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Abstract 

 

Background  

In non-randomised evaluations of public-health interventions statistical methods to 

control confounding will usually be required. We summarise a variety of approaches to 

the control of confounding, highlighting key issues and the assumptions on which these 

methods are based. 

 

Method 

Explanatory review. 

 

Results 

To control confounding, standard stratification and regression techniques will often be 

appropriate but propensity scores may be useful where many confounders need to be 

controlled and data are limited. All these techniques require that key putative 

confounders are measured accurately. Instrumental variables offer, in theory, a solution to 

the problem of unknown or unmeasured confounders but identifying an instrument which 

meets the required conditions will often be challenging. Obtaining measurements of the 

outcome variable in both intervention and control groups before the intervention is 

introduced allows balance to be assessed, and these data may be used to help control 

confounding. However, imbalance in outcome measures at baseline poses challenges for 

the analysis and interpretation of the evaluation, highlighting the value of adopting a 

design strategy that maximizes the likelihood of achieving balance. Finally, when it is not 

possible to have any concurrent control group, making multiple measures of outcome 
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pre- and post-intervention can enable the estimation of intervention effects with 

appropriate statistical models.  

 

Conclusion 

For non-randomised designs careful statistical analysis can help reduce bias by 

confounding in estimating intervention effects. However, investigators must report their 

methods thoroughly and be conscious and critical of the assumptions they must make 

whenever they adopt these designs. 
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Alternatives to randomisation in the evaluation of public-health interventions: 

statistical analysis and causal inference 

 

Introduction 

 

In our previous paper, we discussed barriers to randomised controlled trials (RCTs) of 

public-health interventions and suggested alternative design strategies.[1] In this paper, 

we discuss the statistical analysis of data from non-randomised evaluations, dealing 

particularly with confounding. We outline key issues and options available when 

planning analyses of these data. In practice, the most appropriate statistical approach will 

differ from case to case, but transparent description of the design and analysis process is 

essential [2, 3], as for RCTs [4]. 

 

 

Causal effects and confounding in non-randomised evaluations of public-health 

interventions 

 

Evaluations of public-health interventions aim to estimate the causal effect of an 

intervention by which we mean a quantitative measure of the difference between the level 

of the outcome had everybody in the population of interest been exposed and the level of 

the outcome had everybody been unexposed. Readers are referred to Hernan (2004) for a 

fuller discussion of causal effects in epidemiology.[5] Our emphasis on public-health 

interventions also implies we are most concerned with estimating overall (population-

level) effects of intervention strategies, combining direct and indirect effects.[6]  
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RCTs aim to achieve balance between treatment and non-treatment groups, meaning that 

these groups are alike with regard to all factors that might influence the outcome measure 

(both known and unknown), other than exposure to the intervention of interest. RCTs 

achieve balance by using chance to determine which people or units receive an 

intervention, and by applying this process many times over (i.e. allocating many units to 

the two groups).[7]  

 

Most non-RCT designs also seek to achieve balance.[1] Nevertheless, imbalance is more 

likely with these designs and consequently they risk generating a confounded effect 

estimate: one that mixes the effect of the intervention with other causal effects.[8]  

 

Consider a study to evaluate the effect of a radio soap-opera designed to encourage 

contraceptive use in Nepal using data collected from over 8,000 women in a cross-

sectional survey (see box 1 in our previous paper).[1, 9] The authors compared 

contraceptive use among women who reported listening to the programme in the previous 

six months with that among women who did not. An unadjusted analysis found that the 

prevalence of contraceptive use was 12% higher among listeners than non-listeners 

(Table 1). However, it would be premature to conclude that this reflects an intervention 

effect. While this study suffered from many potential biases (as do most evaluations) we 

highlight here the issue of confounding. For example, level of education might differ 

between those who did and did not listen to the soap-opera, and might also, 

independently, influence contraceptive use (Figure 1). Of course, educational level is 
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only one of many potential confounders, and a more complex causal diagram than Figure 

1 could be drawn to help identify other variables that should be controlled.[10]  

 

Statistical methods for controlling confounding 

(i) Stratification and regression  

 

In the traditional approach to controlling confounding, women would be grouped 

(“stratified”) according to their educational level, for example “none”, “attended primary 

school” and “completed primary school”. The association between intervention and 

outcome is examined within each group. Any association within groups cannot be due to 

confounding by educational status because women in each group have the same level of 

education, assuming this is correctly measured. If the intervention effect is approximately 

the same in all sub-groups, a weighted average of the stratum-specific estimates provides 

an adjusted effect estimate free of confounding by that variable.  

 

Regression modelling can include multiple confounding factors as explanatory 

variables[11], and was used in the Nepal study to control 11 potential confounders, 

assuming no effect modification. This adjustment reduced the estimated effect from 

+12% to +6% (Table 1), consistent with the unadjusted estimate being partly confounded 

(overestimating the true effect). However, this adjusted estimate is unconfounded only if 

all important confounders are identified and measured accurately[12, 13]. Since we can 

rarely, if ever, verify this, residual confounding remains a concern. 
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(ii) Propensity scores 

 

Propensity scores are another more recent approach to controlling confounding.[14] The 

following steps are taken: 

 

1. A regression model is used to identify factors that ‘predict’ exposure to 

the intervention. The model is used to calculate each individual’s 

predicted probability of, rather than actual, exposure to the intervention 

(e.g. “listened to the soap opera”).  

 

2. Individuals with similar propensity scores are grouped. Within each 

group, some individuals will actually have been exposed to the 

intervention and some not. Since individuals in each group had the same 

propensity to be exposed, the method assumes that actual exposure 

within these groups was random. 

 

3. Stratified analysis can compare outcomes between exposed and 

unexposed individuals within each propensity-score group and by 

including the propensity score group in regression analysis it is possible 

to obtain an unconfounded estimate of the intervention effect. 

Alternatively, each exposed individual may be matched with an 

unexposed individual with the same or similar propensity score and the 

analysis restricted to these pairs. 
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When used in the Nepal study, this approach yielded an effect-size estimate of a 9% 

increase in contraceptive use. Unfortunately, no details were provided of the variables 

used to estimate the propensity scores though this choice may affect the estimate 

obtained. Future evaluations adopting this approach should provide these details [2, 3].  

 

Propensity scores are increasingly popular.[15] One advantage is that their use can reduce 

the number of parameters (i.e. variables and categories within these) to be estimated in a 

regression model. When the number of parameters is large relative to the data available, 

estimates can become biased and confidence intervals unreliable. In the current example, 

using propensity scores rather than standard regression reduced the number of parameters 

from 25 to 8. In this case a model with 25 parameters should not have introduced 

bias,[16] since over 2500 women reported using contraceptives. However, in smaller 

evaluations or those focused on rare outcomes, propensity-score approaches can reduce 

such problems, [14, 17] and may be more robust than standard regression when the 

number of events-per-confounder is small (< 8).[18]  

 

Problems remain however. In practice, comparisons between regression and propensity-

score methods suggest they usually yield similar results.[15, 19, 20] Like standard 

regression methods, a propensity-score analysis faces the problem of unmeasured or 

poorly-measured variables since all important predictors of exposure that are causally 

associated with the outcome must be included. Furthermore, using statistical methods to 

identify 'predictors' of exposure without considering underlying causal relationships 
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might be problematic. Investigators should not include 'predictors' which are in fact 

consequences of exposure, since this will lead to 'over-adjusted' models and biased effect 

estimates.[10, 21] Alternatively, if multiple predictors of exposure that are not causally 

associated with the outcome are included, then power may be unnecessarily sacrificed 

since, as with other methods of controlling confounding, including multiple factors in a 

model can reduce power.[22] 

 

(iii) Instrumental variables 

 

Instrumental variables are also increasingly popular, purportedly removing the need to 

identify and measure all potential confounders.[23, 24] This approach requires an 

“instrument” that meets the following conditions (Figure 2):  

 

1. It is a cause or proxy for a cause of exposure to the intervention; 

 

2. It is not a cause of the outcome other than through the intervention; and 

 

3. It is not associated with any unmeasured confounders of concern in the study 

population. 

 

Identifying an instrument that satisfies these conditions allows us to generate an 

unconfounded estimate of the intervention effect (‘effect A’ in Figure 2), by comparing 

the magnitude of the association between the instrument and the outcome (‘effect C’) 
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with that between the instrument and exposure to the intervention (‘effect B’). In the case 

of the Nepal example, the intervention effect is estimated by dividing the effect (risk 

difference) of the instrument on the outcome by the effect (risk difference) of the 

instrument on the exposure. The precise manner in which estimates are calculated differs 

depending on the situation.[23, 25]  

 

Instrumental-variable analysis may provide different estimates of treatment effect to 

standard or propensity-score methods.[20] In the Nepal example, “listens to radio 

weekly” was used as an instrument (see figure 2). This analysis suggested an 8.5% 

increase in contraceptive use associated with the intervention. However, we must 

question whether conditions 2 and 3 were met. First, listening to the radio weekly 

(including other programmes) could conceivably have a direct effect on contraceptive 

practices (violating 2). Second, important unmeasured confounders (e.g. social and 

cultural factors) might also be associated with this instrument (violating 3). This 

illustrates that it is often difficult to identify an appropriate instrument. Furthermore, we 

can never empirically verify the conditions required for a valid instrument. Consequently, 

“the fundamental problem of causal inference from observational data – the reliance on 

assumptions that cannot be empirically verified — is not solved but simply shifted to 

another realm”.[23]  Finally, even if all three conditions above are met, if the correlation 

between the instrument and the intervention is not strong (the instrument is “weak”), the 

standard error of the intervention effect will be large and the confidence interval for the 

effect will be wide.[26] 
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(iv)  Using pre-intervention measures of the outcome variable in analysis 

 

In both randomised and non-randomised evaluations, obtaining measures of the outcome 

variable prior to the introduction of the intervention can be useful to explore balance. 

These data can also be used to control confounding since they reflect the prior influence 

of multiple factors that influence the outcome in the absence of intervention. The data can 

be incorporated into analysis in two ways: 

 

1. Treat them in the same way as other potential confounders and fit a regression model 

in which the pre-intervention measure of the outcome is included alongside other 

potential confounders.  

 

2. Calculate the change in the outcome and base the analysis on the difference in the 

changes in the two groups. 

 

If intervention and control groups are similar with respect to baseline measures of the 

outcome (i.e. there is balance), or where small differences arise by chance (as could also 

happen in an RCT), both approaches provide unbiased estimates of the intervention effect 

but regression will provide a more precise estimate and is therefore preferred.[27]  

 

However, when non-random allocation results in two groups which are drawn from two 

different populations, and hence are unbalanced at baseline, the two approaches can give 

contradictory results. This has been described as “Lord’s paradox” and was first 
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identified in the context of individual-level data.[27-29] To illustrate this paradox with an 

example relevant to our purposes, consider a hypothetical cluster-allocated, non-

randomised study of an intervention aiming to lower mean systolic blood pressure 

(MSBP) among individuals in workplaces by influencing exercise and smoking (100 

intervention, 100 control sites). Intervention allocation was non-random, being 

determined by stakeholder meetings to identify which workplaces received the 

intervention.[1] This resulted in a systematic imbalance in MSBP between the two arms 

at baseline (intervention 120mmHg, control 115mmHg). Following intervention, 

measures of MSBP were taken from individuals in all workplaces. MSBP did not change 

between baseline and follow-up in either the control or intervention workplaces.  

 

In this situation, because blood pressure differed between the groups (was unbalanced) to 

begin with, regression analysis can incorrectly suggest that there was an effect of the 

intervention in some situations, while an analysis of change in the outcome does not.[27-

29] Here we offer one suggestion for how this paradox might occur and reflect on 

guidance for evaluators in this situation. Figure 3 shows the results of two simulations of 

the experiment with pre-intervention MSBP plotted against MSBP post-intervention for 

all intervention and control workplaces. In Figure 3a, we assume that MSBP was 

measured “perfectly”. Over 1000 simulations there was no evidence for a difference 

between the groups from either regression analysis or analysis of changes. However, 

when we allowed “noise” in the baseline measurements of MSBP (Figure 3b), there was 

evidence of a difference between the groups in regression analysis but not change-scores. 

Our simulation assumed that each individual had the same true underlying systolic blood 
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pressure at both baseline and follow-up, i.e. we assume no real change in either group, 

but that at each time-point there was independent random measurement error. Our simple 

simulation suggests that one possible explanation for paradoxical findings when 

comparing an analysis of changes with a regression analysis is that “noise” results in 

dilution of the association between pre- and post-intervention measures as identified by 

linear regression. This is known as regression-dilution bias.[30] This phenomenon 

reduces the gradient of the regression lines in Figure 3b compared to Figure 3a. The 

regression lines for each group are consequently shallower, but are also centred on 

different means (because of the baseline imbalance) resulting in a vertical gap between 

the two lines. In regression analysis, this gap is equivalent to the estimated parameter for 

intervention effect, and might then be incorrectly interpreted in this way.  

 

Further research is necessary to characterise the statistical properties associated with this 

phenomenon; we have offered only a simplified illustration. Such work is necessary 

because this situation might plausibly arise in non-randomised evaluations of public-

health interventions. For example, we identified an ongoing evaluation of the impact of 

introducing youth-centres and ‘adolescent-friendly’ clinics on HIV prevalence among 15-

24 year-olds in South-African communities. The centres were purposively placed in 

disadvantaged areas for strategic purposes.[31] The evaluation design aims to compare 

future HIV prevalence through surveys in 11 youth-centres, 11 clinics and 11 control 

sites but baseline HIV prevalence was higher in areas where youth-centres were placed 

(15.7%) than controls (13.8%: adjusted OR = 1.41 95% CI 0.96, 2.07).[31] It is inevitable 

that there is imprecision in these site-specific estimates since they are based on a sample 
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of the population. Given this imbalance at baseline, a future regression analysis using 

data from a new sample post-intervention is likely to be biased by the regression-dilution 

bias illustrated above. However, for change-scores to produce a valid estimate of the 

intervention effect, we must assume that the intervention has a constant additive effect 

regardless of the level at baseline on whatever scale the analysis is performed (for 

example, log (odds) in the case of logistic regression). The key message of Lord’s 

paradox is, therefore, that when non-randomised intervention and control groups are 

unbalanced at baseline, any attempt at causal inference will be fraught with difficulty.[27, 

29]  

 

(v) Imbalance and inference when the number of units studies is small 

 

Public-health interventions are often delivered to ‘clusters’ of people and for practical 

reasons the number of clusters included in an evaluation is sometimes small.[1] Cluster 

allocation must be appropriately taken into account in analyses, and this is relevant to 

both randomised and non-randomised designs.[32] Low statistical power in such studies, 

including those where large numbers of individuals but only a small number of clusters 

are enrolled, is a major barrier to statistical inference. We do not seek to review this issue 

here, other than to identify that allocation of a small number of units may also be a reason 

why imbalance might arise in non-randomised evaluations and thus indicate the need for 

control of confounding. However, many relevant statistical methods require additional 

assumptions when cluster numbers are low. We thus re-iterate the more general point that 

while in-depth studies of interventions delivered in a few study units can provide 
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valuable information on process and provide some forms of evidence to inform public-

health decision-making [33], they are highly constrained in their capacity to provide 

quantitative estimates of intervention effect.  

 

(vi) Time-series studies 

 

When it is not possible to recruit a concurrent comparison group it may instead be 

possible to compare each unit pre- and post-intervention. However, once again, a “fair 

comparison” should be made. The before/after approach, and more sophisticated variants 

of this in which multiple measures of outcome are made over time, controls for sources of 

confounding that are static over time but not time-varying factors such as maturational, 

seasonal or secular trends. 

 

“Interrupted time-series analysis” requires data on multiple measures of the outcome pre- 

and post-intervention.[34] The following steps are taken: 

 

1) The extent of variation in the outcome over time due to factors other than the 

intervention (e.g. seasonal trends) [35] is estimated statistically. 

 

2) A statistical model is used to predict the “expected” outcome at the end of the 

intervention period had the intervention not been delivered. 
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3) This “expected value” is compared with the “observed” post-intervention level 

to determine the intervention “effect”.  

 

For example, the effect of introducing pneumococcal conjugate vaccine (PCV-7) for 

infants in the USA was evaluated by examining monthly pneumonia admissions (see 

previous paper, box 1).[1, 36] There were significant seasonal variation in trends in 

admission (Figure 4). An expected admission rate at the end of the intervention period 

was obtained by extrapolating available trend data after modelling seasonal fluctuations. 

The analysis found that the seasonally-corrected admission rate by December 2004 was 

39% lower than the expected rate (95% CI 22%-52%) providing an estimate of the effect 

of PCV-7 (Figure 4a). 

 

Interrupted–time-series analysis provides better estimates than simple before/after studies 

as long as putative time-varying confounding factors are measured and modelled.[37] 

Acute effects of rapid introduction of an intervention are generally easiest to differentiate 

from other sources of variation in time-series analyses.[34] Difficulties arise if an 

intervention is implemented gradually or has a long latent interval before exerting effect 

(e.g. the effect of anti-smoking campaigns on lung-cancer rates). A challenge also arises 

in deciding how complicated a trend to allow for in estimating expected values post-

intervention. Non-linear trends can be modelled and provide better control of 

confounding, but require data for many time-points and may result in less-precise effect 

estimates. Furthermore, even after modelling trends and allowing for seasonality, there 

may be auto-correlation between outcome levels at adjacent time-points.[38] This auto-
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correlation can lead to over-estimating the precision of intervention effects and provide 

confidence intervals that are too narrow. For continuous outcomes, there are techniques 

available to take account of this; for counts, a little ingenuity is required.[39] 

  

Conclusion 

 

Non-randomised evaluations are essential to inform public-health decision making where 

there are clear barriers to the conduct of RCTs. Over two papers, we have discussed 

design and analysis choices in order to ensure a “fair comparison” is made. Confounding, 

however, remains a major concern in these studies and investigators will face more 

complex problems even than those we have discussed here such as dealing with 

covariates that change over time.[40] Evaluators and analysts have various options to 

consider but must make careful, informed choices that fit their context. We hope to have 

aided these choices. Most importantly, as we and others have stressed, investigators 

should transparently outline the steps taken in design and analysis so that others can 

judge the value of the estimates produced. 
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Tables and Figures 
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Figure 1. Simple causal diagram of potential causal effects and links between exposure 

to the intervention, educational level and contraceptive use 

 

 

Current contraceptive 
use 

Education level 

Listened to soap opera 
in past 6 months 

Putative causal effect 

Association between two variables due to them sharing a 
common cause (e.g. socio-economic status) 
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Table 1. Results of an evaluation of a family-planning communication intervention in 

Nepal+ 

 

 Group Estimated effect of the intervention 
 

 Not 
listened to 
soap opera 

Listened to 
soap opera 

Unadjusted 
analysis 

Including 
potential 
confounders 
in regression 
model* 

Using 
propensity 
scores 
approach^ 

Using 
“listens to 
the radio 
weekly” as 
an 
instrument  

       
Current use 
of a modern 
contraceptive 
method 

31% 43% +12% +6.2%  +9.2% +8.5% 

 

Notes on table: 
+ The data on which these analyses are based are downloadable on request from 

http://www.measuredhs.com/.  

 * Probit regression, a statistical approach from the same family as logistic and linear regression that are more 

commonly used in public-health, was used to estimate risk differences as presented in the table. The principles we 

discuss apply equally to other regression methods. Variables included in the model as confounders were: woman’s age, 

woman’s educational level, household asset index, religion, lives in rural area, visited by family-planning worker in 

past 12 months, currently employed, number of living children, husband’s education, watches television weekly, listens 

to radio weekly.  

^ No information provided on variables used to calculate propensity score 
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Figure 2. Causal diagram indicating the conditions under which a variable (the 

“instrument”) will enable the investigator to control unmeasured confounding variables  

 

Unmeasured 
confounders

Instrument

E.g. Listens to 
Radio Weekly

Exposure to 
Intervention

E.g. Listened 
to Soap Opera

Outcome

E.g. Current 
Contraceptive 
Use

Condition  1

Condition  2

Condition  3

B A

C
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Figure 3. Simulated data illustrating possible mechanism for “Lord’s paradox”. The 
vertical distance between the two regression lines corresponds to the “intervention effect” 
estimate obtained from regression. In figure 3a, with no “noise” in the baseline measure, 
this suggests no intervention effect, consistent with the analysis of change-scores. In 
figure 3b, with “noise” in the measurements, regression suggests an intervention effect. 
(a)  

Details of simulation: Using STATA version 10, a simulated population of 100 intervention clusters were drawn from a sampling distribution 
with mean of 120, and standard deviation of 3 and 100 control clusters were drawn from a population with mean 115, standard deviation 3 to 
represent baseline values. A standard deviation of 3mmHg in cluster level mean SBPs could plausibly arise in an evaluation – for example if the 
standard deviation of individual blood pressure values in each population was 18mmHg and the number of individuals enrolled in each cluster 
was 36. Follow up measures simulating random variation over time but no intervention effect (Figure 3a) were simulated by adding an 
additional random value (mean 0, standard deviation 3) to each baseline value. “Noise” at baseline and follow up (in Figure 3b) was simulated 
by adding a further random value to both baseline and follow-up measurements (mean 0 , standard deviation 3). For both Figure 3a and 3b, the 
individual red and blue points represent the cluster-level mean values from a single simulation, while the lines from regression represent the 
results of 1000 repeated simulations of the experiment. In Figure 3a with no noise the black line indicates that the two regression lines are 
coincident; in Figure 3b the red and blue lines are separated by a distance of 2.5, representing the estimated average “intervention effect” in 
regression analysis, and illustrating one possible mechanism for Lord’s paradox. 
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Figure 4. Trends in monthly US admission rates (1997–2004) for (a) all-cause pneumonia and (b) dehydration (control condition) 

among under 2 year olds before and after routine immunisation of children with PCV7 (partially reproduced from Grijalva et al.[36]) 
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What we already know on this subject 

 

Non-randomised evaluations of public health interventions are more likely than 

randomised designs to suffer from imbalance between intervention and control groups. 

Consequently they risk generating confounded effect estimates that mix the effect of the 

intervention with other causal effects. A variety of statistical approaches are available to 

minimise confounding but existing reviews have not discussed these in a way that can 

help guide the planning of evaluations of public health interventions where randomisation  

is not possible. 

  

 

What this paper adds 

 

Like regression and stratification techniques, propensity scores require that key putative 

confounders are measured accurately, but may be particularly useful where many 

confounders need to be controlled and data are limited. Instrumental variables offer, in 

theory, a solution to the problem of unknown or unmeasured confounders but identifying 

a valid instrument will often be challenging. Outcome measures taken at baseline can be 

used in analysis but imbalance poses complex challenges for analysis and interpretation. 

Finally, time-series analysis can enable the estimation of intervention effects with 

appropriate, but complex, statistical models.  
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