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1. Introduction

In systems that contain interacting degrees of freedom, resonances commonly develop

which cannot be described by a perturbative approach. This is generally known as the

Sommerfeld effect [1], and has been widely studied in the fields of chemistry, nuclear and

condensed matter physics, and also in the dynamics of mechanical and electrical systems.

In particle physics, effective theories are constructed to deal with bound states, but the

main tool for evaluating physical quantities such as cross sections and decay rates is

perturbation theory. It is then common to neglect non-perturbative contributions. This

is usually a reasonable approximation when the de Broglie wavelengths of interacting

states is small in comparison to the ranges of the interactions present. However, for the

contrary case, non-perturbative corrections become significant and should be included.

Recently, the importance of the Sommerfeld effect in dark matter annihilation has

been pointed out in [2, 3, 4, 5, 6, 7, 8] for properly calculating thermal relic densities,

and determining signals for indirect dark matter searches. Other examples where the

Sommerfeld effect is crucial include threshold production of heavy states at colliders,

and partial decay rates when the products have large phase space suppression. The

purpose of this paper is to review the origin of the Sommerfeld effect from a particle

physics perspective, and demonstrate its significance for some common interactions.

This work includes a derivation and analysis of the Sommerfeld factor for arbitrary

partial wave processes. It is found that, even in cases where higher partial waves can

safely be neglected at the perturbative level, these channels can become dominant

when the non-perturbative physics is properly accounted for. For an application of

the numerical p-wave results in this paper to relic density calculations, see [9]. During

preparation of this paper‡, a numerical analysis of higher partial wave Sommerfeld

enhancement for an “off-diagonal” Yukawa potential has been presented in [10]. Also,

a similar derivation of the general Sommerfeld factor has been provided in [11, 12].

The p-wave Sommerfeld factor has been previously determined for collider events

near particle thresholds in the presence of Coulombic interactions [13, 14]. This paper

reproduces this result, and extends the analysis to higher partial waves. For nuclear

processes, general enhancement factors have been established which also match the

results in this paper (see for example [15, 16] and contained references).

Apart from for pure electromagnetic interactions, it is necessary to use numerical

simulations in order to evaluate the Sommerfeld factor. The computational requirements

can then be an obstacle to including the Sommerfeld effect in relevant calculations. In

this paper, an approximate analytic expression is also found for the Sommerfeld factor

of Yukawa interactions for arbitrary partial waves, which is exact in the Coulomb limit.

So far as the author is aware this is a new result, and is found to be accurate to within

10% for the most common applications.

The structure of the paper is as follows. Section 2 outlines the derivation of the

‡ The numerical Yukawa p-wave results were presented by the author at the 46th International School
of Subnuclear Physics, Erice, Sicily, 29 August - 7 September 2008 [http://www.ccsem.infn.it/issp2008].
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Sommerfeld factor for arbitrary partial wave processes. Section 3 then determines

the approximate analytic expression for the Sommerfeld factor in the presence of

Yukawa interactions. In Section 4, the numerical and analytic results are evaluated

and compared. Section 5 presents the conclusions.

2. Derivation of the Sommerfeld factor

The non-perturbative physics that leads to the Sommerfeld effect can be thought of

as the limit of perturbative Feynman diagrams with an infinite number of particle

exchanges. For a two body incoming or outgoing state, it is useful to consider the non-

perturbative 4-point vertex function, Γ, in order to quantify the Sommerfeld effect. In

this section, the method for determining Γ is first presented. This function is then used

to relate the non-perturbative cross section of an arbitrary process to the perturbatively

calculated prediction. The ratio of these results defines the “Sommerfeld factor.”

The non-perturbative 4-point vertex function is a solution of the Bethe-Salpeter

equation, shown in Fig 1 in terms of Feynman diagrams, or equivalently given by:

Γ

p1

p2

p3

p4

= Γ̃ + Γ̃

q

p1 + p2 − q

Γ

Figure 1: Bethe-Salpeter equation in diagrammatic form.

iΓ(p1, p2; p3, p4) = iΓ̃(p1, p2; p3, p4) +

∫
d4q

(2π)4
Γ̃ G(q) G(p1 + p2 − q) Γ (1)

where Γ̃ are “compact” vertices which do not involve any intermediate state composed

solely of the scattering particles (ie are described by two-particle irreducible diagrams),

and G is the non-perturbative propagator. The inhomogeneous integral equation

for Γ can be solved to arbitrary accuracy by a Liouville-Neumann series or Fourier

methods, given that Γ̃ and the propagator are sufficiently well known from perturbative

calculations. However, in the non-relativistic limit, such methods are difficult or

sometimes impossible to implement. This case is most relevant for some common particle

physics situations where the Sommerfeld effect is of great significance, and so is now

concentrated on.

Fig 1 can equivalently be expressed as the sum of Feynman diagrams with an

increasing number of Γ̃ insertions. In the non-relativistic limit, Γ̃ usually is dominated

by single particle exchange. For this reason, this class of diagram is often referred to as

a “ladder”, (which can be better visualised when the scattering particle propagators in

Fig 1 are drawn as straight lines).

The approximation appropriate for the non-relativistic limit is that of instantaneous

interactions [17]. This requires that the dependence of the momenta time components

in the matrix element is removed. For the intermediate scattering particles that connect
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subsequent Γ̃ insertions, this prescription puts those propagators on-shell. The diagrams

with finite ladders are then negligible compared to the infinite ladder diagram. The non-

perturbative character of the vertex function Γ is now manifest. In the non-relativistic

limit, the Bethe-Salpeter equation reduces to a homogeneous integral equation. To

transform this equation into a more familiar form, it is convenient to introduce the

function χ with the following definition:

χ(p1, p2; p3, p4) = G(p1) G(p2) Γ(p1, p2; p3, p4) (2)

From now on, the (; p3, p4) arguments will implicitly be assumed in χ. They do not

influence the following steps for solving the approximated Bethe-Salpeter equation:

iχ(p1, p2) ≈ G(p1) G(p2)

∫
d4q

(2π)4
Γ̃(p1, p2; q, p1 + p2 − q) χ(q, p1 + p2 − q) (3)

The leading contribution to Γ̃ in the non-relativistic limit is usually from single particle

exchange. As an example, consider a scalar Yukawa theory with the interaction

g mφ φ
∗φϕ, where g is a dimensionless coupling constant. In the case of two φ particles

scattering, the leading contribution to Γ̃ is:

Γ̃ ≈
−g2m2

φ

(p1 − q)2 −m2
ϕ

(4)

=
g2m2

φ

|p1 − q|2 +m2
ϕ − ω2

(5)

where ω = (p1)0 − q0 and the scattering interaction involves single ϕ exchange. As

mentioned before, the instantaneous approximation is required for the non-relativistic

limit which sets ω = 0 in Γ̃. The perturbative vertex function then only depends on

the transferred 3-momentum, Γ̃ = U(p1 − q). This is a general feature in the non-

relativistic limit, but it should be noted that the χ function still retains q0 dependence.

The following parameters and function are now introduced:

p = (p1 − p2)/2 P = (p1 + p2)/2 χ̃(k1, k2) = χ(k1 + k2, k1 − k2) (6)

In the centre of mass frame, p = (p0,p), and P = (mφ + E/2 , 0) where E is the

total kinetic energy of the system. The reduced Bethe-Salpeter equation with the

instantaneous approximation applied is then given by:

iχ̃(P, p) ≈ G(P + p) G(P − p)

∫
d4q

(2π)4
U(p − q) χ̃(P, q − P ) (7)

= G(P + p) G(P − p)

∫
d4q′

(2π)4
U(p − q′) χ̃(P, q′) (8)

It is now useful to also introduce the equal-time Bethe-Salpeter wavefunction:

ψ̃
BS

(q) =

∫
dq0
2π

χ̃(P, q) (9)

Using this and integrating eq (8) over the p0 variable, the following equation is obtained

for the scalar Yukawa case after re-arranging a multiplicative factor:(
p2

mφ
− E

) [
ψ̃BS(p) + f δ(p − k)

]
+

∫
d3q′

(2π)3
V (p − q′) ψ̃BS(q

′) = 0 (10)



Sommerfeld factor for arbitrary partial wave processes 5

where E (= k2/mφ) is the total kinetic energy of the system, U = −4m2
φ V , and only

the leading term in E/mφ is kept. The δ-function in eq (10) appears from the principal

part of the integration, as detailed in [18]. The Bethe-Salpeter wavefunction therefore

is a solution of the Schrödinger equation (here in integral form), with a potential that

accounts for the interactions included in Γ̃. The co-efficent of the δ-function term, f , is

fixed by the asymptotic phase boundary condition for scattering solutions. For negative

centre of mass energies (bound states), f = 0. When the external states have non-zero

spin, the same steps can be applied and the Schrödinger equation is similarly found

in the non-relativistic limit. For further discussion of the Bethe-Salpeter equation, see

[17, 18, 19].

The result of including the infinite series of scattering interactions has effectively

transformed the incoming states from plane waves to a composite state described by

ψ̃
BS

. The corrections to Γ̃ generally include annihilation channels. This introduces

an imaginary term into the Schödinger equation which results in a finite lifetime for

the composite state. In scattering processes, bound states cannot be formed without

radiating off energy. The composite state found then generally can not easily be

described by an effective theory, and its influence is usually neglected.

For an example of including the non-perturbative scattering prior to the main

interaction event, consider two body annihilation as shown in Fig 2.

Γ

p1

p2

p3(k)

p4(k)

Final States

F
Figure 2: Diagram with non-perturbative scattering before annihilation.

The non-perturbative matrix element, Mladder, is related to the perturbative result,

Mw/o, according to:

M
ladder

(p1, p2; {pf}) =

∫
d4k

(2π)4
M

w/o
(p3, p4; {pf})G(p3)G(p4) Γ(p1, p2; p3, p4) (11)

where it is assumed that the Sommerfeld effect in the final states is negligible. This

neglected feature can easily be included by the same technique, but for simplicity it is

ignored here. The non-perturbative matrix element can be evaluated once the solution

of Γ in eq (1) is found. In the non-relativistic limit, the instantaneous approximation

should be applied to the perturbative matrix element, M
w/o

. On performing the k0

integration for this case, it is seen that the Bethe-Salpeter wavefunction then weights

the perturbative result as follows:

M
ladder

(p1, p2; {pf}) ≈
∫

d3k

(2π)3
M

w/o
(k,−k; {pf}) ψ̃BS

(k) (12)
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where the centre of mass frame has been chosen. In a partial wave expansion, the leading

terms in the non-relativistic limit for M
w/o

, with a given angular momentum l, behave

proportional to kl Ylm in the centre of mass frame, where k here is the magnitude of the

3-momentum of either particle , and Ylm is a spherical harmonic function.

For the s-wave case, it can immediately be seen by evaluating the integral that

the non-perturbative matrix element differs by a factor of ψBS(r = 0) relative to the

perturbatively calculated result, where ψ
BS

is the position space representation of the

Bethe-Salpeter wavefunction. The Sommerfeld factor for a given partial wave, l, is

defined as:

Sl =
non-perturbative partial wave cross section

perturbative partial wave cross section
(13)

In the non-relativistic limit, S0 is simply |ψBS(r = 0)|2. In order to evaluate eq (12) for

higher partial waves, it is convenient to decompose the wavefunction in the (orthogonal)

spherical harmonic basis. The wavefunction components can then also be written in a

separable form as defined below:

ψ̃Elm(k) = FEl(k)Ylm(Ωk) (14)

For a particular partial wave process, using M
w/o

= al k
l Ylm in eq (12) with al

being some momentum independent factor, the non-perturbative matrix element is

equivalently given by:

M
ladder

= al

∑

l′,m′

∫
dk

(2π)3
kl+2FEl′(k)

∫
dΩk Ylm(Ωk)Y

∗
l′m′(Ωk)Yl′m′(Ωp) (15)

= al

∑

l′,m′

∫
dk

2π2
kl+2FEl′(k) δll′ δmm′ Yl′m′(Ωp) (16)

where Ωp is the solid angle aligned with respect to the original collision axis of the

incoming states. For a given partial wave, the Bethe-Salpeter wavefunction generated by

scattering interactions is forced to have the same quantum numbers. In the perturbative

case, the momentum appearing in the matrix element is fixed by the incoming states,

k = |p1| = |p2|. The Sommerfeld factor can then be determined from eq (16) using

eq (13) to obtain:

Sl =

∣∣∣∣
∫

dk

2π2
kl+2 FEl(k) |p1|−l

∣∣∣∣
2

(17)

In order to evaluate the result of integrating the momentum wavefunction weighted by

different powers of k, it is useful to consider the radial Fourier transformation. This is

now determined from the usual Fourier transformation:
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ψElm(r) =

∫
d3k

(2π)3
ψ̃Elm(k) e−ik·r

=

∫
k2dk

(2π)3

∫
dΩk FEl(k)Ylm(Ωk)

∑

l′m′

(−i)l′ jl′(kr)Yl′m′(Ωr)Y
∗
l′m′(Ωk)

=

[
(−i)l

∫ ∞

0

dk

2π2
k2 jl(kr)FEl(k)

]
Ylm(Ωr)

≡ REl(r) Ylm(Ωr) (18)

The result of differentiation of the radial wavefunction leads to the relation:

∂nREl(r)

∂rn
= (−i)l

∫ ∞

0

dk

2π2
k2

[
∂njl(kr)

∂rn

]
FEl(k) (19)

A series expansion of the Bessel function then gives, jl(kr) = (kr)l/(2l+1)!!+O(kr)l+2

where (2l + 1)!! = (2l + 1)!/(2l l!), and so the following result is found:

∂lREl(r)

∂rl

∣∣∣∣∣
r=0

=
l!

(2l + 1)!!
(−i)l

∫ ∞

0

dk

2π2
kl+2 FEl(k) (20)

Using this in eq (17), the Sommerfeld factor for the partial wave cross section with

angular momentum l is equivalently given by:

Sl =

∣∣∣∣∣
(2l + 1)!!

|p1|l l!
∂lREl(r)

∂rl

∣∣∣∣∣
r=0

∣∣∣∣∣

2

(21)

where |p1| is the magnitude of the 3-momentum of either incoming particle in the centre

of mass frame at infinite separation. This result has been derived in the non-relativistic

limit. So far as the author is aware, this is a new result that, during preparation of this

paper, has also been independently presented by Iengo [11] (and see footnote 1).

3. Analytic solutions for wavefunctions

In the previous section, it was shown that the Sommerfeld factor is related to solutions

of the Schödinger equation in the non-relativistic limit. The relevant potential is

constructed by considering the interactions present in two-particle irreducible diagrams.

For some common examples such as gauge boson, meson or Higgs interactions, a Yukawa

potential is found at leading order. For a non-zero mass of the mediator responsible

for the Yukawa interaction, there is no analytic solution for the wavefunction. This

can then be determined numerically, however for many applications, an approximate

analytic solution may be adequate for the level of precision desired. In this section,

an approximate analytic wavefunction is found for the Yukawa potential and the

Sommerfeld factor is then determined. The results are exact in the Coulomb limit,

relevant for electromagnetic interactions.

Given a spherically symmetric potential, V (r), the Schrödinger equation is

separable. For a two-body system containing particles with a common mass M , the
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radial part of the wavefunction obeys the following:
(
− ~2

M
∂2

r −Mβ2 + V (r) +
~2 l(l + 1)

Mr2

)
r Rl(r) = 0 (22)

where β is the speed of each particle when at infinite separation in the centre of mass

frame. Natural units (~ = 1) are now used for the rest of this discussion. For Yukawa

interactions, the potential is of the form:

VY = − Ae−m?r

r
(23)

where m? is the mass of the mediator for the interaction, and A is the interaction

strength which is positive (negative) for an attractive (repulsive) interaction. In order

to find an approximate analytic solution, the following approximation is applied to the

potential:

VY ∼ VH =
Aδ e−δr

1 − e−δr
(24)

This approximation maintains the same short and long distance behaviour of the Yukawa

potential, and is commonly known as the Hulthén potential. The question is then raised

as to what choice of δ best reproduces the Yukawa potential. In order to answer this

question for small strengths of the potential, parametrised by A, it is useful to consider

the Schrödinger equation in an equivalent form known as the Lippmann-Schwinger

equation:

Rl(r) ∝ jl(kr) +Mk

∫ ∞

0

r′ 2 jl(kr<)nl(kr>)V (r′)Rl(r
′) dr′ (25)

r→0−−−→ (kr)l

(2l + 1)!!

[
1 − M

2l + 1

∫ ∞

0

r′ V (r′) dr′ +O(A2)

]
(26)

where r< = min(r, r′), r> = max(r, r′) and k = Mβ. The Sommerfeld factor is sensitive

to the behaviour of the wavefunction at the position space origin. In order for the

approximation to be precise up to O(A1) in the limit of zero kinetic energy, it is necessary

for the first moment of the radial potential,
∫ ∞
0
r′ V (r′) dr′, to be unchanged by the

substitution VY → VH . This fixes the relation:

δ =
π2m?

6
(27)

For k 6= 0, there is no analytic relation between δ and m? which equates the first order

correction to the wavefunction, but limited progress can be made by performing a series

expansion in k/m?. In the following analysis, the identification in eq (27) is assumed for

all strengths of the potential and kinetic energies. However, it should be stressed that

more accurate results can be obtained if the choice of δ is improved for these cases.

The s-wave wavefunctions can now be found analytically, but for l 6= 0, a further

approximation [20] must be applied to the centrifugal term in order to permit analytic

solutions:

Ṽl =
l(l + 1)

M

δ2 e−δr

(1 − e−δr)2
≈ l(l + 1)

Mr2
for δr � 1 (28)
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This is reasonable for short range potentials, but does not reproduce the correct long

distance behaviour. These approximations convert the effective potential of the radial

Schrödinger equation into a form that allows solutions in terms of hypergeometric

functions, and therefore is a special case of the Natanzon hypergeometric potential [21].

For the chosen approximations, VH + Ṽl is in the form also known as a Manning-Rosen

or Eckart potential.

The physics of the Schrödinger equation is only sensitive to certain combinations

of the free parameters. The following dimensionless variables are then constructed:

w =
y

x

m?

δ
x =

A

β
y =

AM

m?
z = 2rMβ (29)

Introducing a further variable, t = 1 − e−z/2w, the radial Schödinger equation with the

approximated Yukawa potential and centrifugal term takes the form:(
∂2

t −
∂t

(1 − t)
+

w2

(1 − t)2
+
w x− l(l + 1)

t(1 − t)
− l(l + 1)

t2

)
r(t)Rl [r(t)] = 0 (30)

The regular solution of this differential equation is given by:

Rl =
tl+1

z

e−iz/2

Γ(λ)

∣∣∣∣
Γ(a−) Γ(a+)

Γ(2iw)

∣∣∣∣ 2F1(a
−, a+; λ; t) (31)

a± = 1 + l + iw
(
1 ±

√
1 − x/w

)
λ = 2l + 2 (32)

where 2F1 is a hypergeometric function which has the following behaviour at small t:

2F1(a
+, a−; 2λ; t) = 1 +

a+a−

2λ
t+O(t2)

The normalisation of the wavefunction has been chosen such that an incident wave

eik.r of unit strength is obtained at infinity. This is then consistent with cross section

calculations. In the spherical harmonic basis, an incident wave has the following

decomposition:

eik.r r→∞−−−−→
∞∑

l=0

1

2ikr

[
eikr − (−1)le−ikr

] l∑

m=−l

Y ∗
lm(Ωr)Ylm(Ωk) (33)

The limiting behaviour of the 2F1 hypergeometric function is given below:

2F1(a
−, a+; λ; t)

r→∞−−−−→ Γ(λ)Γ(λ− a− − a+)

Γ(λ− a−)Γ(λ− a+)
+ eiz

(
Γ(λ)Γ(a− + a+ − λ)

Γ(a−)Γ(a+)

)
(34)

and so the constructed solution in eq (31) has the correct normalisation up to a phase

factor§, which is irrelevant for determining the Sommerfeld factor. In the Coulomb limit

(w → ∞), the wavefunction reduces to:

Rl [w → ∞] =
zl e−iz/2

Γ(λ)
eπx/4 Γ

(
1 + l +

ix

2

)
1F1

(
1 + l +

ix

2
; λ; iz

)
(35)

This result follows from eq (31) by considering the limiting behaviour of the Γ function:

|Γ(a + ib)| b→∞−−−−→ ba e−πb/2

√
2π

b

[
1 +O

(
b−1

)]
for a, b ∈ R (36)

§ Note the behaviour of the Γ function under complex conjugation; Γ(h∗) = [Γ(h)]∗.
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where R is the set of real numbers, and the confluent hypergeometric function, 1F1, is

obtained using the identity:

1F1(a1; b; v) = lim
a2→∞

[
2F1(a1, a2; b; v/a2)

]
(37)

The normalisation of the Coulomb wavefunction is inherited from eq (31), but a check

of the limiting behaviour of the confluent hypergeometric function confirms that an

incident wave of unit strength is found as r → ∞.

The Sommerfeld factor in this dimensionless formalism is given by:

Sl,0 =

∣∣∣∣∣
(2l + 1)!

(l!)2

∂lRl(z)

∂zl

∣∣∣∣∣
z=0

∣∣∣∣∣

2

(38)

However, a naive application of the l 6= 0 approximate Yukawa wavefunction in this

formula can give results that violate the unitarity limit. This is a consequence of the

approximation applied to the effective centrifugal potential. A more careful analysis is

provided in the next section that properly accounts for the centrifugal approximation.

3.1. Sommerfeld factor with a modified centrifugal term

After modification of the centrifugal term, the free particle eigenstates are no longer

plane wave solutions. An equivalent statement is that the canonical momentum of the

position co-ordinate is modified by the approximation. The transformation between the

position representation and canonical momentum representation is determined from the

usual completeness relation:

|r〉 =

∫
d3k′

(2π)3
|k′〉〈k′|r〉 (39)

Since the spherical harmonics are unaffected by the approximation, the same steps as

in eq (18) can be applied to obtain the modified radial transformation relation:

Rl(r) =

∫ ∞

0

dk′

2π2
k′ 2 Fl(k

′)R(A=0)

l (k′r) (40)

where R(A=0)

l is the free particle solution, which can be determined from eq (31) by

taking the limit x→ 0:

R(A=0)

l (z) =
tl+1

z

e−iz/2 l!

Γ(λ)

∣∣∣∣
Γ (1 + l + 2iw)

Γ(2iw)

∣∣∣∣ 2F1 (1 + l, 1 + l + 2iw; λ; t) (41)

=
zl l!

Γ(λ)

∣∣∣∣∣
Γ (1 + l + 2iw)

Γ(2iw) (2w)l+1

∣∣∣∣∣ +O
(
zl+1

)
(42)

It follows from the above that the density of states remains unchanged, as assumed

in eq (39). In the limit w → ∞, the correct centrifugal term is recovered and so

it is expected that the standard radial Fourier transform, as given in eq (18), is also

recovered. This result can be verified by noting the following identity:

jl(z/2) = zl e
−iz/2 l!

Γ(λ) 1F1(1 + l;λ; iz)



Sommerfeld factor for arbitrary partial wave processes 11

and considering the limiting behaviour of the Γ function and 2F1 function, given in

eq (36) and eq (37). The standard transformation is indeed found in the limit w → ∞.

The same derivation of the Sommerfeld factor as presented in Section 2 can be

carried out up until eq (17), where the Sommerfeld factor is given as an integral of

the momentum space wavefunction weighted by various powers of momentum. At this

point, to evaluate the integral, it is necessary to consider derivatives of eq (40) instead

of the standard radial transformation. Using the series expansion in eq (42) for the

free particle solution, the Sommerfeld factor for a two body system with the modified

centrifugal potential, S̃l, is then:

S̃l =

∣∣∣∣∣
(2l + 1)!

(l!)2

Γ(2iw) (2w)l+1

Γ(1 + l + 2iw)

∂lRl(z)

∂zl

∣∣∣∣∣
z=0

∣∣∣∣∣

2

(43)

Note for l = 0 and/or w → ∞, this reduces to the usual Sommerfeld factor as expected

when the centrifugal term and/or its substituted approximation vanishes. This can be

seen using the relation Γ(1 + h) = hΓ(h) for the l = 0 case, and eq (36) for the w → ∞
limit.

3.2. Analytic Sommerfeld factor

The approximate analytic Sommerfeld factor is now presented for the case of Yukawa

interactions for arbitrary partial waves. Substituting the approximate wavefunction,

given in eq (31), into the Sommerfeld factor which accounts for the modified centrifugal

term, the following result is found:

S̃l =

∣∣∣∣
Γ(a−) Γ(a+)

Γ(1 + l + 2iw)

1

l!

∣∣∣∣
2

In the Coulomb limit, this becomes:

S̃l
w→∞−−−−→

∣∣∣∣Γ
(

1 + l +
ix

2

)∣∣∣∣
2
eπx/2

(l!)2
(44)

Using the relation Γ(1 + h) = hΓ(h) recursively, and that |Γ (1 + ib)| =
√
πb csch(πb)

for real b, the Coulomb case can equivalently be written as:

Sl >0 = S0 ×
l∏

b=1

(
1 +

x2

4b2

)
where S0 =

πx

1 − e−πx
(45)

Recall that this result is exact for the Coulomb limit. Although the perturbative cross

sections of higher partial waves are suppressed by factors of β2l in the non-relavistic

limit, this result indicates that in the zero velocity limit (x → ∞), the Sommerfeld

effect introduces a multiplicative factor that leads to all partial wave cross sections

having the same velocity dependence.

In the large screening limit for the Yukawa potential (w → 0), the Sommerfeld

effect saturates when the de Broglie wavelengths of the scattering particles are much

greater than the range of the potential. However, in the attractive case, resonances can

develop when the system is close to bound states leading to large enhancements, and
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these states can form at zero energy. For finite range potentials such as the Yukawa

case, the number of bound states present is always finite. Below a critical value for the

coupling, no bound states can form and so the magnitude of the Sommerfeld factor is

bounded. In the limit w → 0, the Sommerfeld factor is approximately:

S̃l
w→0−−−→

∣∣Γ
(
1 + l +

√
wx

)
Γ
(
1 + l −

√
wx

)∣∣2 / (l!)4 (46)

where wx = y (m?/δ). The Gamma function has poles at 0 and the negative integers.

Therefore, the above result suggests that resonances are found when wx = (1 + l + n)2

with n being a non-negative integer. The critical values of y for the exact and

approximated Yukawa potentials that allow one bound state of angular momentum

l = 0, 1 are given in Table 3.2. The resonance behaviour at these points will be

demonstrated in Section 4.

Potential l = 0 l = 1

approx Yukawa δ/m? 4 δ/m?

exact Yukawa 1.680 9.082

Table 1: Critical values of y (= AM/m?) for one bound state with angular momentum

l. In this paper, δ/m? = π2/6 (≈ 1.645) has been used. The exact results are taken

from [22].

In the large screening limit, for small wx, the approximate analytic Sommerfeld

factor behaves in a series expansion as:

S̃l = 1 + 2wxψ1(1 + l) +O(w,wx)2 (47)

where ψ1 is the trigamma function, defined by:

ψ1(h) =
d2

dh2
ln Γ(h) (48)

For physical angular momentum, ψ1(l + 1) ∼ 1/(l + 1
2
) is a good approximation, exact

in the large l limit, and 18% (3%) accurate for l = 0 (1). This result suggests that for a

given l, the magnitude of the deviation of the Sommerfeld factor from unity is roughly

equivalent for the attractive and repulsive cases in this limit. The same behaviour is

also seen in eq (45) for the small x Coulomb limit, independent of l.

4. Comparison of numerical and analytic results

In this section, the Sommerfeld factor determined from numerical simulations and using

the approximate analytic result is presented and compared. The numerical results were

found with the unapproximated Yukawa potential and centrifugal term. Fig 3 shows

the Sommerfeld factor for the l = 0 partial wave cross section.

The Coulomb limit is reproduced in the limit y → ∞. For the attractive

case, resonances are found with the critical points in agreement Table 3.2. In the
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Figure 3: Sommerfeld Factor for a Yukawa interaction of a s-wave state where the

contours not labelled vary by a factor of 10. The solid lines represent S0 with the

wavefunction determined from numerical simulations, and the red dashed lines are the

approximate analytic result, S̃0. These contours are almost coincident except around

the resonances where there is a noticeable shift. For clarity the contours of S̃0 ≥ 103 in

(a) are not shown.

repulsive case, there appears to be a qualitative symmetry between the large screening

and Coulomb limits. This is expected by the similar forms that the approximated

Sommerfeld factor takes in these limits. The transition between the two regions is

roughly where the contours would intersect if the limiting results were extended. By

equating the first order terms in a series expansion of eq (45) and (47), this is found at

y ∼ (2l + 1)x.

The analytic factor is accurate to within 10% in the regions where S0 < 10 and

S0 > 0.1, with the largest errors occurring when y/x ∼ 1. This is not surprising as the

choice of δ/m? is only accurate in the limit y/x → 0, and the exact Coulomb result is

recovered as y/x→ ∞. The resonances are slightly off-position, with worse correlation

for the higher resonances.

Fig 4 shows the Sommerfeld factor for the l = 1 partial wave cross section. The

correlation is relatively poor in the small y/x region. For y/x � 1 and y = 1 or

3, the error of the analytic factor in reproducing the numerical result is roughly 10%

and 50% respectively. For the attractive case, the incorrect resonance positions for

the approximated result lead to order of magnitude errors for y & 6. However, in the

repulsive case, order of magnitude errors only are found for y & 30, with the analytic

factor being always less than the numerical result. The approximate analytic factor

is then of limited use when the Sommerfed effect is large, without finding a better

approximation.

If the shift δ → 1.2 δ is made, the contours at small y/x are nearly coincident

with the numerical result. Actually, when the numerical results are determined for
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Figure 4: Sommerfeld Factor for a Yukawa interaction of a p-wave state where the

contours not labelled vary by a factor of 10. The solid lines represent S1 with the

wavefunction determined from numerical simulations, and the red dashed lines show

the approximate analytic result, S̃1. The contours are almost coincident in the region

y/x & 1 but have a mismatch in the region y/x . 1. For clarity the contours of S̃1 ≥ 104

in (a) are not shown.

the Hulthén potential with an exact centrifugal term, the contours very closely match

the Yukawa case without this shift. The expected origin of the error in the analytic

factor therefore is dominantly from the approximation applied to the centrifugal term.

A criterion has not been found to better select δ once this approximation is applied, but

the following guess at a substitution was determined to significantly improve the results

in the l = 1 case:

w → w [1 − c1 tanh (c2/w)]

For the choice (c1, c2) = (1/6, 1/9), the results then agree to within 5% in the regions

where S1 < 10 and S1 > 0.1. The largest fractional error for the approximated analytic

result in these regions still occur at y/x ∼ 1. This transformation has effectively shifted

the y variable in the small y/x region and leaves it unchanged in the large y/x region.

The position of the resonances is still slightly offset though leading to large order of

magnitude differences between the results where these features are present.

For the attractive Yukawa potential, the resonances of different partial waves do

not coincide. It is then possible for a system to be dominated by a higher partial wave

if close to a large l resonance. For the repulsive case in the large screening region, the

Sommerfeld suppression is reduced for higher partial waves since the centrifugal barrier

becomes more effective at keeping the wavefunction away from the interaction core. It

is found using eq (46) that the reduced Sommerfeld suppression for a successive partial
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wave compensates for the perturbative β2l suppresion, β2 (Sl/Sl−1) ≥ 1, when:

l2 .
y β

1 − β
. A

(
2l + 1

1 − β

)
(49)

where some O(1) factors have been neglected, and the second inequality follows since

the result only applies in the large screening region, y . (2l + 1) x. To determine for a

particular case how many partial waves are significant and which channel dominates, it

is necessary to also consider the relative magnitudes of the velocity independent factors

in the partial wave expansion. For an attractive Yukawa interaction in the small y

region, the larger angular momentum processes are enhanced less by the same argument,

so higher partial wave terms which are negligible in the perturbative expansion stay

negligible.

As is suggested by the numerical simulations, and also by the approximate analytic

results, the Sommerfeld factor tends to infinity as β → 0, when approaching resonances

of the system. In physical situations, this would not occur as the zero energy bound

states generally have finite lifetimes. A more careful analysis is then required in the

close neighbourhood of these resonances.

5. Conclusions

The Sommerfeld effect can bring large order of magnitude corrections to cross sections.

In this paper, the Sommerfeld factor relating the non-perturbative and perturbative

matrix elements has been derived for arbitrary partial wave channels. It is demonstrated

that in the non-relativistic limit, the incoming states are transformed by scattering

interactions to effectively form a composite state whose wavefunction is a solution of

the relevant Schrödinger equation. This wavefunction weights the perturbative matrix

element in an integration over momentum space to give the non-perturbative matrix

element.

The Sommerfeld factor for Yukawa interactions has been determined in an

approximate analytic form for arbitrary partial waves, and also evaluated by numerical

simulations for the l = 0, 1 cases. The s-wave result is found to be accurate to within

10% when the non-perturbative cross section is up to an order of magnitude different to

the perturbative result. For the p-wave factor, a correction introduced to compensate

for the centrifugal approximation allowed the analytic result to be accurate to within 5%

for the same case. This is then a promising approach for application of the Sommerfeld

effect when computational resources are prohibitively restrictive. However, the analytic

result is poor at reproducing the correct resonance structure for attractive potentials.

If the resonance region is probed, it remains necessary to use numerical simulations in

order to obtain accurate results. The results are exact though in the Coulomb limit.

It was found for certain areas in the parameter space that higher partial waves can

dominate cross sections, when a perturbative analysis suggests that they are negligible.

It can therefore be critically important to include the Sommerfeld effect for the l 6= 0

case.
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One consequence of the Sommerfeld effect is the possibility that the annihilation

mechanism which controls dark matter freeze-out could be different to the dominant

mechanism of present day annihilation in our galactic neighbourhood. This is of

relevance to identifying potential signals for indirect dark matter detection. For this

case, “boost” factors are commonly required in order to find a detectable signal. The

Sommerfeld factor of an attractive interaction could provide such an enhancement. This

can also be present in addition to other mechanisms such as internal Brehmstrahlung

events or dark matter density perturbations.

During preparation of this paper, a similar derivation of the general Sommerfeld

factor and evaluation for the Coulomb case has been presented in [11], in agreement

with the results in this paper. The p-wave Coulomb result is also in agreement with

[13, 14]. In [12], the s- and p-wave Sommerfeld factors were also evaluated numerically

for an attractive Yukawa interaction for various slices in the parameter space. Those

results are also in agreement with that presented in this paper.
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