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Abstract In this paper, a new approach for synchronization of dynamical networks

with time-delays is proposed. It is based on stability theory on coupled time-delayed

dynamical systems. Some new criteria for the stability analysis which ensure the syn-

chronization of the networks are analytically derived. Conditions for synchronization,

in the form of a matrix inequality, are established. It uses the Lyapunov and Krasovskii

stability theories. The problem of stabilization is transformed into a linear matrix in-

equality (LMI) which is easily solved by a numerical toolbox. In this approach, param-

eter uncertainties are introduced in the network model. Numerical simulations show

the efficiency of the proposed synchronization analysis. A network of 4-GHz smart an-

tenna array is used and analyzed in some details. This array provides a control of the

direction of the radiation pattern.

Keywords Passivity, Network, time-delay system, LMI, Robust control, milliwave

electronics

1 Introduction

Complex networks have recently attracted increasing attention from various fields of

science, engineering and biology [1]. The global exponential synchronization of complex

time-delayed dynamical networks possessing general topology has been investigated in

many contributions. In [2], time-delay dependent linear controllers are designed via

Lyapunov stability theory, in [3] an experimental design on chua’s circuits has been

made. In [4], the authors show that synchronization and desynchronization of a complex

dynamical network can be determined by the network topology and the maximum

Lyapunov exponent of the individual chaotic nodes. An adaptive version can be found

in [5]. Recently, in [6][7], it is proved that synchronization of time-varying dynamical

network is completely determined by the inner-coupling matrix. In [8], stability analysis

of the networks has been extended using the phase and the frequency of the oscillators.

It has been applied for random coupling large scale system. In [9], studies has been

made when the network topology is allowed to change.
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Some of these approaches use Linear matrix inequality (LMI)-based techniques to

verify the stability (e.g. [10],[11]). The main advantage of the LMI-based approaches is

that the LMI stability conditions can be solved numerically. A strategy based upon the

absolute stability theory and upon Kalman Yakubovich Popov lemma (KYP) can be

found in [12]. Following the dissipativity approach introduced by Willems [13], some

authors also study the passivity of neural networks. The passivity properties of static

multilayer neural networks are studied in [14]. Although there exists a lot of results in

linear and nonlinear systems where the passivity of systems with time-delays has not

been fully investigated. In [15][16], the authors analyze the passivity of linear time-delay

systems. The passivity properties for time-delayed neural networks (DNNs) have been

considered in [17]. The same interests have been followed for cyclic oscillators. Another

approach is employed in [18], which is based on a piecewise analysis method where

some new delay-dependent synchronization stability criteria are derived. The passivity

description of oscillators was previously examined by Chua in [19]. The dissipation

and its incremental form are determined on a specific class of passive oscillators [20].

Many earlier results in the literature have nevertheless exploited the structure of Lur’e

systems in the study of nonlinear oscillations. The use of numerical tools restricted to

a linear element in the forward path and to a piecewise linear static element in the

feedback path is discussed in [21] and [22]. In a recent paper [23], the authors have

developed a method to prove the complete synchronization in networks of coupled

limit-cycle or chaotic oscillators with arbitrary connection graphs.

The main goal of this paper is to investigate synchronization dynamics of a general

model of complex time-delayed dynamical cyclic or chaotic networks with the use of

passivity approach. Time-delay effects are made up of two parts. One part is used to

have a certain time-delay between cells in the networks. Another part is composed of

multiple time-delay. This part is considered as a perturbation for synchronization. This

time-delays between cells are necessary in some cases as in antenna arrays. Only the

information on the variation range of the time-delay is needed to analyze the network.

A numerical example will be given to show the efficiency of our method.

This paper is organized as follows. In Section I, a model of complex time-delayed

dynamical networks is presented, and some definitions related to synchronization of

the time-delayed dynamical networks are given. Section III deals with the stability

analysis of synchronization manifold in presence of time-delays. In Section IV, some

generalities on the field of antenna arrays are given and theoretical results are verified

by several simulations. Finally, some concluding remarks are given in Section V.

2 Preliminaries on network of dynamical systems

Consider N systems or oscillators of the following form

ẋi = A(∆)xi +Bu∗i
yi = Cxi,

(1)

with the feedback interconnection,

u∗i = kyi −B1(∆)σ(yi) + ui, (2)

where i = 1, · · · , N . Each system or cell is a Lur’e system with state vector xi ∈ R
n,

inputs of subsystems u∗i ∈ R
m and outputs of subsystems yi ∈ R

m. σ(yi) is a static
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nonlinearity where σ(.) ∈ R is a stiffening nonlinearity defined below. Here, we suppose

that B1(∆) > 0.

Assumption 1 σ(.) is a smooth sector nonlinearity in the sector (0;∞), which satis-

fies σ
′

(0) = σ
′′

(0) = 0, σ
′′′

(0) > 0 and

lim
yi→∞

σ(yi)

yi
= ∞.

The model (1) is a continuous-time model. However, matrices A(∆) and B1(∆)

are not precise but uncertain and time-invariant and belong respectively to A, B1,

polytope of matrices defined by

A = {A = A(α) |A(α) =

np
∑

j=1

(αjAj);α ∈ ∆} (3)

∆ = {α ∈ R
np |αj ≥ 0, ∀j ∈ {1, ..., np} ;

np
∑

j=1

(αj) = 1}.

Matrix A (resp. B1) is a convex combination of the matrices Aj (resp.
(

B1j

)

),

j = 1, ..., np corresponding to the vertices of the polytope.

Remark 1 All the cells are identical. The considered variations represent the thermal

variations of the components and the variations due to the process of manufacturing.

Definition 1 The system (1) is called dissipative if there exists a supply function

Vi(x) ≥ 0 such that

Vi(xi(t)) − Vi(xi(0)) ≤

∫ t

0
yi(µ)Tu∗i (µ)dµ. (4)

In order to perform a robust criteria for the synchronization schemes, the following

assumption must be introduced.

Assumption 2 Each system (1) with the feedback (2) is supposed to be a dissipative

oscillator, see [21] for another definition. A dissipative oscillator satisfies two condi-

tions :

First, the feedback system satisfies the dissipation inequality

V̇i(xi) ≤ (k − k∗passive)y
T
i yi − yT

i B1(∆)σ(yi) + yT
i ui, (5)

where Vi(xi) = 1
2x

T
i Pxi with P = PT > 0, PAj + AT

j P ≤ 0 for j ∈ {1, · · · , np} with

PB = CT . Vi(xi) represents the storage function associated to the feedback system.

k∗passive is the critical value of k above which the closed loop system looses passivity.

Secondly, when unforced (ui = 0), the feedback system has got a global limit cycle.

Remark 2 For matrices A and B, the notation A⊗B (the Kronecker product) stands

for the following matrix

A⊗B =







A11B · · · A1nB
...

. . .
...

An1B · · · AnnB






, (6)

where Aij i, j ∈ {1, · · · , n} stands for the ij − th entry of the n× n matrix A.



4

Using the properties of the Kronecker product, see [22], the dynamics of the network

can be represented by the following equations

Ẋ = (IN ⊗A(∆))X + (IN ⊗B)U∗

Y = (IN ⊗ C)X,

U∗ = kY − (IN ⊗B1(∆))Σ(Y ) + U

(7)

where X = [x1(t), x2(t)..., xN (t)]T and Σ(Y ) = [σ(y1(t), ..., σ(yN (t))]T the stiff-

ening nonlinearity. U∗ = [u∗1, ..., u
∗

N ]T is the input vector and Y = [y1(t), ..., yN (t)]T

the output vector with ui, yi ∈ R
m ∀i ∈ {1 · · ·N}. Suppose that the system (1) is

interconnected by the N ×N coupling matrix Γ

U = −kc(Γ ⊗ Im)Y. (8)

Note that there is a coupling between the i − th and j − th system if Γij ≥ 1 and kc

is a scalar which corresponds to the coupling strength.

The vector 1N ((1, · · · , 1)T ∈ R
N ) is supposed to belongs to the kernel of Γ .

Moreover, the rank of Γ is assumed to be equal to N-1. In this case, the network is

connected. Notice that these assumptions do not require the symmetry of Γ .

When studying the time-delayed network synchronization, the change of coordi-

nates e = (R⊗ In)X can be used [24][22], where R is the nonsingular matrix N ×N ,

R =

[

0 0T

N−1

−1N−1 IN−1

]

(9)

Notice that the assumptions on Γ imply

RΓ =

[

0 0T

0 Γ̃

]

R. (10)

The class of interconnection matrices Γ is further assumed to be such that Γ̃ is positive

definite. Γ̃s is the symmetric part of Γ̃ , i.e. xT Γ̃sx = 1
2x

T (Γ̃ + Γ̃T )x.

3 Robust synchronization Analysis of network with needed time-delays

and multiple time-delays distrubances

In the case of time-delay synchronization,

e(t) = (R⊗ In)X = [0, x2(t− τ2) − x1(t)

, · · · , xN (t− τN ) − x1(t)]
T .

(11)

When e = 0, there exists a desired time-delay τi between each cell of the network. The

dynamics of the error system is reduced to

E :







ė = (IN ⊗A(∆))e+ (IN ⊗B)U∗

e

Ye = (IN ⊗ C)e

U∗

e = kYe − (IN ⊗B1(∆))σe(e, y1) + Ue

(12)

where σe(e, y1) = [0, σ(y2) − σ(y1), ..., σ(yN ) − σ(y1)]
T

Let introduce hj (j = 1, 2, · · · , p), the undesired time-delays (like propagation time-

delays),
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Assumption 3 the time-varying delays hj are supposed to satisfy the following con-

ditions

0 ≤ hj(t) ≤ h̄j <∞

0 < lj < ḣj ≤ l̄j < 1.
(13)

Suppose that the system (12) is interconnected by

Ue = kc(Γ ⊗ Im)Ye(t) +

p
∑

j=1

(Γ2 ⊗ Im)Ye(t− hj) (14)

It is considered that Γ2 has got the same properties as Γ . A particular case is Γ2 = kcΓ .

Remark 3 From the particularity of (11), i.e. the first row is equal to 0, the stability

of the system (12) can be studied with a (N − 1) order system. Let note the new state

variables with an underline, e.g. e = [e1 · · · eN ]T .

The formulation of the system can be transformed into

E : ė =
(

IN−1 ⊗A(∆)))e

+ (IN−1 ⊗B)kc((Γ̃ + kI) ⊗ Im)(IN−1 ⊗ C)
)

e

+

p
∑

j=1

(IN−1 ⊗B)(Γ̃2 ⊗ Im)(IN−1 ⊗ C)e(t− hj)

− (IN−1 ⊗B)(IN−1 ⊗B1(∆))σe(e, y1), (15)

This system can be changed into an interconnection system

E : ė = A0(∆)e+A1eh + (IN−1 ⊗B)Ul

Ye = Cee (16)

Ul = (IN−1 ⊗ kI)Ye − (IN−1 ⊗B1(∆))σe(e, y1),

where eh =
[

e(t− h1), · · · , e(t− hp)
]

.

The interconnected system is dissipative (definition 1) when

V (e(t)) − V (e(0)) ≤

∫ t

0
Ye(µ)TUl(µ)dµ. (17)

Remark 4 The supply function must be semi-definite positive but it can be different

than eTPe

Some works tackle the problem in the linear case without dissipativity, see [25],

[26] and [27]. The solution of Xia et al seems to be less conservative than the others.

Remark 5 When h is time-invariant and its exact value is known, the robust stabiliza-

tion control problem was solved based on a reduction method [28].
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A theorem inspired from [29] is used. In this paper, the attention is focused on the

investigation of network analysis for the time-varying delay case with passivity. In this

case, the following supply function (Lyapunov-Krasovskii functional) is taken

V (t) = V1 + V2 + V3 + V4, (18)

where

V1 = eT (IN−1 ⊗ P )e (19)

V2 =

p
∑

j=1

∫ t

t−hj

∫ t

s

ė(z)TWj ė(z)dzds (20)

V3 =

p
∑

j=1

∫ t

t−hj

e(s)TQje(s)ds (21)

V4 =

p
∑

j=1

∫ t

0
(1 − lj) (22)

∫ z

z−hj

[ eT (z) ė(s)T ]

[

Zj Yj

Y T
j Xj

] [

e(z)

ė(s)

]

dsdz.

Assumption 4 The pair (A0(∆), B) is stabilizable.

Theorem 1 Consider N coupled time-delay dissipative systems (12). Under the pre-

vious assumptions, if there exists a set of matrices F , P > 0, Qj > 0, Wj > 0, Xj > 0,

Yj and Zj for j ∈ {1, · · · , p} and i ∈ {1, · · · , np} such that the following LMIs are

verified
[

Zj Yj

Y T
j Xj

]

≥ 0

(lj − lj)Xj − (1 − lj)Wj < 0

Mi =













ψ1 −ψ3 0 0 P

−ψT
3 −ψ2 0 0 0

0 0 0 0 0

0 0 0 −W W

P 0 0 W 0













+Sym
{

F [A0i A1 (IN−1 ⊗B) 0 −I ]
}

< 0,

then the system (12) is asymptotically stable and synchronizes such that {xi ∈ R
n for

i = 1, · · · , N : x1(t) = x2(t− τ2) = · · · = xN (t− τN )}. Where Sym {R} = R+RT and

W =

p
∑

j=1

hjWj (23)

ψ1 =

p
∑

j=1

Qj + (lj − lj)[hjZj + Yj + Y T
j ] (24)

+ (IN−1 ⊗ (k − k∗passive)I)C
T
e Ce (25)

ψ2 = Diag[ (1 − l1)Q1 · · · (1 − lp)Qp ] (26)

ψ3 = [ (l1 − l1)Y1 · · · (lp − lp)Yp ] (27)

F =
[

FT
1 FT

2 FT
3 FT

4 FT
5

]T
(28)
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Proof: For convenience, A0(∆) is noted as A0 and es = e(s) and ez = e(z) and

(IN−1 ⊗B) = B Taking into account the functional V (t) of (18), the time-derivatives

of the Lyapunov functions are given by

V̇1(e(t)) = e(t)T
(

AT
0 P + PA0

)

e(t)

+ e(t)TPA1eh(t) + eh(t)TAT
1 Pe(t),

+ 2e(t)TPBUl

(29)

V̇2(e(t)) =
∑p

j=1

(

hj(t)ė
TWj ė

− (1 − ḣj)
∫ t
t−hj

ėTs Wj ėsds
)

,
(30)

V̇2(e(t)) ≤

p
∑

j=1

hj

(

eT A
T
0 WjA0e

+

p
∑

n=1

eT A
T
0 WjA1ne(t− hn)

+

p
∑

n=1

e(t− hn(t))AT
1nWjA0e

T

+

p
∑

j=1

p
∑

n=1

e(t− hn(t))AT
1nWjA1ne(t− hn(t))

+ 2eT A
T
0 WjBUl + Ul

T
BWjBUl

+ 2

p
∑

n=1

e(t− hn(t))AT
1nWjBUl

)

(31)

−

p
∑

j=1

(1 − ḣj)

∫ t

t−hj

ėTs Wj ėsds (32)

where A1n represents the part of A1 with respect to the n− th time-delay. When using

the same method, V̇3(e(t)) can be expressed as

V̇3(e(t)) ≤
∑p

j=1

[

eTQje

− (1 − lj)e(t− hj(t))
TQje(t− hj(t))

] (33)

and for the last functional

V̇4(e(t)) ≤

p
∑

j=1

(1 − lj)
[

hje
T (t)Zje(t) + 2e(t)TYj(e(t)

−e(t− hj))
]

+

p
∑

j=1

(1 − lj)

∫ t

t−hj

ėTs Xj ėsds. (34)



8

using Eq.(29-34),

V̇ ≤ ξT (t)Mrξ(t)

+
∑p

j=1

∫ t
t−hj

ės
T

(

(lj − lj)Xj − (1 − lj)Wj

)

ėsds

+ 2e(t)TP (IN−1 ⊗B)Ul

with ξT =
[

e(t)T e(t− h1)
T · · · e(t− hp)T Ul

]

and Mr is





AT

0
P + PA0 + AT

0
WA0 + ψ1r (.) (.)

(PA1 − ψ3 + AT

0
WA1)T AT

1
WA1 − ψ2 (.)

BT
WA0 BT

WA1 BT
WB





Mr is different than M =
∑np

j=1(αjMj) of Eq.(23). This difference is ψ1r = ψ1 −

(IN−1 ⊗ (k − k∗passive)I)C
T
e Ce Note that Mr(∆) can be rewritten as

Mr =





AT
0 P + PA0 + ψ1r PA1 − ψ3 0

(PA1 − ψ3)
T −ψ2 0

0 0 0





+







AT
0 W

AT
1 W

BT
W







(

W
)

−1 [

WA0 WA1 WB
]

. (35)

Using the Schur complement , the dynamics are given by









AT
0 P + PA0 + ψ1r PA1 − ψ3 0 AT

0 W

(PA1 − ψ3)
T −ψ2 0 AT

1 W

0 0 0 BT
W

WA0 WA1 WB −W









The system synchronizes with passivity since V̇ − Ye
TUl ≤ 0 is satisfied. Using (35)

and (17) and assumption 3,

V̇ − Ye
TUl ≤ ξT (t)Mξ(t) (36)

+

p
∑

j=1

∫ t

t−hj

ės
T (

(lj − lj)Xj − (1 − lj)Wj

)

ėsds

− Ye(t)
T (IN−1 ⊗B1(∆))σe(e, y1) (37)

where the dissipativity of each oscillator is introduced in M by ψ1. then using the

lemma [30][31], it is obvious that M is a convex combination of Mi, ∀i ∈ [0, ..., np], with

respect to Eq.(3). Since the different LMIs of (23) are satisfied and the nonlinearity σe

is a stiffening nonlinarity, it implies that Eq.(37) ≤ 0 and that the equilibrium point

of system is globally exponentially stable. The proof is completed.
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4 numerical results: 4 GHz-Antenna Array

An antenna array is made up of an array of individual radiative elements which are

placed in a particular configuration (linear, circular or matrix). In this paper, a uniform

linear array of N elementary isotropic antennas separated by the same distance d is

considered. In order to study the behavior of this configuration, it is assumed that the

elementary antennas are fed with harmonic signals at the same frequency and each

of them, multiplied with complex coefficients wm = Ame
jϕm ; m ∈ {1 . . . N}. In this

case, the mathematical expression of the radiation pattern is,

f(θ) =
N

∑

m=1

wme
j(m−1)K0d cos θ. (38)

where K0 is the propagation constant, d is the distance between elementary antennas

and θ is the direction of the radiation measured from the axis who contains the an-

tennas. The maximum of the radiation pattern in the direction of θ is obtained for

ϕm = −(m − 1)k0d cos(θ). Am are chosen to reduce the side lobes amplitudes of the

radiation pattern.

It can be seen using this brief overview, that it is necessary to modify the amplitude

and the instantaneous phases of the signals which are injected or extracted in/from the

radiative elements. One of the solutions to generate these signals is to use a network

of oscillators which are coupled to each others by time-delay lines, see [32].

In this case, the representation given in Eq.(1)-(2) can be used, where

xi =

[

iL
C0v0

]

A(∆) =

[

0 1
L0C0

−1 − 1
R0C0

]

ui = iinj

σ(yi) = yi
3 B1(∆) = β

C0
3 , B =

[

0

1

]

C = [0 1] .

In this application, the values of the components of the resonant circuit (L0 =

1, 58nH/Ln, C0 = 1pF/Cn and R0 = 10kΩ) are chosen to assure f0 = 4GHz output

frequency and the values of the nonlinear terms are α = 0.01 and β = 0.281. Cn =

1e − 11 and Ln = 1e − 7 have been chosen in order to make up easier numerical

convergence. In that case k∗passive = −R0

C0
and kc = k = α

C0
. The uncertain parameters

are: ∆ = [L0, C0]. In the proposed design, time-delays are introduced by microstrip

time-delay lines. In order to have the structure of the network previously defined, the

equations of the system correspond to that of (12)-(14) with an open chain networks

interconnections (see [22] for others symmetries). In our case, it is chosen an open chain

symmetry

Γ = Γ2 =









1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1









. (39)

The proposed theory has been used to prove the synchronization in a network of four

oscillators. After optimization, the stability of the system was performed in the case

of a ±2% variations of the parameters. In the results, the conditions in (13) are equals

to h̄j = 1ms, lj ≈ 0 and l̄j = 1e − 4. In figure 1, two outputs of four oscillators have

been shown. The desired time-delay τi between two oscillators can be seen. In figure 2,

output errors between time-delayed oscillators are depicted in the case of time-varying
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delays perturbations. In this picture, the extreme values, i.e. ±2% of the parameter

variation and h̄j = 1ms) of the time-delay have been taken.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−9

−0.4

−0.3

−0.2

−0.1

0

0.1

time (s)

ou
tp

ut
 in

 v
ol

ts

Fig. 1 Output responses of 2 time-delayed oscillators

5 Conclusion

In this paper, a new scheme has been proposed for synchronization in dynamical net-

works. It is based on the approach passivity and Lyapunov-Krasovskii theories. The

criteria are further transformed to the LMI form. Dissipativity coupled with parameter

variations can be used to extend the global stability analysis of time-delayed network

of oscillators. Extension of the synchronization of the networks can be used to fed

antenna arrays. In this context, the radiation pattern can be oriented.
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