose imaginary part along the branch cut t > 4 is:

Im I(t) =
π
√

t − 4√
t

, for t > 4 . (51)

The vertex correction diagram introduces the following loop integral with three propagators
(two massive, one massless):

∫
ddl

(2π)di

(4πm)2µ4−d

[m2 − (p1 − l)2][m2 − (p2 − l)2][−l2]
= H(t) + O(d − 4) , (52)

where t m2 = (p1 − p2)
2 and p2

1 = p2
2 = m2. The mass zero of the photon generates an infrared

divergence ξIR and the complete result can be written as:

H(t) =
1√

−t
√

4 − t

{
4ξIR ln

√
4 − t +

√
−t

2

+Li2(v) − Li2(1 − v) +
1

2
ln2 v − 1

2
ln2(1 − v)

}
, (53)

in terms of logarithms and dilogarithms where 1− 2v =
√
−t/(4 − t). By convention, Li2(v) =

∑∞
n=1 n−2vn = v

∫ ∞
1 dy[y(y − v)]−1 ln y denotes the dilogarithmic function. We note as an aside

that when choosing a fictitious photon mass mγ as an infrared regulator the infrared divergence
appears always in the form ξIR = ln(m/mγ). The imaginary part of H(t) along the branch cut
t > 4 is:

Im H(t) =
π√

t2 − 4t

[
2ξIR + ln(t − 4)

]
, for t > 4 . (54)

The two-photon exchange diagram introduces another loop integral with three propagators (one
massive, two massless):

∫
d4l

(2π)4i

(4πm)2

[m2 − (p1 − l)2][−(q − l)2][−l2]
= 2K(t) , (55)
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where t m2 = q2 = 2p1 · q and p2
1 = m2. Somewhat surprisingly, this loop integral is infrared

convergent and the result has the analytical form:

K(t) =
1√

−t
√

4 − t

{
π2

3
+ Li2

(
2 − t −

√
−t

√
4 − t

2

)
+ ln2

√
4 − t +

√
−t

2

}
. (56)

The corresponding imaginary part along the cut t > 0 consists of two pieces:

Im K(t) =
π√

4t − t2
arccos

√
t

2
, for 0 < t < 4 , (57)

Im K(t) =
π√

t2 − 4t
ln

√
t +

√
t − 4

2
, for t > 4 , (58)

which join smoothly at t = 4. Eventually, the two-photon exchange diagram leads to the
following loop integral with four propagators (two massive, two massless):

∫
ddl

(2π)di

(4πm2)2µ4−d

[m2 − (p1 − l)2][m2 − (p2 + l)2][−(q − l)2][−l2]
= Ψ(s, t) + O(d − 4) , (59)

where the dimensionless variables (s, t) are defined by s m2 = (p1 + p2)
2, t m2 = q2 = 2p1 · q =

−2p2 · q and p2
1 = p2

2 = m2. In analogy to eq.(44) the vanishing photon mass generates again
an infrared divergence ξIR and the complete result reads:

Ψ(s, t) =
4

−t
√
−s

√
4 − s

[
2ξIR + ln(−t)

]
ln

√
4 − s +

√
−s

2
, (60)

together with the imaginary part:

Im Ψ(s, t) =
2π

−t
√

s2 − 4s

[
2ξIR + ln(−t)

]
, for s > 4 , t < 0 . (61)

In the case of electron-muon scattering one encounters generalizations of the loop integrals H(t)
and Ψ(s, t) (see eqs.(52,59)) with different masses p2

1 = m2
e and p2

2 = m2
µ in the propagators

and m2
µ in the numerator. The corresponding generalizations of the imaginary parts read:

Im Heµ(t) =
π√

(t − ρ+)(t − ρ−)

{
2ξIR + ln

(t − ρ+)(t − ρ−)

t

}
, for t > ρ+ , (62)

Im Ψeµ(s, t) =
2π

−t
√

(s − ρ+)(s − ρ−)

[
2ξIR + ln(−t)

]
, for s > ρ+ , t < 0 , (63)

with ρ± = (1 ± me/mµ)
2. The importance of the imaginary parts of the loop functions lies in

the fact that they determine via a Kramers-Kronig dispersion relation the corresponding real
parts. On that basis we checked in detail (numerically) that the expressions with factorized
square roots given in this appendix provide the correct analytical continuation of the real parts
of the loop functions above their respective branch points.

The master integral occurring in the calculation of the soft photon correction factor δsoft is:

∫ 1

−1
dx

(1 − x2)
d−4
2

(E + xp)2
=

2

E2 − p2

{
1 + (d − 4)

[
ln 2 − E

2p
ln

E + p

E − p

]}
, (64)

carrying the expansion in d − 4 up to linear order.
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